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Abstract

Savage’s foundation of expected utility is considered to be the most convincing justification of Bayesian 
expected utility and the crowning glory of decision theory. It combines exceptionally appealing axioms 
with deep mathematics. Despite the wide influence and deep respect that Savage received in economics 
and statistics, virtually no one touched his mathematical tools. We provide an updated analysis that is more 
general and more accessible. Our derivations are self-contained. This helps to better appreciate the depth 
and beauty of Savage’s work and the foundations of Bayesianism, to teach it more easily, and to develop 
non-Bayesian generalizations incorporating ambiguity more efficiently.
© 2020 Elsevier Inc. All rights reserved.

JEL classification: C02; C60

Keywords: Subjective expected utility; Behavioral foundation; Mixture spaces; Foundations of statistics

1. Introduction

More than 60 years after the publication of Foundations of Statistics (Savage, 1954), its 
subjective expected utility derivation remains the crowning glory of decision theory (Kreps, 
1988 p. 120). Combining ideas of de Finetti (1937) and von Neumann and Morgenstern (1947)
(vNM), Savage gave the first complete revealed preference axiomatization of Bayesian expected 
utility. He provided exceptionally intuitive and elegant axioms. At the same time his axiomati-
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zation was mathematically deep. His construction has had a profound impact in many fields, 
being widely accepted, and sometimes criticized (Allais, 1953; Cerreia-Vioglio et al., 2013;
Ellsberg, 1961) as the normative foundation of decision under uncertainty in economics and 
Bayesian statistics. It has received deep respect.

Besides intuitive preference axioms, Savage also used nonnecessary richness axioms, requir-
ing a σ -algebra of events that constitute a continuum. Such axioms are complex and technical. 
Up to now, researchers used Savage’s theorem as a black box. Apart from a few exceptions, 
discussed later, researchers did not look into Savage’s internal mechanism and did not alter or 
generalize it. Instead, Anscombe and Aumann’s (1963) framework with its rich and even lin-
ear outcome space is most commonly used in economics today to derive generalizations that 
reckon with ambiguity (surveyed by Gilboa and Marinacci, 2016). Our paper simplifies Savage’s 
mechanism, using rich state spaces that are naturally available in many applications, so that they 
become accessible and suitable for generalizations.

The main inefficiency in Savage’s derivation comes from his choice to go by vNM’s, in itself 
appealing, mixture-based derivation of expected utility. To make this possible, Savage had to 
transform his domain of uncertainty (no probabilities available) into vNM’s domain of risk where 
all probabilities are available. Fishburn (1970) gave a clear and well-organized presentation of 
Savage’s proof.1 Savage himself left many details to the readers. This route through vNM was 
followed in all later analyses of Savage’s theorem that we know of, including Arrow (1971), 
Chateauneuf et al. (2006), Gilboa and Marinacci (2016 §2.10), Kopylov (2007), Kreps (1988), 
and Machina and Schmeidler (1992). As we show, mainly through Fig. 11, the route through 
vNM is roundabout. It is simpler to directly derive expected utility for uncertainty, which can be 
done in an elementary manner.2

Savage’s detour through vNM not only complicated his proof but also led to a loss of general-
ity. vNM assumed all probabilities available, and Savage had to assume a corresponding richness. 
Hence, he imposed a restrictive continuity condition P6, requiring a continuum of events and pre-
cluding finite state spaces. Our proof does not need such richness but only needs solvability and 
Archimedean axioms. Those axioms are more general and their empirical meaning is also clearer. 
Hence, we find them more appealing than P6, although some readers may disagree. Many au-
thors discussed the problematic nature of continuity assumptions in preference axiomatizations 
(Fuhrken and Richter, 1991 p. 94; Ghirardato and Marinacci, 2001; Halpern, 1999; Khan and 
Uyan, 2018; Krantz et al., 1971 §9.10; Luce et al., 1990 p. 49; Pfanzagl, 1968 §6.6 and §9.5).

Because we do not need mixtures, we can also simplify the construction of subjective proba-
bilities in the first stage3 that we base on the more flexible technique of Hölder’s (1901) lemma. 
Unlike mixture approaches, Hölder’s (1901) lemma does not need a multiplication operation or a 
continuum domain. Thus, we do not need to incorporate limits in σ -algebras and we can therefore 
weaken Savage’s P6 axiom. We generalize his result in a structural sense, that is, by allowing for 
more general structures, including discrete cases without convex-rangedness of probability. We 
also generalize Savage’s result in a logical sense, that is, by deriving his theorem as a corollary 

1 He specified the route through vNM in his Theorem 14.3 and related proofs.
2 In particular, we do not need to derive probabilistic sophistication (defined and characterized by Machina and Schmei-

dler, 1992) as an intermediate step. It follows from our expected utility representation in one blow.
3 Savage (1954 p. 39, para preceding P6) explained that later requirements in his analysis complicated the derivation 

of subjective probabilities, leading to P6 there: “but in Chapter 5 a slightly stronger assumption will be needed that bears 
on acts generally, not only on those very special acts by which probability is defined.”



M. Abdellaoui, P.P. Wakker / Journal of Economic Theory 186 (2020) 104991 3
of ours (Proposition 4). Our approach follows Savage in using richness of states, but does so in a 
more tractable and more general manner.

Savage’s (1954) theorem requires a commitment to finite additivity, and to abandoning count-
able additivity, in agreement with de Finetti’s views. Alternative derivations required a commit-
ment to countable additivity (Arrow, 1971) and, thus, to abandoning (strict) finite additivity. Our 
main theorem gives general finite additivity.4 Proposition 5 specifies the additional condition that 
is necessary and sufficient for countable additivity. Thus, our approach can be implemented with 
either finite or countable additivity, and neither is excluded.

