Numbered Figures for
 Prospect Theory
 for Risk and Ambiguity

by Peter P. Wakker (2010);
provided on internet July 2013 (with permission of CUP)

The figures were made using 2009 software, mainly the drawing facilities of MS-Word. If no elucidation is added to a figure, then it was made using only facilities of MS Word. Sometimes there are curves "drawn by hand" which means using the curve-mouse-drawing facilities of MS-Word.

Sometimes I used graphs of functions. Those graphs I made using the program Scientific Workplace. I would then turn them into wmf windows metafiles. Those I introduced as picture in the MS Word drawing program. (I actually learned over time that it works better to first introduce pictures in Powerpoint, and then transfer them from powerpoint to MS Word, so this is how I did it.) I would then only take the curve from the wmf file and nothing else, so I would drop all letters, axes, and so on from the wmf file. Those I would all make using MS Word.

Apart from 3 exceptions (added where relevant), I never kept the Sc. Workplace TeX input file, but I could remake those easily.

FIGURE 1.5.1. Arbitrage (a Dutch book)

p. 42:

Figure 1.11.1. Deriving expected value

p. 51:

FIGURE 2.4.1.

p. 52:

FIGURE 2.4.2

p. 54:

Figure 2.5.2. Two indifferences and the resulting U curve

$$
30 \sim \underbrace{0.40}_{0.60} 100 \quad 70 \sim \underbrace{\sum_{0.80}^{0.8} 100}_{0.20} 0
$$

p. 56:

Figure 2.5.3. The SG probability p of α
$\alpha \sim \underbrace{\frac{p}{2}}_{1-\mathrm{p}}$
p. 59:

Figure 2.6.1.

p. 60:

FIGURE 2.6.2 $Q^{2} \mathrm{x}$ (a) $1-\lambda$ (b) $2 / 30$ $1 / 3200$ $1 / 3$ (c) $Q^{2 / 3} 100$

p. 60:

Figure 2.6.3.

$$
x=\left\{\begin{array}{l}
\frac{1 / 4}{2 / 4} 5 \\
\frac{1 / 4}{2 / 4}
\end{array}\right.
$$

$$
y=\oint_{1 / 2}^{\frac{1 / 2}{} 5} ; \quad(\lambda=4 / 5)
$$

The mixture $\mathrm{x}_{4 / 5} \mathrm{y}$ can be depicted as

p. 61:

p. 62:

Figure 2.6.5. SG consistency holds if

for all outcomes $\alpha, \mathrm{M}, \mathrm{m}$, all probabilities p and λ, and all prospects C .

```
p. 65:
```

Figure 2.7.1. The sure-thing principle for risk

p. 66:

Figure 2.8.1

p. 68:

p. 70:

p. 72:

Figure 3.2.1. Risk aversion

For the prospect
expected value.
$\wp_{1-\mathrm{p}}^{\square} \beta$, the expected utility, $*$, is lower than $*$, the utility of the

Elucidation: This Figure was made using only MS Word. I drew the curves by hand.
p. 72:

Figure 3.2.2. Concavity, linearity, and convexity

Elucidation: This Figure was made using only MS Word. I drew the curves by hand.
p. 75:

p. 79:

Figure 3.5.1. Power utility curves, normalized at 1 and 2

Elucidation: This Figure contains a graph of the following function, drawn fat, and indicated in the figure by $\boldsymbol{\theta}=0$:
$u(\alpha)=\frac{\ln (\alpha)-1}{\ln (2)-1}$
, further the function, also drawn fat, and indicated in the figure by $\boldsymbol{\theta}=1$:
$u(\alpha)=\alpha-1$
and further the functions (not drawn fat)
$u(\alpha)=\frac{\alpha^{\theta}-1}{2^{\theta}-1}$
for the other θ values indicated in the figure $(\theta=-20,-5$, $-2,-1,-0.5,-0.1,0.1,0.5,2,5$, and 30).
I made the graphs using Scientific Workplace (did not keep input files) as explained above.
p. 81:

