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directly related to applications because present values are widely used tools in intertemporal choice. Our conditions give
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1. Introduction
Debates about appropriate models of intertemporal choice,
both for the normative purpose of making optimal decisions
and for the descriptive purpose of fitting decisions, usually
focus on the critical preference conditions that distinguish
these models. The two most discussed conditions are time
consistency, which plays a role in distinguishing constant
and hyperbolic discounting, and intertemporal separability,
which pertains to habit formation, satiation, addiction, and
sequencing effects.1 Both time consistency and intertempo-
ral separability are assumed in the classical models but they
are usually violated empirically. Their normative status has
also been questioned.2

To shed new light on the appropriateness of intertem-
poral decision models, we introduce a new kind of prefer-
ence conditions to distinguish them, stated directly in terms
of present values (PVs). PVs are simple and tractable and
have been widely used in intertemporal choice, both when
reflecting the preferences of the financial market3 and when
reflecting subjective preferences of individuals.4 They relate
to the indifferences most commonly encountered in every-
day life. We often have to decide on whether to pay up front

for goods consumed later, whether to pay a price now for
a financial product with future financial consequences, or
whether to choose a savings plan that requires the money
to be delivered now. For these reasons, present values are
widely used in experimental measurements of intertemporal
preferences.

People can more easily relate to independence conditions
imposed on present values than to independence preference
conditions. “For your present value of this extra payment
on day 10, the payments on the other days do (not) matter”
is easier to relate to for most people than the usual pref-
erence conditions (see Equation (16) in §7, for instance).
In general, PVs can depend on many variables, such as
the periods of the receipt of future outcomes, the initial
wealth levels at those periods, and the wealth levels at other
periods. Our preference conditions will impose indepen-
dence of PVs from some of those other variables. We show
that many models can be characterized by the appropriate
independencies.

Like all preference conditions, our conditions can be
tested qualitatively. Unlike other preference conditions,
our conditions can also be directly tested quantitatively.
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We can, for instance, carry out regressions with PV as
the dependent variable and the other relevant variables as
predictors.5 We can then test which of those other variables
are significantly associated with PV and whether the vari-
ables claimed to be independent in our conditions really
are so. Such tests are more widely known and better under-
stood than qualitative tests of preference conditions.

To illustrate our new PV conditions, we apply them to
some well-known models. Table 1 gives a concise presenta-
tion of these models and their representations. Details of the
table will be explained in the following sections. Table 1 is
presented here because it illustrates the organization of the
models in the first four sections.

We provide the most concise and most general prefer-
ence axiomatizations presently available in the literature
for (a) constant discounted value as commonly used by
financial markets (Hull 2013); (b) constant discounted util-
ity (Samuelson 1937); and (c) general discounted utility,
which includes hyperbolic discounting. We also provide
results that are relevant to multi-attribute optimization prob-
lems other than intertemporal: (d) no-bookmaking and no-
arbitrage for uncertainty, which are commonly used for
financial markets, and (e) additive separability for general
multi-attribute aggregations (Debreu 1960, Gorman 1968).
In such other contexts we should find a quantitative index
that can play a role similar to present value for intertem-
poral choice. Section 6 considers aggregation over two
dimensions, for instance, time and uncertainty. Here our
technique is particularly efficient because it can handle both
aggregations in one blow. We derive the most common

Table 1. The column “functional” gives the functional forms evaluating 4x01 0 0 0 1 xT 5.

Model Functional Pref. conditions PV condition PV formula

Nondiscounted
value

T
∑

t=0

xt Additive +

Symmetric
�4�5 �

Constant discounted
value

T
∑

t=0

�txt Additive +

Stationary
�4�1 t5= �4�1 t + 15 �t�

Time-dependent
discounted value

T
∑

t=0

�txt Additive �4�1 t5 �t�

Nondiscounted utility
T
∑

t=0

U4xt5 Separable +

Symmetric
�4�1e01 et5 U−14U4et +�5−U4et5

+U4e055− e0

Constant discounted
utility

T
∑

t=0

�tU4xt5 Separable +

Stationary
�4�1 t1 e01 et5

= �4�1 t + 11 e′
1 = e01 e

′
t+1 = et5

U−14�tU4et +�5−�tU4et5
+U4e055− e0

Time-dependent
discounted utility

T
∑

t=0

Ut4xt5 Separable �4�1 t1 e01 et5 U−1
0 4Ut4et +�5−Ut4et5

+U04e055− e0

Notes. Here, 0 < � is a discount factor, 0 < �t is a period-dependent discount factor with �0 = 1, U is a strictly increasing continuous utility function,
and Ut is a period-dependent strictly increasing continuous utility function. The column “Pref. conditions” gives preference conditions traditionally used
in preference axiomatizations of the functional forms, and defined in §7. The column “PV condition” gives the PV condition used in our preference
axiomatizations indicating how �4�1 t1 e5 can be rewritten. Here, �4�1 t1 e5 denotes the present value of receiving � extra in period t if the endowment
is e. Constant discounting has an extra equality involving � , tomorrow’s value. Note that these cells contain complete definitions. The column “PV formula”
gives the formula of PV under each model.

pricing model used in finance: as-if risk neutrality together
with constant discounting, which avoids arbitrage for both
uncertainty and time.