Whereas in most papers proofs are only to be read by specialists, we hope that our proof 
will be read and enjoyed by many readers. It is complete, much simpler than preceding ones, 
and more didactical. It can be understood by nonspecialists and readily be used for teaching 
purposes. Following Cozic and Hill’s (2015 §7) principle of constructive proofs, it shows more 
clearly than before how expected utility is constructed from preferences. This facilitates nor-
mative defenses—and criticisms. For specialists, our result provides a useful starting point for 
developing non-Bayesian generalizations of Savage’s model that can, for instance, incorporate 
ambiguity (surveyed by Karni et al., 2014), robustness, non-additive belief functions, nonex-
pected utility, and imprecise probabilities (Walley, 1991).

This paper is organized as follows. Section 2 gives basic definitions and Savage’s axioms. 
Section 3 presents our new axioms, our main result, and shows that our result is logically and 
structurally more general than Savage’s. Because one of our aims is to deliver an appealing 
proof, we present it in the main text (§4). We also show that Hölder’s lemma provides a powerful 
technique to obtain preference axiomatizations, which is an alternative to mixture techniques 
as used in the Anscombe-Aumann (1963) framework. This provides an additional reason for 
presenting the proof in the main text. Section 5 discusses papers that used Savage’s mechanisms, 
and §6 concludes. The appendix provides further details and shows that Savage’s axioms imply 
ours.

2. Basic definitions and Savage’s axioms

We begin by presenting the basic definitions and preference conditions of Savage (1954). For 
alternative ways to model uncertainty, see Battigalli et al. (2017) and Marinacci (2015 §2.2). 
S denotes a set of states of nature. Exactly one state is true, but it is unknown which one. States 
can describe tomorrow’s weather conditions, the performance of a stock in a year from now, 
and so on. Whereas Savage required S to be infinite, our approach includes some cases of finite 
state spaces. E denotes an algebra of subsets of S called events. That is, E contains ∅ and S
and is closed under complement taking and finite unions and intersections. Savage’s (1954) main 
text assumes that E contains all subsets of S. Savage (1954 p. 43) pointed out that his analysis 
and results remain valid if E is a σ -algebra. That is, E is also closed under countable unions and 
intersections. For a long time it was an open question whether Savage’s analysis remains valid on 
algebras of events. Kopylov (2007) gave an affirmative answer. Our analysis provides a simpler 
derivation for algebras.

X denotes a set of consequences and can be finite or infinite. Consequences are general and 
can be monetary or anything else. Acts map states to consequences. We avoid measure-theoretic 
complications and assume throughout that acts are simple, taking only finitely many conse-

4 Necessary and sufficient richness conditions are in Observation 15. These do not preclude countable additivity.
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quences. The novelty of this paper concerns the derivation of expected utility for simple acts 
and, hence, we focus on these. Acts are denoted f, g, h; (E1 : x1, . . . , En : xn) denotes an act 
assigning xi to all s ∈ Ei . We assume throughout that the Eis partition S and are contained in E . 
Thus, acts are measurable finite-valued mappings from states to consequences. Consequences 
are identified with constant acts. By αEf we denote the act resulting from f if all consequences 
for event E are replaced by α. Thus, for consequences α, β , αEβ denotes an act assigning α to 
E and β to Ec. Similarly, αAβBf yields α under A, β under B , and is identical to f otherwise; 
here A and B are assumed disjoint.

The preference relation � is a binary relation on the acts; � denotes the asymmetric part of 
�, ∼ denotes the symmetric part, and � and ≺ denote reversed preferences. Preference symbols 
also designate the preference relations over consequences induced by constant acts. Thus, α � β

denotes both a preference between consequences and a preference between constant acts.
In the subjective expected utility model, we assume that there exists a probability measure P

on E . That is, P : E → [0, 1] satisfies P(A ∪ B) = P(A) + P(B) whenever A and B are disjoint 
events ((finite) additivity) and P(S) = 1. Additivity implies P(∅) = 0. P is countably additive
if P(∪∞

j=1Ej) = ∑∞
j=1 P(Ej ) for countably many disjoint Ej . Following Savage (1954), we do 

not require countable additivity. Finite additivity can run into paradoxes (Kadane et al., 1996)
but provides more flexibility.

For subjective expected utility we further assume a function U : X → R, called utility func-
tion, which throughout is assumed not to be constant. The subjective expected utility (SEU) of an 
act (E1 : x1, . . . , En : xn) is 

∑n
j=1 P(Ej )U(xj ). Subjective expected utility (SEU) holds if there 

exist P , U such that f � g if and only if SEU(f ) ≥ SEU(g).
Event E is nonnull if (E : γ, Ec : β) � β for some consequences γ (“good”) and β (“bad”) 

and it is null otherwise. Under SEU, event E is null if and only if P(E) = 0. P is convex-ranged
if for each event A and 0 ≤ λ ≤ P(A) there exists an event B ⊂ A with P(B) = λ. Under count-
able additivity, convex-rangedness is equivalent to atomlessness, but we consider finite additivity 
where convex-rangedness is stronger.

The following five intuitive preference axioms are all necessary for SEU representations. They 
were introduced by Savage (1954) and will also be used in our paper.

P1 [weak ordering]
� is complete (f � g or g � f for all f, g) and transitive.

P2 [sure-thing principle]
αEf � αEg ⇔ βEf � βEg for all acts αEf, αEg, βEf , and βEg.

P3 [monotonicity]
Whenever E is nonnull: γ � β ⇔ γEf � βEf .