ELUCIDATION: This Figure contains graphs of the function:
$u(\alpha)=\alpha$ (indicated in the figure by $\theta=0$)
and of the functions
$u(\alpha)=\frac{1-\exp (-\theta \alpha)}{1-\exp (-\theta)}$
for the other θ^{\prime} s as indicated $(\theta=-2 .-0.6,6$, and 2).
I made the graphs using Scientific Workplace (did not keep input files) as explained above.
p. 86:

Figure 3.7.1. SG invariance
$(\mathrm{Q}, \mathrm{T}) \sim \delta_{1-\mathrm{p}-(\mathrm{Q}, 0)}^{\mathrm{p}-(\mathrm{Q}, \mathrm{M})}$

p. 87:

Figure 3.7.2. A prospect with multiattribute outcomes and its expected utility

$$
\begin{aligned}
& \frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\left(\mathrm{x}_{1}{ }^{1}, \ldots, \mathrm{x}_{1}{ }^{\mathrm{m}}\right) \\
& \vdots \\
& \left.\frac{\mathrm{x}_{\mathrm{n}}}{}{ }^{1}, \ldots, \mathrm{x}_{2}{ }^{\mathrm{m}}\right) \\
& \vdots \\
& \left(\mathrm{x}_{\mathrm{n}}{ }^{1}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{\mathrm{m}}\right)
\end{aligned} \rightarrow \mathrm{p}_{1} \mathrm{U}\left(\mathrm{x}_{1}{ }^{1}, \ldots, \mathrm{x}_{1}{ }^{\mathrm{m}}\right)+\cdots+\mathrm{p}_{\mathrm{n}} \mathrm{U}\left(\mathrm{x}_{\mathrm{n}}{ }^{1}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{\mathrm{m}}\right)
$$

Figure 3.7.3. Two prospects with the same marginals	
 (5 years, blind) (20 years, healthy) prospect of Eq. 3.7.2	
prospect of Eq. 3.7.3	the marginals

Figure 4.1.1 [TO Upwards]. Eliciting $\alpha^{1} \ldots \alpha^{4}$ for unknown probabilities

(a) Your switching value on the dotted line is α^{1}.

(b) Your switching value on the dotted line is α^{2}.

(c) Your switching value on the dotted line is α^{3}.

(d) Your switching value on the dotted line is α^{4}.

Indicate in each Fig. which outcome on the dotted line ... makes the two prospects indifferent (the switching value).

Figure 4.1.2 [2nd TO Upwards]. Eliciting $\beta^{2}, \beta^{3}, \beta^{4}$

(a) Your switching value on the dotted line is G.

(b) Your switching value on the dotted line is β^{2}.

(c) Your switching value on the dotted line is β^{3}.

(d) Your switching value on the dotted line is β^{4}.

Indicate in each fig. which outcome on the dotted line ... makes the two prospects indifferent (the switching value).
p. 98:

Figure 4.1.3 [CEs]. Eliciting $\gamma^{2}, \gamma^{1}, \gamma^{3}$

(a) Elicitation of γ^{2}.

(b) Elicitation of γ^{1}.

(c) Elicitation of γ^{3}.

Indicate in each Fig. which outcome on the dotted line \cdots, if received with certainty, is indifferent to the prospect.

Figure 4.1.4 [TO Downwards]. Eliciting $\delta^{3} \ldots \delta^{0}$

(a) Your switching value on the dotted line is δ^{3}.

(b) Your switching value on the dotted line is δ^{2}.

(c) Your switching value on the dotted line is δ^{1}.

(d) Your switching value on the dotted line is δ^{0}.

Indicate in each fig. which outcome on the dotted line ... makes the two prospects indifferent (the switching value).
p. 100:

Figure 4.1.5 [PEs]. Eliciting $\mathrm{PE}^{1}, \mathrm{PE}^{2}, \mathrm{PE}^{3}$

(a) Elicitation of PE^{1}.

(b) Elicitation of PE^{2}.

(c) Elicitation of PE^{3}.

Indicate in each Fig. which probability on the dotted lines ... makes the prospect indifferent to receiving the sure amount to the left.
p. 104:

Figure 4.3.1. Your indifferences in Figure 4.1.1

Curves designate indifference.

Elucidation: This Figure was made using only MS Word. I drew the curves by hand.
p. 104:

Figure 4.3.2. Utility graph derived from Figure 4.1.1

Figure 4.5.1. $\alpha \ominus \beta \sim^{t} \gamma \ominus \delta$

Curves designate indifference. α instead of β apparently offsets $y_{E^{c}}$ instead of $x_{E^{c}}$, and so does γ instead of δ.