2. Preferences and Subjective PVs
We derive appropriateness of an intertemporal goal func-
tion V from the decisions that it implies, modeled through
a binary preference relation ¼ over outcome sequences
x = 4x01 0 0 0 1 xT 5 ∈�T+1. The preferences can, for instance,
concern (i) observed consumer choices in descriptive
applications or (ii) pension savings plans or market prices
with the financial market taken as decision maker in pre-
scriptive applications. The outcome sequence yields out-
come xt in period t, for each t; t = 0 denotes the present.
We assume T ¾ 2 to avoid trivialities and keep all other
aspects of our analysis as simple as possible (assuming one
fixed T ∈�) so as to focus on the novelty of our conditions.
We use indexed Roman letters xt to specify the period t of
receipt of outcome xt and Greek letters �1�1 0 0 0 to refer to
outcomes (real numbers) when no period of receipt needs
to be specified. By �tx we denote x with xt replaced by �.

The goal function V represents ¼ if V 2 �T+1 → � and
x ¼ y ⇔ V 4x5 ¾ V 4y5 for all x, y ∈ �T+1. The existence
of a representing V implies that ¼ is a weak order; i.e.,
¼ is complete (x ¼ y or y ¼ x for all x, y) and transi-
tive. We therefore assume throughout that ¼ is a weak
order. Strict preference �, indifference ∼, reversed prefer-
ence ´, and strict reversed preference (≺) are as usual. We
also assume monotonicity (strictly improving an outcome
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strictly improves the outcome sequence) and continuity
of ¼ throughout. The conditions imply that all discount
weights in this paper are positive and that all utility func-
tions are continuous and strictly increasing.

The following condition considers sums of outcomes
xt = �+et . Here we call et an initial endowment. The spec-
ification of the initial endowment only serves to facilitate
interpretations and does not refer to any type of reference
dependence. Formally, our analysis is entirely in terms of
final wealth and is classical in this respect.

Definition. �4�1 t1 e5 is the present value (PV) of out-
come � received in period t with (initial) endowment e =

4e01 0 0 0 1 eT 5 if 4e0 +�4�1 t1 e550e ∼ 4et +�5te; i.e.,

4e0 +�4�1 t1 e51 e11 0 0 0 1 et−11 et1 et+11 0 0 0 1 eT 5

∼ 4e01 0 0 0 1 et−11 et +�1et+11 0 0 0 1 eT 50 � (1)

Equation (1) means that with e the current endow-
ment, receiving an additional future outcome � in period t
is exactly offset by receiving an additional present out-
come �. That is, the PV of a future outcome � in period t
is �. For simplicity, we assume in this paper that a PV
always exists. Generalizations are discussed in §8.

By monotonicity, the PV is unique. In applications,
PVs (denoted � here) are often used for general outcome
sequences x with endowment e2 4e0 +�50e ∼ e+ x. How-
ever, we will not need this general concept in this paper.

The PV, �, can in general depend on all of �, t, and e,
and � is a function �4�1 t1 e5. As a convention, if we
write � without its arguments, then it designates the gen-
eral function depending on all its arguments. For t = 0, it
trivially follows that �4�101 e5 = �. Note that � can be
subjective, depending on ¼, and thus it reflects the tastes
and attitudes of the decision maker. The preference condi-
tions presented in the following sections amount to inde-
pendence of PV, �, from some of the variables 4�1 t1 e5. We
express this independence by writing only the arguments
that � depends on. For example, if �4�1 t1 e5 depends only
on � (i.e., is independent of t and e), then we write

� =�4�50 (2)

Similarly, if � depends on e only through e0 and et , then
we write

� =�4�1 t1 e01 et50 (3)

Preference conditions should be directly verifiable from
preferences, the observable primitives in the revealed pref-
erence paradigm, without invoking theoretical constructs
such as utilities. In Equation (16) in §7, we illustrate how
our PV conditions can be rewritten in terms of preferences.
They are therefore genuine preference conditions, and our
conditions can be tested in the same way as all qualitative
preference conditions.