P4 [independence of beliefs from tastes]
Whenever γ � β and γ ′ � β ′ : γEβ � γBβ ⇔ γ ′

Eβ ′ � γ ′
Bβ ′.

By P4, we can define a more likely than relation, also denoted �, on events: A � B if there 
exist consequences γ � β such that γAβ � γBβ . Because of P4, this relation is independent of 
the particular consequences γ and β . Because of P1 and P4, it is a weak order. Under SEU, 
A � B if and only if P(A) ≥ P(B).

P5 [nontriviality]
γ � β for some consequences γ, β .
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Savage further used the following technical axiom.

P6 [event continuity]
If f � g, then for all consequences γ, β there exists a partition {E1, . . . , En} of S such that 
for all i : βEi

f � g and f � γEi
g.

Savage also used an axiom P7 that exclusively concerns nonsimple acts. We focus on simple 
acts because this is where our novelty lies. Hence, we will not consider P7. Savage showed:

Theorem 1. [Savage’s theorem] Assume event continuity (P6), with E a σ -algebra. Then the 
following two statements are equivalent:

(i) Subjective expected utility holds with probability convex-ranged.
(ii) P1-P5 hold. �
3. Savage’s subjective expected utility simplified and generalized

We only use the following two implications of Savage’s P6, derived in Appendix B. The first is 
necessary for the very existence of subjective probability because infinitely many disjoint events 
with the same positive probability cannot exist.

P6.1 [Archimedeanity]
No infinite sequence of disjoint equally likely nonnull events exists.

The next condition, the second implication of Savage’s P6, is our only nonnecessary condition, 
introducing richness in a less demanding manner than Savage did. Imagine that a first act is 
preferred less than a second. And imagine that we can improve a consequence of the first act 
on an event B that is so big that the act becomes better than the second. Then there exists an 
“equalizing” subpart E of B such that improving only on E gives indifference.

P6.2 [(event) solvability].
For all acts f, g, consequences γ � β , and events B , [βBf ≺ g ≺ γBf ⇒ g ∼ γEβB−Ef ]
for some {E, B − E} partitioning B . See Fig. 1.

Solvability is reminiscent of the intermediate value property of continuous real-valued func-
tions. Without richness conditions such as solvability or Savage’s P6, axiomatizations become 

Fig. 1. Solvability.



6 M. Abdellaoui, P.P. Wakker / Journal of Economic Theory 186 (2020) 104991
considerably more complex and may even need infinite sequences of cancellation axioms (Alon 
and Lehrer, 2014). We now present the main result of our paper.

Theorem 2. [Main theorem] Assume solvability (P6.2), with E an algebra. Then the following 
two statements are equivalent:

(i) Subjective expected utility holds.
(ii) P1-P5 and P6.1 hold.

In Statement (i), the probability measure is unique and utility is unique up to level and unit. �
Uniqueness up to level and unit means that any real number can be added to utility and it can be 
multiplied by any positive real number.

Savage’s axioms imply solvability, the only nonnecessary condition in our theorem. There-
fore, a preference relation satisfying Savage’s axioms also satisfies ours. In this sense, our model 
is structurally more general than Savage’s. We do not only avoid mixtures and the vNM expected 
utility derivation so as to simplify the proof, but we also achieve bigger generality. This is illus-
trated by the following two examples, where the second is from Abdellaoui and Wakker (2005, 
Example 5.4.(ii)). Our axioms are satisfied in the examples, but Savage’s are not. The examples 
have no continuums of probabilities so that the vNM technique to derive expected utility cannot 
be used.

Example 3.

(i) [Comparative probability] The case of two (indifference classes of) consequences (say 
γ � β) is of special interest, because Theorem 2 then contributes to comparative proba-
bility theory. Here, every act can then be related one-to-one with the event of receiving the 
good consequence, similarly as indicator functions can be. Obtaining an expected utility 
representation is then equivalent to obtaining a probability measure representing the more-
likely-than relation. Such representations are the topic of comparative probability theory 
(Fishburn, 1986). All our axioms are satisfied for a finite state space S = {s1, . . . , sn} where 
E contains all subsets of S, U(γ ) = 1, U(β) = 0, and P(sj ) = 1/n for all j . Savage’s P6 
and its implied atomlessness are violated. Extensions to finite state spaces with more than 
two equivalence classes of consequences are discussed in Appendix A.

(ii) [Only rational-number probabilities] S = [0, 1) ∩Q. E contains all finite unions of intervals 
[a, b) with a and b rational and the interval taken as a subset of S. P is the Lebesgue measure, 
determined by P [a, b) = b − a for all [a, b). X = Q and U is the identity function. All our 
axioms are satisfied, but Savage’s assumption of a σ -algebra of events is violated as is his 
implied convex-rangedness of P . �

Theorem 2 is also logically stronger than Savage’s result in the sense that his result is a corollary 
of ours. The following proposition is proved in Appendix B.

Proposition 4. Savage’s assumptions and Statement (ii) in Theorem 1 imply our assumptions 
and Statement (ii) in Theorem 2. �
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Whether one finds our axioms P6.1 and P6.2 or Savage’s P6 more appealing is a matter of 
taste. Our analysis can equally well be used by readers who prefer Savage’s axioms, because his 
axioms imply ours and his theorem is a corollary of ours, as shown in Proposition 4. We chose 
our axioms to maximally satisfy Cozic and Hill’s (2015 §7) principle of constructive proofs, and 
maximally escape from Steven’s (1968 p. 854) criticism of axiomatizations that are not related 
to empirical measurements. Our axioms clarify more directly how the theoretical constructs of 
utility and probability are related to the empirical primitive of preference (see, e.g., Figs. 4 and 7). 
Cozic and Hill argued that this is a pro for preference axiomatizations serving to evaluate decision 
models.