ELUCIDATION: This Figure was made using only MS Word. I drew the curves by hand.

FIG. 4.7.1a. $\alpha \ominus \beta \sim^{t} \gamma \ominus \delta$ for uncertainty

$\mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{m}}$: outcome events of x beyond E ;
$\mathrm{B}_{2}, \ldots, \mathrm{~B}_{\mathrm{n}}$: outcome events of y beyond E .
E is nonnull.

FIG. 4.7.1b. $\alpha \ominus \beta \sim^{t} \gamma \ominus \delta$ for risk

$\mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{m}}$: outcome probabilities of x beyond p ;
$\mathrm{q}_{2}, \ldots, \mathrm{q}_{\mathrm{n}}$: outcome probabilities of y beyond p .
$\mathrm{p}>0$.
p. 120:

Figure 4.9.1. Matching probability of all rain (tomorrow) is 0.3 .

p. 121:

Figure 4.9.2. Violation of additivity (Raiffa 1968 §4)

For additivity to hold, the bold probability 0.4 should have been $0.3+0.2=0.5$.
p. 121:

FIGURE 4.9.3. Probabilistic matching

The first three indifferences imply the fourth for all x_{1}, x_{2}, x_{3}, and thus transfer EU from risk to uncertainty.
p. 123:

FIGURE 4.9.4. Different presentations and evaluations of multi-stage prospects

p. 126:

Fig. 4.9.5. $\left(\mathrm{p}_{1}: \mathrm{x}_{1}\right.$, $\ldots, \mathrm{p}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}$) in the roulette-horse Example 4.9.6

FIG. 4.9.6. ($\mathrm{p}_{1}: \mathrm{x}_{1}$, $\ldots, \mathrm{p}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}$) in the horse-roulette
Example 4.9.7

p. 134:

Figure 4.12.1. An example of the Allais paradox for risk
(a) $\left[\begin{array}{l}0.06-25 \mathrm{~K} \\ -0.07-25 \mathrm{~K} \\ 0.87-0\end{array}<\left[\begin{array}{l}0.06-75 \mathrm{~K} \\ 0.07-0 \\ 0.87-0\end{array}\right.\right.$,
p. 134:

Figure 4.12.2. The certainty effect (Allais paradox) for uncertainty

p. 140:

[^0]p. 146:

Figure 5.1.1. Five SG observations

Figure 5.1.2. Two pictures to summarize the data of Figure 5.1.1

Fig. a. A display of the data

Under expected utility, the curve can be interpreted as the utility function, normalized at the extreme amounts.

FIg. b. An alternative way to display the same data

Under Eq. 5.1.2, the curve can be interpreted as the probability weighting function w , to be normalized at the extreme amounts ($\mathrm{w}=0$ at $\$ 0$ and $\mathrm{w}=1$ at $\$ 100$).

ELUCIDATION: This Figure was made using only MS Word. I drew
the curves by hand. The right curve should be obtained from
the left one by rotating left and flipping horizontally.

To calculate expected utility, the distance from x_{j} ("all the way") down to the x -axis has been transformed into the distance $\mathrm{U}\left(\mathrm{x}_{\mathrm{j}}\right)$, for all j .
p. 152:

Elucidation: This Figure was made using only MS Word. I drew the curve by hand.

p. 154:

Figure 5.3.1. Eq. 5.2.1 violates stochastic dominance

Fig. 5.3.1a. Reducing x_{1}
somewhat.

Fig. 5.3.1b. Reducing x_{1} further.

FIG. 5.3.1c. x_{1} hits x_{2}.

Figure 5.4.1. The usefulness of ranks

Fig. a. Probability densities, the continuous analogs of outcome probabilities

FIG. b. Ranks, being 1 minus the distribution function

Fig. b displays the same prospects as Fig. a, but now in terms of ranks, i.e., the probability of receiving a strictly better outcome, which is 1 minus the usual "distribution function."

```
EluCIDATION: This Figure was made using only MS Word. I drew
the curves by hand.
```

Figure 5.5.1. Combination of preceding figures, with rank dependence as an application of an economic technique to a psychological dimension.