3. Linear utility
This section considers models with linear utility, as com-
monly used in financial markets. Such models can serve

as approximations for subjective individual choices if the
stakes are moderate (Epper et al. 2011; Luce 2000, p. 86;
Pigou 1920, p. 785). The first model in Table 1 maximizes
the sum of outcomes:

Nondiscounted Value2
T
∑

t=0

xt0 (4)

This model does not involve subjective parameters, is
directly observable, and does therefore not need a prefer-
ence axiomatization. But it serves well as a first illustration
of the nature of PV conditions.

Theorem 1. The following two statements are equivalent:
(i) Nondiscounted value holds.

(ii) � =�4�5. �
Throughout this paper, Condition n(ii) refers to State-

ment (ii) of Theorem n. Theorem 1 shows that if � depends
only on � (Condition 1(ii)) in whatever general sense one
might think of, then it must be through the identity function
�4�5 = �. This implication may seem surprising at first,
the more so as Condition 1(ii) in addition implies the sum-
mation operation in nondiscounted value in Equation (4).
To illustrate the strength of Condition 1(ii), first note that
substituting t = 0 already implies that � can only be the
identity. The following informal proof further illustrates the
condition: according to Condition 1(ii), the extra value of
any extra future outcome is always the same and can there-
fore be added to today’s wealth. Then all that matters is the
sum of all future outcomes, which may as well be received
immediately today. The implication �4�5 = � can also be
inferred from the last two columns of the corresponding
row of Table 1.

Our next model involves a subjective parameter, the dis-
count factor �:

Constant Discounted Value2
T
∑

t=0

�txt for �> 00 (5)

By monotonicity, � > 0. Under the usual assumption that
the decision maker is impatient, we have �¶ 1. In PV cal-
culations of cash flows, constant discounted value is com-
monly used, setting � = 1/41 + r5 with r the interest or
discount rate of the market. In this case, if the decision
maker is, say, an individual financial trader, the discount
factor � is not a subjective parameter reflecting the attitude
of the decision maker but it is a given constant, publicly
known and determined by the market. The following theo-
rem, then, does not apply to the financial trader in the role
of decision maker.

The following theorem is still relevant for market pric-
ings if the financial market is the decision maker who
determines (rational) PVs. Then � reflects the market atti-
tude, which may, for instance, be determined by the attitude
of a central bank choosing a goal function for its opti-
mal control problem, and which in this sense is subjective.
Condition 2(ii) rationalizes this common evaluation system.
In other contexts where the parameter � reflects the atti-
tude of an individual decision maker, it will probably be
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influenced by the market interest rate but need not be iden-
tical to it, for instance, because it may incorporate extra
risks borne (Smith and McCardle 1999, §2.1; Smith 1998).

In the following theorem, we use tomorrow’s value as an
analogue to PV, defined as follows:

Definition. � is tomorrow’s value of an outcome �
received in period t (t ¾ 1) with endowment e, denoted
� = �4�1 t1 e5, if 4e1 + �51e ∼ 4et +�5te; i.e.,

4e01 e1 + �1 e21 0 0 0 1 et1 0 0 0 1 eT 5

∼ 4e01 e11 0 0 0 1 et +�1 0 0 0 1 eT 50 � (6)

Here � is the extra outcome in period 1 that exactly off-
sets the extra outcome � in period t. Thus � is tomor-
row’s PV. Such “future” present values are central tools in
recursive intertemporal models (Campbell and Shiller 1987;
Ju and Miao 2012 and their references; Maccheroni et al.
2006). Experimental measurements of subjective individual
discounting in studies often compare present values with
tomorrow’s values. To measure the latter, so-called front-
end delays are then added (Ahlbrecht and Weber 1997,
Luhmann 2013). The main violations of time consistency
occur when present value is changed into tomorrow’s value
(immediacy effect), and this effect is central in the popular
quasi-hyperbolic discount model (Laibson 1997). Section 8
discusses preference conditions for the following theorem
entirely in terms of present values. We prefer using tomor-
row’s value here because it leads to the most appealing
condition that we have been able to find. As with �, if we
write � without its arguments, then it designates the general
function depending on all its arguments.

Theorem 2. The following two statements are equivalent:
(i) Constant discounted value holds.

(ii) � =�4�1 t5= �4�1 t + 15= � .6

In Statement (i), the discount factor � (� as in Equa-
tion (5)) is uniquely determined. �

Condition 2(ii) entails that � and � are independent of
the endowments and that tomorrow’s perception of future
income is the same as today’s. The condition implies that
PV depends only on stopwatch time (time differences) and
not on calendar time (absolute time).