Savage (1954) only delivered finite additivity of probability and did not axiomatize countable 
additivity. His theorem assumes the powerset of events, and then countable additivity is not 
possible. In our Theorem 2 countable additivity is optional. We characterize it by the following 
well-known condition (Arrow, 1971; Fishburn, 1982, F7 in §10.3; Villegas, 1964, Theorem 4.2; 
Wakker, 1993 §4.1). Set continuity holds if, for all γ � β , nested decreasing sequences (Aj ) with 
(Aj ) ↓ ∅, and f � β , there exists Ai such that f � γAi

β . The following result readily follows 
from substitution and from the references given.

Proposition 5. In Theorem 2, P is countably additive if and only if set continuity holds. �
Observation 15 in Appendix A shows that range solvability of P , a condition defined there, is 

necessary and sufficient for solvability. This Observation thus provides an if-and-only-if version 
of Theorem 2. We present Theorem 2 in the main text because it is more accessible.

4. Proof of Theorem 2

This section presents the proof of Theorem 2, where some details are deferred to Appendix A. 
All construction and approximation techniques used in our proofs are as in Hölder’s lemma5 and 
its variations, explained in Krantz et al. (1971, Chs. 1-3) and Michell (1990 pp. 47-59). They 
only involve an addition operation and no scalar multiplication as in mixtures, making the results 
and analysis more accessible intuitively and more general mathematically.

Necessity of the conditions in Statement (i) of Theorem 2 readily follows from substitution 
and is left to the readers. The following two subsections prove sufficiency.

4.1. Subjective probabilities in the proof of Theorem 2

An atom is an event A � ∅ such that no event B ⊂ A exists with A � B � ∅. Our theorem 
allows for some cases with atoms; see Appendix A. In the main text (§§4-5) we henceforth 
assume that no atoms exist. This is implied by Savage’s (1954) axioms and hence this subsection 
is of most interest to readers primarily interested in his model. We start with some standard 
results for the more likely than relation. In figures, we denote acts using event nodes (circles). 
For instance, the left act in Fig. 2 depicts (A : γ, C : β, (A ∪ C)c : β).

5 Although our proof will be complete and self-contained, we give the lemma here for completeness. A group with 
addition operation ◦, and with a binary relation �, is embeddable in (R, +, ≥) if and only if: a � b ⇔ a ◦ c � b ◦ c and, 
further, ◦ is commutative, � is an order, and for all a, b preferred to the identity element, there exists n such that na � b. 
Moscati (2018) discusses the history of this lemma.
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Fig. 2. Proof of (i).

Lemma 6. Assume P1-P5.

(i) [common parts are immaterial in more-likely-than relations]
(A ∩ C = B ∩ C = ∅) ⇒ (A � B ⇔ A ∪ C � B ∪ C);

(ii) [additivity of more-likely-than]
(A1 � B1, A2 � B2, A1 ∩ A2 = B1 ∩ B2 = ∅) ⇒ A1 ∪ A2 � B1 ∪ B2, where the last prefer-
ence is strict if one of the former two is;

(iii) [additivity of equally likely]
(A1 ∼ B1, A2 ∼ B2, and A1 ∩ A2 = B1 ∩ B2 = ∅) ⇒ A1 ∪ A2 ∼ B1 ∪ B2;

(iv) [equally likely unions]
(A1, . . . , An are disjoint, so are B1, . . . , Bn, and Aj ∼ Bj for all j ) ⇒ A1 ∪ · · · ∪ An ∼
B1 ∪ · · · ∪ Bn.

Proof.
(i) See Fig. 2.
(ii) Understanding the following visual proof takes little mental effort, unlike preceding proofs 
in the literature (Arrow, 1971; Fishburn, 1970). Define A0 := (A1 ∪ A2)

c and B0 := (B1 ∪ B2)
c . 

Each square in Fig. 3 presents the state space S, being a union of nine rectangles Ai ∩ Bj (some 
may be empty). In each square, the union of rectangles with + is more likely than with −. Thus, 
the left two squares depict the two relations in the premise of (ii). By (i), common parts can be 
removed and added (indicated by bold and green ±), giving the upper two implications “⇒”. 
Because the − event in the right upper square equals the + event in the square below, transitivity 
gives the lower left square. (i) finally gives the lower right square.
(iii) follows from applying (ii) both with � and with �.
(iv) follows from repeated application of (iii). �

To construct subjective probability, we use a (small) nonnull event A as a measuring rod. We 
recall that we assume no atoms in this part of the proof. By solvability, for all events C ⊂ Ac

with C � A (i.e., γCβ � γAβ for γ � β) we can find B ⊂ C with B ∼ A (i.e., γBβ ∼ γAβ). 
Applying this repeatedly, we obtain an almost uniform partition as in Fig. 4 and the following 
lemma. Because Savage’s almost uniform partitions are slightly more general than ours, we use 
a different formal term: a partition {A1, . . . , An, R} of S is close to uniform (CUP) if A1 ∼ Aj

for all j and R ≺ A1.
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Fig. 3. Proof of (ii).

Lemma 7. Under P1-P6.2, for each event A � ∅ there is a CUP {A1, . . . , An, R} of S with 
A ∼ Aj for all j and R ≺ A.