Old (psychologists') probabilistic sensitivity

Fig c.

p. 163:

Figure 5.5.2. Rank-dependent utility with linear utility

The area shaded by m is the value of the prospect. Distances of endpoints of layers ("all the way") down to the x -axis are transformed, similar to Figure 5.2.3. The endpoint of the last layer now remains at a distance of 1 from the x -axis, reflecting normalization of the bounded probability scale.
p. 164:

Figure 5.5.3. Rank-dependent utility with general utility

For points on the y-axis ("endpoints of layers"), their distance down to the x -axis are transformed using w. For points on the x-axis ("endpoints of columns"), their distances leftwards to the y -axis are transformed using U .
p. 164:

Figure 5.5.4. Another illustration of general rankdependent utility

Relative to Figure 5.5.3, this figure has been rotated left and flipped horizontally.
p. 170:

Elucidation: This Figure was made using only MS Word. I drew the curve by hand.
p. 173:

Figure 6.3.1. Rank dependence of decision weight for $w(p)=p^{2}$

p. 173:

Figure 6.3.2. Decision weights $\pi(\alpha)$ of outcomes α from graphs of weighting functions

ELUCIDATION: Figure 6.3.2a contains the graph of the function:
$w(p)=p^{2}$.
Figure 6.3.2b contains the graph of the function:
$w(p)=\sqrt{p}$.
I made the graphs using Scientific Workplace as explained above.

Figure 6.4.1. Dependence of decision weight on rank

$\pi\left(\mathrm{p}^{\mathrm{r}}\right)=\mathrm{w}(\mathrm{p}+\mathrm{r})-\mathrm{w}(\mathrm{r}) \approx \mathrm{pw}^{\prime}(\mathrm{r})$ for $\mathrm{p}=0.01$	

ELUCIDATION: Figure 6.4.1b contains the graph of the function:
$\sqrt{p+0.01}-\sqrt{p}$.
I made the graphs using Scientific Workplace as explained above. The TeX input file can be obtained here:

ELUCIDATION: Figure 6.4.1c contains the graph of the function:

$$
\mathrm{w}(\mathrm{p})=\left(\exp \left(-(-\ln (\mathrm{p}+0.01))^{\mathrm{a}}\right)\right)^{\mathrm{b}}-\left(\exp \left(-(-\ln (\mathrm{p}))^{\mathrm{a}}\right)\right)^{\mathrm{b}}
$$ with

$$
\mathrm{a}=0.65 \text { and } \mathrm{b}=1.0467
$$

I made the graphs using Scientific Workplace as explained above. The TeX input file can be obtained here:

Figure 6.5.1. $\alpha \ominus \beta \sim_{c}^{\mathrm{t}} \gamma \ominus \delta$ for risk

We have $\mathrm{p}>0$. The superscript r indicates the rank of p , which is the same for all prospects.

Figure 6.5.2. Four indifferences

Figure 6.5.3. Four indifferences

ELUCIDATION: I put here two figures because they belong together.
p. 188:

Figure 6.5.4. Probability weighting graph derived from Figures 4.1.1 and 4.1.5.

p. 189:

Figure 6.5.5. The rank-sure-thing principle for risk

p. 198:

Figure 6.8.1. The derivative of the weighting function

$\mathrm{w}^{\prime}(\mathrm{r})=\frac{\mathrm{ab}}{\mathrm{r}}(-\ln (\mathrm{r}))^{\mathrm{a}-1} \exp \left(-(-\ln (\mathrm{r}))^{\mathrm{a}}\right)\left(\exp \left(-(-\ln (\mathrm{r}))^{\mathrm{a}}\right)\right)^{\mathrm{b}-1}$
with $a=0.65, b=1.0467$.

ELUCIDATION: The figure contains the graph of the function indicated in the legend.