Statement 2(ii) formulates the common stationarity in
a simplified manner for the case of linear utility. Only
one future outcome � and one present value today (�) or
tomorrow (�) are involved, rather than involving general
preferences between general outcome sequences as in com-
mon formulations. Most tests of stationarity in the literature
are, in fact, tests of our simplified condition (see Takeuchi
2010 and his extensive survey), which captures the essence
of the condition.

Many studies have shown that constant discounting is
violated empirically. Hence the following generalization is
of interest:

Time-Dependent Discounted Value
T
∑

t=0

�txt (with �0 = 150 (7)

The weights �t are all positive by monotonicity. This model
allows for general discount weights with unrestricted time
dependence. Many special cases of such discount weights
have been studied in the literature, the best known being
hyperbolic discounting. The representation in Equation (7)
is not affected if all �t’s are multiplied by the same posi-
tive factor. The common scaling �0 = 1 is therefore always
possible.

Theorem 3. The following two statements are equivalent:
(i) Time-dependent discounted value holds.

(ii) � =�4�1 t5.
In Statement (i), the discount factors �t (�t as in Equa-
tion (7)) are uniquely determined. �

An implication that can be inferred from the last two
columns of Table 1 is that if � is any function of � and t,
then it must be the function �t ×�.

4. Nonlinear Utility
The models presented in the preceding section take a
weighted or unweighted sum of the outcomes. They assume
constant marginal utility in the sense that an extra euro
received in a particular period gives the same utility incre-
ment regardless of the endowment of that period. In indi-
vidual choice, unlike market pricing, this condition is often
violated empirically and it is not normative. More realistic
and more popular models allow for nonlinear utility; then
marginal utility depends on the endowment, and the models
of the preceding section become

Nondiscounted Utility2
T
∑

t=0

U4xt53 (8)

Constant Discounted Utility2
T
∑

t=0

�tU4xt53 (9)

Time-Dependent Discounted Utility2
T
∑

t=0

Ut4xt50 (10)

Continuity and monotonicity of ¼ readily imply � > 0
and strict increasingness and continuity of U and all Ut’s.
Equation (9) is Samuelson’s (1937) discounted utility, the
most popular model for intertemporal choice. Each utility
model reduces to the corresponding value model if utility is
linear. In particular, in time-dependent discounted utility, if
the Ut4�5 are linear, they can be written as �t ×� and we
can renormalize them such that �0 = 1, resulting in time-
dependent discounted value results.

The mathematics underlying the preference axiomatiza-
tions of the utility models in Equations (8)–(10) is more
advanced than for Theorems 1–3. Whereas these theorems
solved linear equalities, we now have to deal with non-
linear equalities, with nonlinear utilities intervening. For-
tunately, this increased mathematical complexity does not
show up in the preference conditions and, consequently, in
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the empirical tests of the models. The relevant PV pref-
erence conditions are obtained directly from those defined
in §3 by adding dependence on the endowment levels e01 et .
This way we readily obtain Theorems 4–6 from Theo-
rems 1–3, respectively.

Theorem 4. The following two statements are equivalent:
(i) Nondiscounted utility holds.

(ii) � =�4�1e01 et5.
7

The following uniqueness result holds for Statement (i):
A real-valued time-independent constant � can be added
to U (U as in Equation (8)), and U can be multiplied by a
positive constant �. �

An implication, displayed in the last two columns of
Table 1, is that if � is any function of �, e0, and et , then
it must be of the form displayed there.

Several authors have argued that any discounting, even
if consistent over time, is irrational and have thus rec-
ommended using nondiscounted utility for intertemporal
choice (Jevons 1871, pp. 72–73; Ramsey 1928; Rawls
1971). Condition 4(ii) characterizes this proposal. Stud-
ies providing preference axiomatizations for nondiscounted
utility (sums of utilities) include Kopylov (2010), Krantz
et al. (1971), Marinacci (1998), Pivato (2014), and Wakker
(1986). We now turn to discounting.

Theorem 5. The following two statements are equivalent:
(i) Constant discounted utility holds.

(ii) � =�4�1 t1 e01 et5= �4�1 t + 11 e′
1 = e01 e

′
t+1 = et5.

8

The following uniqueness result holds for Statement (i):
A real-valued time-independent constant � can be added
to U (U and � as in Equation (9)), and U can be multiplied
by a positive constant �. � is uniquely determined. �

The first preference axiomatization of constant dis-
counted utility was in Koopmans (1960), with general-
izations in Harvey (1995), Bleichrodt et al. (2008), and
Kopylov (2010). Condition 5(ii) requires that the same
trade-offs are made tomorrow as today. Such requirements
have sometimes been taken as rationality requirements (see
the introduction). The following theorem generalizes The-
orem 3.

Theorem 6. The following two statements are equivalent:
(i) Time-dependent discounted utility holds.