Proof. Inductively, define A1, . . . , Aj . As long as the rest event (A1 ∪ · · · ∪Aj)
c � A we can by 

solvability define Aj+1 as a subset of the rest event. By Archimedeanity, the process must stop 
after a finite number of steps. At the end, we must have R ≺ A, and possibly R = ∅. �

Uniform partitions result if there is no rest event, i.e., R = ∅. They need not exist in our 
approach, unlike in Savage’s (1954). For every nonnull event E and CUP, the CUP suggests an 
upper and lower bound of the probability P(E) by sandwiching E; i.e., A1 ∪ · · · ∪ Ak ≺ E �
A1 ∪ · · · ∪ Ak+1 (Fig. 5). As we will show, P(E) then results as a limit, because we can take 
CUPs as refined as we want. As a corollary of our main theorem it will follow that we could 
have taken tigher bounds in Fig. 5, being k

n+1 and k+1
n

, and we recommend those for empirical 
applications. However, at this stage the proof is easier with more conservative bounds.

Lemma 8. For each m, no matter how large, we can find a CUP with at least m elements.

Fig. 4. A close to uniform partition.
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Fig. 5. Using a CUP to sandwich P(E).

Proof. Take an arbitrary CUP, say the one of Lemma 7. We obtain one with at least 2n elements, 
as follows. Because there are no atoms, there exists A′ ⊂ A with ∅ ≺ A′ ≺ A. Define B as the 
� smallest of A′ and A − A′. By solvability, for each Aj we can find Bj ⊂ Aj with Bj ∼ B . 
By Lemma 6(ii), Aj − Bj ∼ A − B � B ∼ Bj so that, by solvability, each Aj contains at least 
two disjoint events indifferent to B . This delivers 2n disjoint equally likely events, which can be 
extended to a CUP with at least 2n elements, all except the rest event equally likely as B . �

We next show that for all sufficiently refined CUPs we obtain upper and lower bounds that 
are consistent (no lower bound exceeds any upper bound) and, because their distance converges 
to 0, we obtain the following result. This result, and Lemma 13 presented later, are the only two 
places in the proof that require some nontrivial thinking, including the consideration of limits.

Observation 9. Under P1-P6.2, for each event E there exists a unique limit P(E) of k/(n + 1)

(see Fig. 5) over all CUPs as n → ∞. �
Proof. This proof is the only part where our analysis is more difficult than in mixture-approaches 
that have convex-rangedness. Under convex-rangedness, we can exactly double the refinement 
of partitions, and then the result below is straightforward. In Fig. 5, we can formally define 
An+1 = R for large events E that exceed A1 ∪ · · · ∪ An, giving upper bound (n + 2)/n. The 
following lemma shows consistency of the bounds.

Lemma 10. For each CUP {B1, .., BN, R′} with N sufficiently large, the bounds (� −1)/(N +1)

and (� + 2)/N are tighter than for the CUP above:

(k − 1)/(n + 1) < (� − 1)/(N + 1) < (� + 2)/N < (k + 2)/n. (1)

The lemma is proved in Appendix A. The upper and lower bounds converge to each other and, 
hence, to one limit P(E). �

It is obvious that P(∅) = 0 and P(S) = 1. We next show additivity of P .

Lemma 11. Under P1-P6.2, P is additive.

Proof. Consider disjoint A, B . The lower bound for A ∪ B (Lemma 10) in Fig. 6 is between 
k+�−2
n+1 and k+�

n+1 . Its limit P(A ∪ B) is P(A) + P(B). �
Lemma 12. Under P1-P6.2, P represents � on events.

Proof. If A � B then all estimations of P(A) exceed the corresponding ones of P(B). Hence, 
P(A) ≥ P(B). It implies A ∼ B ⇒ P(A) = P(B). We next assume A � B , and show P(A) >



M. Abdellaoui, P.P. Wakker / Journal of Economic Theory 186 (2020) 104991 11
Fig. 6. Additivity of (lower bounds of) probability.

P(B). By solvability, we get B ′ ⊂ A with B ′ ∼ B , so P(B ′) = P(B). A −B ′ is nonnull. Because 
of additivity of P , it suffices to show P(E) > 0 for any nonnull E. By Archimedeanity, the CUP 
generated by E (all elements except the rest event equivalent to E) is finite, say {E1, . . . , En, R}. 
P(E1) = · · · = P(En) ≥ P(R) and P(S) = 1 implies P(E) ≥ 1/(n + 1) > 0. �

The derivation of subjective probability is complete. Unlike preceding proofs in the literature 
(cf. Wakker, 1981), we did not derive convex-rangedness of probability because we do not need 
it in the following subsection. It indeed need not hold. We accordingly needed no σ -algebra 
structure. This is our main simplification in the derivation of subjective probability relative to 
preceding works.

4.2. Subjective utilities and expected utility in the proof of Theorem 2

The most appealing proof of the vNM expected utility theorem for risk is based on a sub-
stitution version of their independence axiom (Luce and Raiffa, 1957 pp. 27-28). In this proof, 
for each lottery (act in our case) the outcomes xj are replaced by equivalent “standard gambles” 
(defined later) that all involve the same two outcomes M � m. After that, a lottery (act) results 
with only M and m, after which dominance trivially determines preference. This dominance re-
lation is then shown to give the expected utility formula. This subsection shows that this proof 
technique can directly be used for uncertainty.

Throughout this subsection we assume P1-P6.2. We also continue to assume that no atom 
exists. We first fix two consequences M � m, and focus on consequences α in between (m �
α � M). We normalize U(m) = 0 and U(M) = 1. Fig. 7 shows how we obtain utility U(α). In 
empirical measurements of utility this method, using objective probabilities instead of events, is 
often employed and is called the standard gamble method (Gold et al., 1996; van Osch et al., 
2004). We adapt it to uncertainty here. For each α ∈ [0, 1] we can, by solvability, find an event 
Sα giving the indifference in the figure. We define

U(α) = P(Sα). (2)

We call any act as in the figure a standard gamble of α. Because of indifference, U(α) is inde-
pendent of the particular Sα chosen.

