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Contrary to common belief, Savage’s axioms do not imply strict stochastic dominance.
Instead, they usually involve violation of that. Violations occur as soon as the range of the utility
function is rich enough, e.g. contains an interval, and the probability measure is, loosely speaking,
“constructive”. An example is given where all of Savage’s axioms are satisfied, but still strict
statewise monotonicity is violated: An agent is willing to exchange an act for another act that
with certainty yields a strictly worse outcome. Thus book can be made against the agent. Weak
stochastic dominance and weak statewise monotonicity are always satisfied, as well as strict
stochastic dominance and strict statewise monotonicity when restricted to acts with finitely many
outcomes.

Decision making under uncertainty studies situations where an agent must make decisions
in the face of uncertainty. The most famous contribution to this field is, undoubtedly,
Savage (1954). He laid down, more clearly than his predecessors, the basic model for
decision making under uncertainty, and formulated and axiomatized the most fruitful
approach, i.e. subjective expected utility (SEU). In his model uncertainty is modelled
through a state space S. Exactly one state is true, the others are not true, and the agent
is uncertain about which state is the true one. The classical example concerns the case
of a horse race, and an agent who wishes to bet on this race. For every horse there is
exactly one state (i.e. element of S), describing the event that the horse in question will
win the race. The agent does not know for sure which horse will win, thus is uncertain
about which of the states is the true one. A second primitive in the model of Savage is
the outcome space (or consequence space), denoted by € in this paper. Outcomes describe
the result of the decision situation, after the agent has taken his decision and the uncertainty
has been resolved. In the example of the horse race, we assume that outcomes are real
numbers, designating amounts of money. So here it is assumed that the only relevant
aspect of the outcome of the decision situation is the net gain (or loss) that results for
the agent.

The agent must choose between a set of available decision alternatives, called acts
in this context. In the example of the horse race the available acts will be stakes, or
combinations thereof. Formally an act is described as a function from S to €. So an act
is described by the outcome that it will yield for every state. If an act is a combination
of stakes on the horse race, then it is described by the net gain that will result for every
state. Note that this is a consequentialistic approach, where only final outcomes matter.
As the agent is uncertain about which state is the true one, he is uncertain which outcome
will result from a chosen act. The preference relation of the agent over the acts is described
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by a binary relation > on the set of acts. Savage’s SEU model prescribes that the agent
choose his utility function U: - R, and his (‘“subjective’’) probability measure P on
25, describing for every (event =) subset of the state space the likelihood, according to
the agent’s beliefs, that the event contains the true state. Then the agent will prefer acts
according to their SEU value. That is, f> g [s (Uef)dP= Is (U-g)dP.

Observable primitives in this setup are, besides the acts described as outcomes
contingent on the states, the preferences of the agent over the acts. Probabilities and
utilities are not primitives. They are theoretical constructs. Thus, without further jus-
tification, the claim that SEU will or should be maximized is meaningless. The great
achievement of Savage was to present a list of seven axioms, directly in terms of
preferences, that were subsequently shown to imply SEU maximization. Thus the status
of SEU changed from being ad hoc to being empirically meaningful. Savage was the
first to complete such a result. An earlier attempt by Ramsey (1931) was incomplete, the
result of de Finetti (1937), underestimated in the economic literature, had the drawback
that utility was assumed to be known beforehand, and the result of von Neumann and
Morgenstern (1944) had the drawback that probability was assumed to be known
beforehand.

The most important postulates of Savage were P2 and P4. P2, the ‘“‘sure-thing”

principle, requires that the preference between two acts conditional on an event A be
independent of what would have happened if A would not have obtained. P4 requires
for instance that the preference of receiving $1 contingent on event A over receiving $1
contingent on event B should imply the preference of receiving $2 contingent on event
A over receiving $2 contingent on event B. As with all axiomatizations, Savage’s does
not only invoke intuitive postulates, but also technical ones, that for the purpose of this
paper need not be spelt out.
' Savage’s work gave a foundation to Bayesian statistics, and to the modelling of
uncertainty by SEU in economics. It also showed how to construct critical empirical
tests of SEU. These have led to many criticisms of SEU, and alternative models, in the
recent literature on decision theory.! The implications of Savage’s technical postulates
have not been well-understood in the literature. Authors, when using SEU models, usually
refer to Savage for a justification, despite the fact that their models do not satisfy Savage’s
technical postulates. This paper aims to contribute to a further understanding of the
technical complications in Savage’s approach, in particular concerning the finite additivity
of his probability. The paper will show that strict stochastic dominance, a condition
generally accepted in economic theory, is usually excluded by Savage’s technical postu-
lates. For other comments on Savage’s approach, see Wakker (1993).