(ii) � =�4�1 t1 e01 et5.
The following uniqueness result holds for Statement (i):
A time-dependent real constant �t can be added to every Ut

(Ut as in Equation (10)), and all Ut’s can be multiplied by
a joint positive constant �. �

Statement 6(ii) expresses that the trade-offs between
periods 0 and t are independent of what happens in
the other periods, reflecting a kind of separability. Time-
dependent discounted utility is a general additive represen-
tation, which has been axiomatized several times before.9

It implies intertemporal separability, which is arguably

the most questionable assumption of most intertempo-
ral choice models (Baucells and Sarin 2007, Dolan and
Kahneman 2008).

Another generalization of time-dependent discounted
value (Equation (7)) can be considered that is intermediate
between Equations (9) and (10), being
T
∑

t=0

�tU4xt50 (11)

We have not yet succeeded in finding an appealing present
value condition for this representation.

5. Applications to Contexts Other Than
Intertemporal Choice

The mathematical results of the previous sections and the
preference conditions used can be applied in contexts other
than intertemporal choice. For instance, Theorem 3 is of
special interest for decision under uncertainty, capturing
nonarbitrage in finance. To see this point, we reinterpret
the periods t as states of nature. Exactly one state obtains,
but it is uncertain which one (Savage 1954). Now x =

4x01 0 0 0 1 xT 5 refers to an uncertain prospect yielding out-
comes xt if state of nature t obtains. For simplicity, we
focus on a single time for all outcomes here so that dis-
counting plays no role. The next section will consider both
uncertainty and time. If we divide the discount weights �t

by their sum
∑T

t=0 �t (relaxing the requirement of �0 = 1),
they sum to 1, and the representation becomes subjective
expected value.

Subjective expected value was first axiomatized by de
Finetti (1937) using a no-book argument, which is equiv-
alent to the no-arbitrage condition of finance. In finance,
the representation is as-if risk neutral, and the decision
maker is the market that sets rational prices for state-
contingent assets. For state j , a state-contingent asset x =

401 0 0 0 1011101 0 0 0 105 yields outcome 1 if j happens and
nothing otherwise. In this interpretation, �j becomes the
market price of this state-contingent asset, and PV is
the offsetting quantity of state-0-contingent assets. Condi-
tion 3(ii) provides the most concise formulation of the no-
book and the no-arbitrage principle presently available in
the literature.

For decision under uncertainty, certainty equivalents are
more natural quantities than state-contingent prices. Refor-
mulating our conditions in terms of certainty equiva-
lents is a topic for future research. For decision under
risk, Equation (8) can be interpreted as von Neumann-
Morgenstern expected utility for equal-probability lotteries,
which essentially covers all lotteries with rational probabil-
ities (writing every probability i/j as i probabilities 1/j).
Equation (8) can also be interpreted as ambiguity under
complete absence of information (Gravel et al. 2012).
Equation (10) is Debreu’s (1960) additively separable util-
ity. Here again, our Statement 6(ii) provides the most con-
cise preference axiomatization presently available in the
literature.
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6. Time and Uncertainty: Aggregating
Over Two Dimensions

This section applies our technique to aggregations over
two dimensions. We consider the special case where one
dimension refers to time and the other refers to uncer-
tainty. In applications, usually both time and uncertainty
play a role (Smith and McCardle 1999). We assume peri-
ods 01 0 0 0 1 T and states of nature 01 0 0 0 1 n. Exactly one state
is true but the decision maker is uncertain which one. We
consider 4T + 15× 4n+ 15 tuples 4x0101 0 0 0 1 xT 1n5 yielding
outcome xt1 s in period t if state of nature s is true. Such
tuples are called act sequences. Thus, every period yields
an act (map from states to �), and every state of nature
yields an outcome sequence. Constant discounted expected
value is
T
∑

t=0

n
∑

s=0

�tpsxt1 s (12)

with � > 0, ps > 0 for all s, and
∑

ps = 1. Constant dis-
counted expected value is the common evaluation system
used in cost-effectiveness studies and by financial markets.
In the latter case, the pjs and � are the parameters. They
are subjective from the market perspective. The evaluation
formula is both arbitrage-free and time consistent (under
the common time invariance).