We can also measure utility conditional on any nonnull event A instead of S, as in Fig. 8, 
where Aα ⊂ A exists by solvability. Here the act conditional on the complementary event Ac, f , 
is the same for both acts. Any right act in Fig. 8, conditional on A, is called a conditional standard 
gamble of α. The next lemma shows that we can obtain utility from conditional standard gambles 
and that it is consistent with the unconditional measurement. In other words, the lemma shows 
that expected utility adopts the same exchange rate between probability and utility everywhere.
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Fig. 7. Standard gamble measurement of U .

Fig. 8. Conditional measurement of U .

Lemma 13. For events A and Aα with P(A) > 0, as in Fig. 8,

P(Aα)/P (A) = U(α) (= P(Sα)). (3)

Proof. If α ∼ m then P(Aα) = 0 and Eq. (3) follows. Next assume α � m. We often use mono-
tonicity of Aα in the sense that A � B ⇔ Aα � Bα .

We first show that Eq. (3) approximately holds for an event A from a CUP {A1, . . . , An, R}
with A = A1 ∼ · · · ∼ An � R. See Fig. 9. The indifference between the left and right act in Fig. 9
is of the same nature as in Fig. 7, implying 

∑n
j=1 P(Aα

j ) +P(Rα) = U(α). In the reasoning that 
follows, it is instructive to first assume R = ∅.

We denote [Ak] = ∪k
i=1Ai . All Aj are equally likely and have the same P(Aα

j )/P (Aj ) =
P(Aα)/P (A). We have

U(α) =
∑n

j=1 P(Aα
j ) + P(Rα)

∑n
j=1 P(Aj ) + P(R)

= nP (Aα) + P(Rα)

nP (A) + P(R)
. (4)

Because R is small and becomes negligible (0 ≤ P(Rα) ≤ P(R) < P(A) ≤ 1/n), it follows that 
P(Aα)/P (A) must tend to U(α) as n → ∞. Then so does

P([Aj ]α)/P [Aj ] = P(∪Aα
j )/P (∪Aj ) = jP (Aα)/jP (A) = P(Aα)/P (A) (5)

for every j . As n → ∞, the ratios in Eq. (5) tend to U(α). Informally stated, Eq. (3) approxi-
mately holds for every union of elements of a CUP.

Fig. 9. Connecting conditional and unconditional U measurement using CUPs.
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Fig. 10. Final step in proof of Lemma.

We now show that Eq. (3) holds exactly for any general event A, by using close approx-
imations of CUPs with n larger and larger. Formally, take a CUP {A1, . . . , An, R} and take 
[A(j − 1)] � A � [Aj ]. Then also [A(j − 1)]α � Aα � [Aj ]α . Let n → ∞. Eq. (3) follows 
from Fig. 10. �
Observation 14. By the sure-thing principle, f in Fig. 8 does not affect preference. �
We can thus replace the subact (A : α) by the subact (Aα : M, A − Aα : m) without affecting 
preference in every act f .6 We next derive SEU for a general act (E1 : x1, . . . , En, xn), depicted 
as the left act in Fig. 11. We here use the derivation of Luce and Raiffa (1957 p. 27/28). We im-
mediately transplant their derivation to uncertainty. This is why we, unlike all preceding authors 
using Savage’s setup, do not need to derive a risk structure.

We, one by one, replace each outcome by a conditional standard gamble. By transitivity, the 
resulting act, depicted twice in the middle of Fig. 11, is indifferent. The equations in the figure 
show that this act yields M with probability SEU and m otherwise. This holds for any arbitrary 
left act. Hence, acts are preferred according to their SEU, and Statement (i) in Theorem 2 has 
been proved.

Fig. 11. SEU of a general act by substituting conditional standard gambles (using the sure-thing principle).

6 Cerreia-Vioglio et al. (2015) generalized expected utility by assuming that the above replacement always decreases 
the preference value of the act, and axiomatized it for risk in their cautious expected utility model.



14 M. Abdellaoui, P.P. Wakker / Journal of Economic Theory 186 (2020) 104991
UNIQUENESS RESULT As regards the uniqueness result, it is immediate that we can add any term 
to U , and can multiply it by any positive factor. After we chose two arbitrary values U(M) >
U(m), by Eq. (2), U is uniquely determined (U(α) = P(Sα)U(M) + (1 − P(Sα))U(m)), so 
there is no further liberty.

We have now established the SEU representation and uniqueness result for the atomless case 
and consequences between m and M . Consequences beyond m and M can be covered by enlarg-
ing m′ and M ′ more and more. For any m′ ≺ m ≺ M ≺ M ′ we obtain an SEU model as we did 
for m and M . We rescale it to have U values 0 and 1 at m and M . Then, by the above uniqueness 
result, it must agree with the SEU representation derived above for m and M . Similarly, all SEU 
representations for all pairs m′, M ′ agree on common domain, representing the same preference 
relation with the same scaling at m and M . All these SEU representations are part of the same 
overall SEU representation that captures every preference between every pair of acts by taking 
m′ and M ′ extreme enough. The uniqueness result remains as before. This completes the proof 
of Theorem 2 for the atomless case.