It follows directly from SEU maximization that > satisfies the reduction principle,
i.e. if two acts generate the same probability distribution over € then they are equivalent.
Hence one may identify an act with the probability distribution it generates over the
outcomes. Among the hallmarks of expected utility theory are the results on risk aversion
of Pratt (1964) and Arrow (1965), and on the impact of increases in risk for the demands
of risky assets in Rothschild and Stiglitz (1970, 1971), leading to notions of higher-order
stochastic dominance. The most elementary, and universally accepted, form of stochastic
dominance is first-order stochastic dominance (or stochastic dominance for short). When
models were proposed in the literature that turned out to violate stochastic dominance,
these models were generally criticized as being irrational. See, for instance, the model

1. See for instance Machina (1987) and Fishburn (1988).
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proposed in Handa (1977), and subsequently criticized in Fishburn (1978). This led
Quiggin (1982) to introduce what is now the most popular deviation from expected utility:
rank-dependent utility (= anticipated utility). Also Kahneman and Tversky (1979) had
to complicate their famous prospect theory so as to avoid violation of stochastic domin-
ance. This has recently led to a new version of prospect theory in order to overcome this
complication; see Tversky and Kahneman (1992) and Wakker and Tversky (1991).
Machina (1982) generalized Savage’s expected utility to almost complete generality, but
emphatically did preserve the implication of stochastic dominance. The condition is also
central in Machina and Schmeidler (1990). So far it has remained unnoticed in the
literature that the technical conditions of Savage, under a minimal richness condition
and a constructivity condition, actually necessitate a violation of stochastic dominance!
Let me emphasize that this is merely an implication of Savage’s technical postulates, and
not of his, more important, intuitive conditions. At the end of the paper it will be explained
how the problem can be amended.

We now turn to definitions. Fy., denotes the distribution function of U-ef, i.e.
Fy.:t—>P(Uef=7). We say that Fy., weakly stochastically dominates F., if
Fy./(t)=Fy..(7) for all =; strict stochastic dominance holds if the two distribution
functions are not identical. Savage’s axioms do straightforwardly imply (monotonicity
with respect to) weak stochastic dominance, i.e. f > g whenever F ., weakly stochastically
dominates Fy.,. The definition of stochastic dominance, however, entails the following
stronger condition: > satisfies strict (monotonicity with respect to) stochastic dominance
if f> g whenever Fy.; strictly stochastically dominates F,.,.

A (finitely additive) probability measure P satisfies 0= P(A)=1forall A, P(Au B) =
P(A)+ P(B) for all disjoint A, B (finite additivity), and P(S)=1. By induction then

P(ui, Aj) =Z?=1 P(Aj)
for any finite disjoint sequence A,,..., A,. However, in general the equality
P(U?o=1 Aj)=2?o=l P(Aj)

does not have to hold true for all infinite disjoint sequences A, A,, ... If the equation
does hold true, then P is called countably additive. The difference between finite additivity
and countable additivity is central in this paper. It is well-known that SEU maximization
implies strict stochastic dominance for countably additive probabilities P on S. As we
shall see, this is not the case for finitely additive P.

To avoid measure-theoretic complications, Savage assumed that the domain of P is
the power set 2°. He pointed out that any o-algebra of subsets of S could be taken as
well. (Savage’s analysis does not hold for general algebras; for comments see Wakker
(1981).) On a general .o-algebra, P could be countably additive indeed, in which case
strict stochastic dominance would be satisfied. The existence of a countably additive P
is more complicated for the special case where the o-algebra is 2°. Under the generally
accepted set-theoretic axioms it is an undecidable problem whether such a P can exist;
the answer to the question depends on the specific set-theoretic axioms that one adds to
the usual ones. This is not the right place (or author) to enter a detailed discussion of
these; details can be found in Jech (1978, in particular Chapter 5). Suffice it to say that
the question is open. A simple example of an axiom that excludes the existence of a
countably additive atomless P, is the “constructibility axiom”; see Scott (1961).2 This

2. The constructibility axiom is often denoted as “V = L”. See also Jech (1978, beginning of Section 31).
Under the axiom of determinacy, to the contrary, such a P can be obtained. See Mycielski and Swierczkowski
(1964), or Jech (1978, Theorem 102a).