We use state-contingent present values, defined as fol-
lows, and using payoffs in state 0 and period 0 for calibra-
tion: � =�4�1 t1 s1 e0101 e0111 0 0 0 1 eT 1n5 is such that

4e010 +�1e0111 0 0 0 1 et1 s1 0 0 0 1 eT 1n5

∼ 4e0101 e0111 0 0 0 1 et1 s +�1 0 0 0 1 eT 1n50 (13)

The following reinforcement of monotonicity is com-
mon in decision under uncertainty. First, we identify a
sure outcome sequence 4x01 0 0 0 1 xT 5 with the act sequence
that assigns xt to each 4t1 s5, and we induce preferences
over outcome sequences (T + 1 tuples) this way. Second,
we define dominance to hold if (a) preferences over out-
come sequences satisfy monotonicity and (b) replacing an
outcome sequence contingent on a state of nature s by
a weakly (strictly) preferred outcome sequence leads to a
weakly (strictly) preferred 4T + 15× 4n+ 15 tuple. In the
next theorem, we use the same notation for tomorrow’s
value � as in §3, but now it is state contingent. That is,
we now use payoffs in state 0 and period 1 (tomorrow) for
calibration: � = �4�1 t1 s1 e0101 e0111 0 0 0 1 eT 1n5 is such that

4e0101 0 0 0 1 e01 n1 e110 + �1 e111 0 0 0 1 et1 s1 0 0 0 1 eT 1n5

∼ 4e0101 e0111 0 0 0 1 et1 s +�1 0 0 0 1 eT 1n50 (14)

Theorem 7. Assume that ¼ is a binary relation on
�4T+15×4n+15. It is represented by constant discounted
expected value if and only if it is a continuous weak order
satisfying dominance and

�4�1 t1 s5= �4�1 t + 11 s50 (15)

The parameters �1p11 0 0 0 1 pn (as in Equation (12)) are
uniquely determined. �

For extending this result to nonlinear utility, expected
utility for the aggregation over the states of nature (using an
analog of Equation (11)) is of special interest. We leave this
as a topic for future research. There is currently much inter-
est in models with both risk and time and their interactions.
Baucells and Heukamp (2012) proposed a general deci-
sion model. As in the preceding section, it is also desirable
to obtain results in terms of present certainty equivalents
rather than in terms of present contingent payments here.
For example, Smith (1998) considered a combination of
risk and time in a theoretical study, combining present val-
ues with certainty equivalents, Ahlbrecht and Weber (1997)
did the same in an experimental study, and Pelsser and
Stadje (2014) considered market pricings as in Theorem 7.

7. Proofs and Clarification of the
Empirical Status of PV Conditions

We first present the proofs of Theorems 1–6. We present
them from most to least general because this approach is
most clarifying and most efficient. The presentation of the
proofs clarifies the relationship between our PV conditions
and well-known preference conditions, showing that PV
conditions indeed are preference conditions. In each proof,
we start from our PV condition, which is always weaker
than the conditions that are derived and that are commonly
used in the literature. We thus show that our PV condi-
tions give stronger results. Because each Statement (ii) is
immediately implied by substitution of the functional, we
throughout assume Statement (ii) and derive Statement (i)
and the uniqueness results.

Proof of Theorem 6. The uniqueness results for State-
ment 6(i), which uses Equation (10), follow from well-
known uniqueness results in the literature (Krantz et al.
1971, Theorem 6.13; Wakker 1989, Observation III.6.6).
We next derive Statement 6(i).

The equality �4�1 t1 e5 = �4�1 t1 e01 et5 in Condi-
tion 6(ii) means that � is independent of ej , j 6= 0, t. This
holds if and only if

4e0 +�1e11 0 0 0 1 et−11 et1 et+11 0 0 0 1 eT 5

∼ 4e01 e11 0 0 0 1 et−11 et +�1et+11 0 0 0 1 eT 5

⇒ 4e0 +�1e′

11 0 0 0 1 e
′

t−11 et1 e
′

t+11 0 0 0 1 e
′

T 5

∼ 4e01 e
′

11 0 0 0 1 e
′

t−11 et +�1e′

t+11 0 0 0 1 e
′

T 50 (16)

This holds if and only if the implication holds with twice
preference ¼ instead of indifference ∼.10 Equation (16)
with preference instead of indifference is known as separa-
bility of 801 t9 (Gorman 1968). By repeated application of
Gorman (1968), separability of every set 801 t9 holds if and
only if ¼ is separable; i.e., every subset of 801 0 0 0 1 T 9 is
separable (preferences are independent of the levels where
outcomes outside this subset are kept fixed, as with sepa-
rability of 801 t9). This holds if and only if an additively
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decomposable representation holds,11 which we call time-
dependent discounted utility in the main text. �
Proof of Theorem 5. The uniqueness results for State-
ment 5(i), which uses Equation (9), follow from those in
Theorem 6, where, in terms of Equation (10), � is the pro-
portion Ut+1/Ut for any t. It is useful to note that the sum
of weights,

∑

�t , is the same for each outcome sequence,
implying that there is no special role for utility value 0. We
next derive Statement 5(i).