5. Related literature

Because of its deep mathematics, Savage’s analysis is a black box for most researchers. Hence, 
few papers have used his richness in events, even though it is natural. Kopylov (2007) is so far 
the only one that essentially generalized Savage’s SEU derivation. Not only did he extend it 
to algebras of events, but further to a more general domain called mosaics. His analysis is, ac-
cordingly, more sophisticated and complex than Savage’s. We focus on Savage’s setup and leave 
the extension of our approach to mosaics to future research. Arrow (1971) added a preference 
axiom of Villegas’ (1964) result on comparative probability that is equivalent to our set continu-
ity, to imply countably additive probabilities rather than Savage’s finitely additive probabilities. 
He could then replace Savage’s P6 by a nonatomicity axiom that, under countable additivity, is 
equivalent to convex-rangedness. This is an appealing variation of Savage’s theorem. Mackenzie
(2019) generalized Villegas’ analysis by allowing for atoms. Using MacKenzie’s structure to ob-
tain a generalization of Arrow (1971) is a topic for future research. Dietrich (2018) used Savage’s 
theorem in an analysis of changing awareness.

Hartmann (2020) showed that P3 is redundant in Savage’s (1954) main theorem. This holds 
only if nonsimple acts are included and Savage’s P7, which only impacts nonsimple acts, is 
crucial for it. As Hartmann pointed out, the redundancy does not hold if only simple acts are 
considered, as in our case.

In analyses of ambiguity models and robust statistics, only a few papers used richness of 
events, similarly to Savage (1954), and virtually all used richness of consequences through the 
popular Anscombe-Aumann framework.7 Gilboa (1987) replaced Savage’s P2 and P4 by a new 
intuitive axiom to obtain a generalization of SEU that uses nonadditive convex-ranged measures. 
He replaced Savage’s P6 by solvability and Archimedean axioms similar to our axioms P6.1 
and P6.2 in Theorem 2, although they do imply full convex-rangedness. Abdellaoui and Wakker
(2005) used a similar approach. They replaced Savage’s P2 and P4 by an intuitive axiom similar 
to Gilboa’s and used technical conditions similar to P6.1 and P6.2. They additionally derived 
SEU from this result by reinforcing their intuitive axiom. Their resulting axiom is stronger than 
our P2 and P4. Their derivation essentially used the one for nonadditive measures, which entails 

7 Ghirardato et al. (2003) did not assume this richness a priori, but derived it endogenously. Dean and Ortoleva (2017)
similarly endogenized it.
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a longer detour than the one in Savage (1954) and Fishburn (1970) (Abdellaoui and Wakker, 
2005 p. 38 ll. 18-22).

Other papers using richness as in Savage include Ergin and Gul (2009), Grant (1995), Gul 
and Pesendorfer (2015), and Machina and Schmeidler (1992) for probabilistic sophistication, 
Abdellaoui (2002) and Nakamura (1995) for rank-dependent utility, Karni (1993) for state-
dependent utility, Neilson (2010) for recursive expected utility, and Grant et al. (2016) in game 
theory. Chew and Sagi (2006, 2008) used it for probabilistic sophistication under ambiguity but, 
like our paper, can also handle finite state spaces with two utility levels. Their axioms imply 
convex-rangedness for the atomless case. Webb (2017) used Savage’s setup in a rich two-stage 
model, but used solvability and Archimedeanity instead of Savage’s P6, similarly as we did.

6. Conclusion

von Neumann and Morgenstern used a mixture technique to axiomatize a decision model and 
this has remained the most popular technique in decision theory. Luce and Tukey (1964) and 
Krantz et al. (1971) introduced an alternative technique based on Hölder’s (1901) lemma, which 
is more powerful. We used it in this paper to improve the most famous theorem in decision theory: 
Savage’s (1954) derivation of expected utility. The resulting derivation is more general and more 
appealing. Thus, we have made the most impressive intellectual achievement in decision theory, 
Savage (1954), accessible to a wide community of practitioners, researchers, and students. This 
also facilitates the development of non-expected utility and ambiguity models using Savage’s 
appealing framework. A topic for future research is how to derive such models by using Hölder’s 
lemma rather than mixture techniques as in the popular Anscombe-Aumann (1963) framework.
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Appendix A. Details of the proof of Theorem 2

Proof of Lemma 10. See Fig. 12 for the first inequality and Fig. 13 for the second. In each 
figure, the state space S is a horizontal line partitioned by CUPs. Dashed vertical lines indicate 
the likelihood level of A1 and E, respectively. Thus, [Bi] � A1 � [B(i +1)], where [Bi] denotes 
∪i

j=1Bj (as in Section 4.2). In Fig. 12, the upper brace gives one inequality, the lower brace a 
second, and these are then applied to numerator and denominator in the fraction below. The 
limiting result shows that for i large enough, i.e., N large enough, we get the first inequality in 
the lemma. Fig. 13 is organized in the same way. (It can be seen that N > (n + 1)2 gives the 
desired inequalities for i → ∞ in the figures.) �
Proof of Theorem 2 for atoms. We finally consider the case where an atom A exists. Lemmas 6
and 7, derived for the atomless case, hold for atoms without modification. There cannot exist a 
nonnull event less likely than A because then by solvability A would not be an atom after all. By 
repeated application of solvability, every event C � A can be written as a union of events equally 
likely as A. These events must all be atoms. Say S is a union of n such atoms. By solvability, 
for every event, all of the n aforementioned atoms are either entirely contained in the event or 
disjoint, up to a null event. Hence the event must be equal to a union of some of these n atoms up 
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Fig. 12. Consistency of probability estimates for tentative lower bounds.

Fig. 13. Consistency of probability estimates for tentative upper bounds.

to a null event. We define P(A) = 1/n, and each union of j atoms has probability j/n, as does 
every event differing by a null event.