490 REVIEW OF ECONOMIC STUDIES

means that, if such a P exists, then loosely speaking, one will never “find”’ it. For finitely
additive probability measures, strict stochastic dominance is more problematic than has
often been thought. This paper shows that strict stochastic dominance cannot hold true
in Savage’s model as soon as the following richness assumption is satisfied, in addition
to the needed set-theoretic axioms.

Assumption 1. The range of U contains a strictly decreasing sequence (U(e;))j2,
as well as its limit U(a).

Strictly speaking, Assumption 1 is not a proper behavioural condition, because it is
stated in terms of utility, which is not a directly observable primitive. The following
assumption gives a proper behavioural reformulation of Assumption 1. The verification
of the equivalence of Assumptions 1 and 2 is by substitution of SEU.

Assumption 2. There exist outcomes « and (a;);2, such that o; > @;.,> a for all j,
and there exists an event A such that for each a; there exists a;., such that a; is strictly
preferred to the act which assigns a to A and a; to A° (to ensure that A is “non-null”),
and the latter act is strictly preferred to a;..

Theorem Al in the appendix will show that Savage’s postulates necessitate a violation
of strict stochastic dominance as soon as Assumption 1, or 2, is satisfied, and some
set-theoretic axioms. Corollary 3 below gives a more accessible version of the result.
Decision models should be able to deal with the case considered in the Corollary. Hence
strict stochastic dominance is problematic in Savage (1954).

Corollary 3. If the range of the utility function contains a non-degenerate interval in
Savage’s model, then, under the generally accepted set-theoretic axioms, it cannot be decided
if strict stochastic dominance can ever be satisfied; if the set-theoretic constructibility axiom
is accepted, then strict stochastic dominance is necessarily violated.

While Machina (1982) showed under countable additivity that stochastic dominance
results still hold for very general non-expected utility models, this paper has shown that
under finite additivity they do not even hold under expected utility.

One way out of the problem is to impose strict stochastic dominance only on the
simple acts, i.e. the acts that have a finite range. Another way out is to re-define strict
stochastic dominance: one distribution strictly stochastically dominates another only if
it weakly stochastically dominates the other and further there exists a positive £ and a
positive 8 such that on an interval of length at least  the dominated distribution function
is at least € larger than the dominating one. Under countable additivity this definition
coincides with the traditional one because of right continuity of distribution functions,
under finite additivity it avoids the violation of strict stochastic dominance in Savage’s
model. So this may be the proper general definition of strict stochastic dominance.

A similar misunderstanding about Savage’s model is the following: Contrary to what
has often been thought, strict statewise monotonicity of the form [f(s)> g(s) for all
s€ S=f> g] need not hold. The example below illustrates. Again, only weak statewise
monotonicity holds, and strict statewise monotonicity still holds when restricted to simple
acts, or to the case where P is countably additive. The example also shows that Savage’s
state space may be countable, contrary to what has sometimes been thought.
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Example 4. Let S=[0, 1]~ Q be a countable state space (Q is the set of rationals).
€ =[0,1], and utility is linear. Suppose for each interval [ u, »] within [0, 1] (so also
with u, v irrational) P([u, v]nS)=v—pu. P can be extended to all subsets of S, with
all axioms of Savage satisfied (e.g. by the Theorem of Hahn-Banach from functional
analysis, see Dunford and Schwartz (1958)). Obviously, P assigns value 0 to each finite
event. The states can be numbered as (s;);2,. Let f:5,>1/j, g:5;>1/(j+1). Both acts
have a distribution function that is 0 on ]—00,0],1 on ]0, ], i.e. they have the same
distribution function. Hence they are equivalent. But f(s)> g(s) for all s.

In the above example the agent, while conforming to Savage’s principles, is willing
to exchange the act f for an act g, whereas g results with certainty in a strictly worse
outcome. In that sense the agent is vulnerable to immediate book making, that does not
invoke combinations of decisions or repeated exchanges of acts as in de Finetti (1937)
or Green (1987).