I made the graphs using Scientific Workplace as explained above. The TeX input file can be obtained here:

FIGURE 6.9.1. RDU of a prospect with positive and negative utilities

The prospect is $p_{1} x_{1} \cdots p_{n} x_{n}$, with $U\left(x_{1}\right) \geq \cdots \geq U\left(x_{k}\right) \geq 0 \geq U\left(x_{k+1}\right) \geq \cdots \geq$ $\mathrm{U}\left(\mathrm{x}_{\mathrm{n}}\right) . \mathrm{w}\left(\mathrm{G}_{\mathrm{x}, \mathrm{U}}(\mathrm{t})\right)$ is the w -transform of the probability of receiving utility $>\mathrm{t}$. The figure illustrates Eq. 6.9.1. For $\mathrm{t}>0$ the integrand is $w\left(G_{x, U}(t)\right.$, and for $t^{\prime}<0$ it is the negative of $1-w\left(G_{x, U}(t)\right)$. RDU is the area [\|] minus the area \qquad
p. 201:

Figure 6.9.2. An illustration alternative to Figure 6.9.1

This figure has resulted from Figure 6.9 .1 by rotating left and flipping horizontally.

Elucidation: This Figure was made using only MS Word. The curves were drawn by hand.
p. 207:

Figure 7.2.1. Tversky \& Kahneman's (1992) family (Eq. 7.2.1).

ELUCIDATION: This Figure contains graphs of the function

$$
w(p)=\frac{p^{c}}{\left(p^{c}+(1-p)^{c}\right)^{1 / c}}
$$

with the c's as indicated in the figure.
I made the graphs using Scientific Workplace (did not keep input files) as explained above.

Figure 7.2.2. Prelec's compounding invariance family (Eq. 6.4.1)

ELUCIDATION: This Figure contains graphs of the function $\mathrm{w}(\mathrm{p})=\left(\exp \left(-(-\ln (\mathrm{p}))^{\mathrm{a}}\right)\right)^{\mathrm{b}}$
with a and b as indicated in the figures.
I made the graphs using Scientific Workplace (did not keep input files) as explained above.
p. 208:

Figure 7.2.3. The family of Eq. 7.2.4

ELUCIDATION: This Figure contains graphs of the function

$$
\mathrm{w}(\mathrm{p})=\frac{\mathrm{bp}^{\mathrm{a}}}{b \mathrm{p}^{a}+(1-\mathrm{p})^{a}}
$$

with a and b as indicated in the figures.
I made the graphs using Scientific Workplace (did not keep input files) as explained above.
p. 209:

p. 215:

Figure 7.4.1. Testing the sure-thing principle

Figure 7.5.1.

and

The superscript r indicates the rank of p, and is the same in the first and third prospect. The superscript r^{\prime} indicates the rank of q, and is the same in the second and fourth prospect.
p. 220 :

Figure 7.6.1. w, z, and π

Fig. a. The relation between
w and its dual z .

Fig. b. Deriving π from w and from z.
$\mathrm{r}+\mathrm{p}+\ell=1$.

Elucidation: This Figure was made using only MS Word. The curve in the two figures should be the same and was drawn by hand.
p. 223:

Figure 7.7.1. Likelihood insensitivity (inverse-S)

1. Insensitivity region is middle, fat, part.
2. Middle weight (solid left fat brace) is small.
3. Left lower dashed brace is not compared to left upper dashed brace.

ELUCIDATION: This Figure was made using only MS Word. The curve should be the same as the one in Figure 7.7.1.
p. 226:

FIGURE 7.7.2. Likelihood insensitivity (inverse-S) for a large outcome probability p

Elucidation: This Figure was made using only MS Word. The curve should be the same as the one in Figure 7.7.1.
p. 227:

Elucidation: This Figure was made using only MS Word. The curve was drawn by hand.
p. 232:

Figure 7.12.1. Cavex functions with different levels of inflection points

Elucidation: This Figure was made using only MS Word. The curves were drawn by hand.
p. 235:

Figure 8.1.1.

Fig. 8.1.1a. A choice between gain-prospects

Fig. 8.1.1b. A choice between loss-prospects.

Fig. 8.1.1c. A choice between loss-prospects, but with an external side-payment.
p. 240 :

Figure 8.4.1. Loss aversion

Fig. a. The basic utility u, differentiable at $\mathrm{x}=0$.