Our solvability precludes the existence of three consequences γ � β � α. To wit, then A being 
an atom, γAα � βAα � αAα, and (as required by solvability) γBαA−Bα ∼ βAα for some B ⊂ A

are contradictory. Hence we may assume that there are only two consequences γ � β plus other 
consequences indifferent to one of these two. We define U(γ ) = 1 and U(β) = 0. Preference is 
guided by the most likely receipt of a consequence indifferent to γ . Thus SEU holds. Any value 
U(γ ) > U(β) works and the uniqueness result follows. This completes the proof of Theorem 2
for the case of atoms. �
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We end this appendix with some further comments. Unlike Savage (1954), we allow for finite 
cases, but only in the limited sense of two consequences. This is due to the restrictive nature of 
the solvability axiom that we used. Richer cases with, for instance, any set of equally-spaced 
utilities can be obtained by adapting solvability axioms of Abdellaoui and Wakker (2005 p. 62)
to our setup. The restriction of equally likely atoms for finite state spaces can generate every 
rational probability and, in this sense, is not very restrictive.

Theorem 2 contained solvability as a nonnecessary axiom. We now state the restrictions 
that this axiom imposes on probability and utility. P satisfies range solvability if: whenever 
P(E1)U(γ ) +∑n

j=2 P(Ej )U(xj ) > EU(g) > P(E1)U(β) +∑n
j=2 P(Ej )U(xj ), there exists a 

partition E11, E12 of E1 such that P(E11)U(γ ) +P(E12)U(β) +∑n
j=2 P(Ej )U(xj ) = EU(g). 

The condition imposes richness on the probability measure P , which, roughly, should be able to 
match every EU difference, and should be at least as refined as U . This richness is in the spirit of 
Savage’s convex-rangedness but is more general, as Example 3 demonstrated. It can be used to 
turn Theorem 2 into an if-and-only-if result, with necessary and sufficient preference conditions:

Observation 15. In Theorem 2, solvability can be moved to Statement (i) if range solvability is 
added in Statement (ii). �
We chose our solvability and Theorem 2 so as to maximize accessibility rather than generality.

Fig. 11 shows how, mainly due to the sure-thing principle, every subact (Ej , xj ) contributes 
to the value of the act (laid down in Fig. 8) independently of the rest of the act. This shows 
how the sure-thing principle leads to the additive aggregation over disjoint events that is most 
characteristic of the SEU formula.

Unlike Savage (1954), we only need an algebra of events and not a sigma-algebra. One reason 
is that all our limiting results are based on monotonic sandwiching between upper and lower 
bounds without requiring the existence of any limits.

Appendix B. Proof of Proposition 4

In the following proofs we only use results derived from P1-P5, such as Lemma 6, and we do 
not assume P6.1 or P6.2. The following lemma derives a stronger version of the Archimedean 
axiom that we need, in the absence of solvability, for Lemma 17.

Lemma 16. Under P1-P5, Savage’s P6 implies reinforced Archimedeanity: there exist no nonnull 
event E and infinite sequence of disjoint events Ej with Ej � E for all j .

Proof. For contradiction, assume that the sequence E1, . . . is infinite, and consider γEβ for γ �
β . For the preference γEβ � β , take the finite partition delivered by P6 that we denote {A1, .., An}
instead of {E1, .., En}. On each of the Aj s, improving β into γ is worse than improving it on E, 
so all Aj are smaller than E. But then S = A1 ∪ · · · ∪ An � E1 ∪ · · · ∪ En ≺ E1 ∪ · · · ∪ En+1 by 
repeated application of Lemma 6(ii): contradiction. �

Savage assumed that E is a σ -algebra of events, and so do we in the following lemma.

Lemma 17. Assume that E is a σ -algebra. Then Savage’s P6 implies solvability.
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Proof. Assume βEf ≺ g ≺ γEf with γ � β . We may assume f = βEf . We write E = E0 and 
f = f 0, and have

βE0f
0 ≺ g ≺ γE0f

0. (6)

For the preference βE0f 0 ≺ g, take the partition {E1, . . . , En} of P6. Define E′
j = Ej ∩ E. Say 

E′
1 is the most likely of the (E′

j )s, implying that it is nonnull. Take j such that for B1 = E′
1 ∪· · ·∪

E′
j and E1 = E′

j+1 we have γB1f ≺ g ≺ γB1∪E1f . By P6, j ≥ 1. Write D1 = E′
j+2 ∪ · · · ∪ E′

n. 

We have partitioned E = E0 into (B1, E1, D1), with E1 smaller than B1 (even smaller than 
E′

1), so, informally, smaller than half E0. Define f 1 = γB1f . Now βE1f 1 ≺ g ≺ γE1f 1. We 
can continue the process inductively, to get, for all natural j , f j and a partition {Bj , Ej , Dj } of 
Ej−1 with Ej � Ej−1 − Ej and

βEj f
j ≺ g ≺ γEj f

j . (7)

Because of reinforced Archimedeanity, ∩Ej is null, and for the cumulative Cj = ∪j
i=1B

i we 
have

γCj f ≺ g ≺ γCj ∪Ej f. (8)

Because Savage uses a σ -algebra of events, we can define C = ∪∞
j=1C

j . We claim

γCf ∼ g. (9)

First assume, for contradiction, γCf ≺ g. Using P6 as above, there is a nonnull C′ disjoint 
from C with γC∪C′f ≺ g, implying Ej � C′ (Ej is added to an event Cj � C but still turning β
into γ on Ej switches preference) for all j , violating reinforced Archimedeanity.

Finally assume, for contradiction, γCf � g. Using P6 as above, there is a nonnull C′ ⊂ C

with still γC-C′f � g, implying Ej � C′ (Ej is subtracted from an event Cj ∪ Ej � C but still 
turning γ back into β on Ej switches preference), violating reinforced Archimedeanity. Eq. (9)
and solvability must hold. �
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