Let me emphasize that the findings of this paper are not meant to cast doubt on
Savage’s axioms. Rather they are meant to show that one should be careful in extending
findings from the usual countably additive probabilities to finitely additivity probabilities.
A way out of the problem as pointed out in the above example is to impose strict statewise
monotonicity only on simple acts. Another way out is by saying that act f strictly statewise
dominates act g only if it satisfies one further restriction: There should exist outcomes
a > B and an event with strictly positive probability, such that on that event f(s)>a > 8 =
g(s). In the usual countably additive contexts it can be seen that this condition is not
additionally restrictive, whereas in finitely additive contexts such as Savage’s model the
condition is also satisfied, so that paradoxes as above are avoided.

The axiomatizations of SEU in Pratt, Raiffa and Schlaifer (1964), as well as in
Anscombe and Aumann (1963), assumed, more or less similar to von Neumann and
Morgenstern (1944), that (some) probabilities were known. The axiomatizations of SEU
in Wakker (1989, Theorem IV.2.7) and Gul (1989) avoided the technical complications
of Savage, and led to setups where u( %) is indeed an interval. Like Savage, they assume
neither probabilities nor utilities given in advance.

Quiggin (1989) studied stochastic dominance and pointwise monotonicity for regret
theory. He found violations of stochastic dominance, even in the weak sense. Violations
of weak statewise monotonicity (called ‘“dominance” by Quiggin) do not occur under
regret theory.

Conclusion 5. In contexts where countable additivity is not ensured, it seems more
natural to impose only weak statewise monotonicity/stochastic dominance, and to restrict
strict statewise monotonicity/stochastic dominance, for example to the simple acts/proba-
bility distributions.

APPENDIX

Theorem Al. If the seven postulates of Savage (1954) hold, as well as Assumption 1 (or, equivalently, 2),
then under the usual set-theoretic axioms, it cannot be decided if at all strict stochastic dominance can be satisfied.
If the constructibility axiom is added to the set-theoretic axioms, then strict stochastic dominance is necessarily
violated.

Proof. We assume below that the probability measure P is strictly finitely additive, and then derive a
violation of strict stochastic dominance. As the constructibility axiom implies that P must be strictly finitely
additive, and under the usual set-theoretic axioms it cannot be decided if P is necessarily strictly finitely additive,
this proves the theorem.
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Note that the reasoning below applies to any strictly finitely additive probability measure P, also if the
domain would be different from 25. There must exist a countable number of disjoint events (A;);2, such that
Z;‘;l P(A;)<P(ujl A;). Note that > instead of < can never occur, because Z}'.;l P(Aj))=P(u]_A)=
P(U 2, A;) for each n. Let f be the act that assigns a; to each A;, and «a to the remaining states, with ; and
« as in Assumption 1 or 2. Savage’s axioms imply that the probability measure P on 25 is convex-ranged, i.e.
for each Ac S and 0=B=P(A) there exists Bc A with P(B)=p. This implies that P is atomless. By
convex-rangedness, we can take an event B such that P(B) =372, P(A;), we can take an event B, B such
that P(B,) = P(A,), and by induction we can take for every j an event B; < B\(u i1 B;) suchthat P(B;) = P(A;).
Obviously, P(B)= P(U 2, B;)=Y 2, P(B;)=Xj., P(A;)=P(B), so that all inequalities are in fact identities.
In particular, P(B\u {2, B;)=0. We may, and will, assume that B\u 2.1 B;=, which can be obtained by
replacing B, by B; U (B\U 2, B;). Let g be the act that assigns a; to each B;, and « to the remaining states.
The distribution functions Fy., and Fy,., are identical except at the point U(a): We have Fy./(U(a))=
1-P(U,A))<1-T32, P(A))=1-%7, P(B)=1-P(u .1 B;)=Fy.,(U(a)). So f strictly stochastically
dominates g. Nevertheless f~ g, because both acts have the same SEU value, e.g. because their distribution
functions dominate/are dominated by the same “simple” distribution functions. (Simple means that probability
1 is assigned to some finite outcome set.) Note that f generates a not-countably additive probability distribution
over € and a distribution function Fy. that is not right-continuous at @, whereas g generates a countably
additive probability distribution over € and a distribution function Fy., that is right-continuous. Il
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