Fig. b. Utility U, obtained by "pulling u down" by a factor $\lambda>1$ for losses.
p. 242 :

FIGURE 8.6.1. Rabin's preference
$0>\sqrt{\frac{1}{1 / 2}} 11$

FIGURE 8.9.1. Decompositions of final wealth

classical model	decomposition interpretation of final wealth F			evaluation$\mathrm{U}^{*}(\mathrm{~F})$
		F	final wealth	
	I constant: innocuous rescaling of outcomes	$I+\alpha$	initial wealth + outcome	$\mathrm{U}(\alpha)$
reference dependence	ρ variable: fundamental breakaway from classical model	$I+\rho+\alpha$	initial wealth + reference point + outcome	$\mathbf{U}(\rho, \alpha)$

Bold printing indicates a fundamental breakaway from the classical model.
p. 255:

p. 269 :

Figure 9.6.1. Dependence of loss aversion on scaling of money

If we replace the scaling $u(1)=-u(-1)=1$ by the scaling $u(0.01)=$ $-\mathrm{u}(-0.01)$, then we have to multiply the loss aversion parameter by $0.040 / 0.251 ; \lambda=2.25$ then turns into $\lambda^{*}=0.36$.

ELUCIDATION: This Figure contains graphs of the functions as indicated, being
$U(\alpha)=\alpha^{0.3}$
and
$\mathrm{U}(\alpha)=\alpha^{0.7}$.
p. 270:

Elucidation: This Figure contains graphs of the functions as indicated, being
$\alpha^{0.3}$
and
$2.25 \times\left(\alpha^{0.7}\right)$.

p. 284:

Figure 10.2.1. Rank-dependent utility for uncertainty

This figure extends Figure 5.5 .4 to uncertainty.
p. 293:

Figure 10.4.1. Testing the sure-thing principle

$\sqrt{\frac{\mathrm{A}}{\mathrm{E}_{2}} \mathrm{c}} \boldsymbol{\delta} \quad ? \sqrt{\frac{\mathrm{~A}}{\mathrm{E}_{2}}} \mathrm{c}$ CASE 1. $\mathrm{c} \geq \boldsymbol{\delta}$		CASE 3. $\alpha \geq \mathrm{c}$

Figure 10.7.1. An implication of Anscombe \& Aumann (1963) that is implausible under ambiguity aversion

p. 306 :

Figure 10.9.1.

and

The superscript R indicates the rank of E, and is the same in the first and third prospect. The superscript R^{\prime} indicates the rank of F , and is the same in the second and fourth prospect.
p. 322:

Figure 11.3.1. Various components contributing to risk premium
CE Theory Separate additions to risk premium

15.00	EV		
14.57	$\mathrm{EU}(\mathrm{U})$	0.43 is risk premium due to U	2.32 is
13.65	$\mathrm{RDU}(\mathrm{U}, \mathrm{w})$	-0.92 is additional risk premium due to w	total risk
12.68	$\mathrm{RDU}(\mathrm{U}, \mathrm{W})-0.97$ is additional risk premium due to unknown probability	premium	

```
p. 323:
```


p. 350 :

Figure 12.5.1. Ambiguity aversion versus loss aversion

Arrows indicate majority preferences.
p. 352 :

Figure 12.6.1. Two prospects x, y				
	50 balls			
	E_{1}	E_{2}	E_{3}	E_{4}
x	4000	8000	4000	0
y	4000	4000	8000	0

p. $353:$

Figure 12.6.2. Six prospects				
	50 balls		50 balls	
	E_{1}	E_{2}	E_{3}	E4
	4000	8000	4000	0
	4000	4000	8000	0
	4000	8000	4000	4000
	4000	4000	8000	4000
$\mathrm{x}^{\prime \prime}$	0	8000	4000	4000
	0	4000	8000	4000

p. 368 :

p. 368:

Figure B.2. Determining utility of $2^{\text {nd }}$-best job
$2^{\text {nd }}$-best job $\sim \frac{\mathrm{p}}{\frac{r^{2}}{1-\mathrm{p}} \text { best job }}$ search other job
Determine probability p to give indifference.
p. 381:

Figure C.2. A multistage prospect

p. 383 :

Figure C.3. A dynamic decision tree

p. 388:

Figure E.1. A dynamic illustration of multisymmetry

p. 388:

Figure E.2. A dynamic illustration of act-independence

[^0]: Elucidation: This Figure was made using only MS Word. I drew the curves by hand.