The equality �4�1 t1 e01 et5 = �4�1 t + 11 e′
1 = e0,

e′
t+1 = et5 in Condition 5(ii) means that � is independent

of ej , j 6= 0, t (as in Theorem 6, but now only for t < T )
but also of whether it is measured in period 0 or period 1.
This holds if and only if, writing � for e0 = e′

1 and � for
et = e′

t+1,

4�+�1e11 0 0 0 1 et−11�1 et+11 0 0 0 1 eT 5

∼ 4�1 e11 0 0 0 1 et−11�+�1et+11 0 0 0 1 eT 5

⇔ 4e′

01�+�1 0 0 0 1 e′

t−11 e
′

t1�1 0 0 0 1 e
′

T 5

∼ 4e′

01�1 0 0 0 1 e
′

t−11 e
′

t1�+�1 0 0 0 1 e′

T 50 (17)

It implies separability of 801 t9 for all t < T , as in Theo-
rem 6, but now instead of separability of 801 T 9 we have
separability of all 811 t + 19 for all t < T . The latter sep-
arability can, for instance, be seen by replacing all primes
in Equation (17) by double primes, which should not affect
the second indifference because of the maintained equiva-
lence with the first indifference. By repeated application of
Gorman (1968), we still get separability of ¼. Hence the
above condition holds if and only if: time-dependent dis-
counted utility holds with, further, U0, Ut additively repre-
senting the same preference relation over �2 as U1, Ut+1 do.
We can set Ut405 = 0 for all t. Then by standard unique-
ness results (Wakker 1989, Observation III.6.6′), U1/U0 =

Ut+1/Ut = � for a positive constant �. This proves the
equivalence in Theorem 5. Because Condition 5(ii) implies
constant discounted utility, it implies stationarity, used by
Koopmans (1960) to axiomatize the model. The latter con-
dition is defined as follows:

4x01 x11 0 0 0 1 xT−11 cT 5¼ 4y01 y11 0 0 0 1 yT−11 cT 5

⇔ 4c01 x01 0 0 0 1 xT−15¼ 4c01 y01 0 0 0 1 yT−150 (18)

Our condition is weaker by considering trade-offs between
two periods, keeping the outcomes in all other periods
fixed. �
Proof of Theorem 4. The uniqueness results for State-
ment 4(i), which uses Equation (8), follow from those in
Theorem 5. We next derive Statement 4(i).

The equality �4�1 t1 e5= �4�1e01 et5 in Condition 4(ii)
means that � is not only independent of ej , j 6= 0, t, as in
Theorem 6, but also of t. This holds if and only if12

4e0 +�1e11 0 0 0 1 et−11 et1 et+11 0 0 0 1 eT 5

∼ 4e01 e11 0 0 0 1 et−11 et +�1et+11 0 0 0 1 eT 5

⇒ 4e0 +�1e′

11 0 0 0 1 e
′

t′−11 4et5t′ 1 e
′

t′+11 0 0 0 1 e
′

T 5

∼ 4e01 e
′

11 0 0 0 1 e
′

t′−11 4et5t′ +�1e′

t′+11 0 0 0 1 e
′

T 50 (19)

It readily follows that the above condition holds if and only
if we have all the conditions of Theorem 6 and its repre-
sentation, with the extra condition Ut4et + �5 − Ut4et5 =

Ut′4et + �5 − Ut′4et5, implying that we can take all func-
tions Ut the same, independent of t. It implies symmetry,
the condition commonly used in the literature to axiomatize
nondiscounted utility. Symmetry requires invariance of pref-
erence under every permutation of the outcomes. Symmetry
immediately implies that � is independent of t, which is
what Condition 4(ii) adds to Condition 6(ii). This shows
once again that the PV conditions are weak compared to
conditions commonly used in the literature. �
Proof of Theorems 1–3. The uniqueness of the discount
parameters in Theorems 2 and 3, based on Equations (5)
and (7), follows from the uniqueness results of Theorems
6 and 5. We next derive the Statements (i).

The proof of Theorem 3 [2, 1] readily follows from The-
orem 6 [5, 4] as follows. The theorems to be proved are the
linear counterparts of the theorems from which they fol-
low. The preference conditions are always the same except
that dependence of the endowment levels e0, et has been
dropped. In the notation of Theorem 6 this means that
Ut4et +�5−Ut4et5 is independent of et , which implies lin-
earity of Ut . Similarly, the utility functions in Theorems 5
and 4 are linear. Then Theorems 3, 2, and 1 follow. �

For completeness, we show how the conditions of The-
orems 1–3 can be restated directly in terms of preferences:

The equality � =�4�1 t5 in Condition 3(ii) holds if and
only if

4e0 +�1e11 0 0 0 1 et−11 et1 et+11 0 0 0 1 eT 5

∼ 4e01 e11 0 0 0 1 et−11 et +�1et+11 0 0 0 1 eT 5

⇒ 4e′

0 +�1e′

11 0 0 0 1 e
′

t−11 e
′

t1 e
′

t+11 0 0 0 1 e
′

T 5

∼ 4e′

01 e
′

11 0 0 0 1 e
′

t−11 e
′

t +�1e′

t+11 0 0 0 1 e
′

T 50 (20)

The equality � =�4�1 t5= �4�1 t+15 in Condition 2(ii)
holds if and only if

4e0 +�1e11 0 0 0 1 et−11 et1 et+11 0 0 0 1 eT 5

∼ 4e01 e11 0 0 0 1 et−11 et +�1et+11 0 0 0 1 eT 5

⇔ 4e′

01 e
′

1 +�1 0 0 0 1 e′

t−11 e
′

t1 e
′

t+11 0 0 0 1 e
′

T 5

∼ 4e′

01 e
′

11 0 0 0 1 e
′

t−11 e
′

t1 e
′

t+1 +�1 0 0 0 1 e′

T 50 (21)

The equality � = �4�5 in Condition 1(ii) holds if and
only if

4e0 +�1e11 0 0 0 1 et−11 et1 et+11 0 0 0 1 eT 5

∼ 4e01 e11 0 0 0 1 et−11 et +�1et+11 0 0 0 1 eT 5

⇒ 4e′

0 +�1e′

11 0 0 0 1 e
′

t′−11 et′ 1 e
′

t′+11 0 0 0 1 e
′

T 5

∼ 4e′

01 e
′

11 0 0 0 1 e
′

t′−11 et′ +�1e′

t′+11 0 0 0 1 e
′

T 50 (22)

We next compare the PV conditions in Theorems 1–3
with other conditions used in the literature to axioma-
tize the models in question. Condition 3(ii) implies that
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the extra value of an extra outcome � is independent of
the level et to which it is added. This is implied by the
well known additivity condition, requiring that a prefer-
ence x¼ y is not affected by adding the same constant �
to xt and yt . By adding the same constant to et and et +�,
we can change them into e′

t and e′
t + �, implying our

preference condition. Additivity is necessary and sufficient
for time-dependent discounted utility (Wakker 2010, Theo-
rem 1.6.1). It is more restrictive than our condition because
we only consider trade-offs between two periods, keeping
the outcomes in all other periods fixed. Similar observa-
tions apply to the elementary Theorem 2 and the trivial
Theorem 1.

Proof of Theorem 7. As before, necessity of the prefer-
ence conditions is obvious, so we assume the preference
conditions and derive constant discounted expected value
and the uniqueness results.

Statement (ii) implies that � can be written as �4�1 t1 s5
and is independent of the endowments. By Theorem 3,
treating the paired indexes 4t1 s5 as one index with index
40105 here playing the role of index 0 in Theorem 3, we
obtain a linear representation

∑T
t=0

∑n
s=0 �t1 sxt1 s . We do not

impose the restriction that �010 = 1 here and, hence, the
weights are uniquely determined up to one common posi-
tive factor.

By dominance, for every fixed s we have the same pref-
erence relation over outcome sequences. Hence, each such
preference relation is represented by a positive constant
(depending on s) times

∑T
t=0 �t10xt1 s . This follows from the

uniqueness result of Theorem 3, now applied with s kept
fixed and with the requirement �0 = 1 (here �0105 dropped.
We can rewrite the representation as

∑T
t=0

∑n
s=0 �tpsxt1 s

with the ps’s summing to 1 and, hence, uniquely deter-
mined. We can renormalize further so that �0 = 1, after
which all weights are uniquely determined. By Theorem 2,
�t = �t for � = �1. Thus constant discounted expected
value holds and uniqueness of the weights has also been
established. �

8. Discussion
The primary purpose of preference axiomatizations is to
make decision models with theoretical constructs directly
observable, by restating their existence (Statements (i) in
our theorems) in terms of preference conditions (State-
ments (ii) in our theorems). The simpler the preference
conditions, the better they clarify the empirical meaning
of the decision models. Similarity between the preference
conditions and the functional helps to clarify the empiri-
cal meaning of the decision model. Hence this paper has
introduced preference axiomatizations that are as simple as
possible and that reflect the corresponding decision models
as well and transparently as possible.

The conditions in our Statements (ii) use fewer words
and characters than any conditions previously proposed in
the literature, which provides an objective criterion for our

claim that they are the most concise conditions presently
existing. Further, we think that our conditions are easy
to understand and test because present values are famil-
iar objects. PVs can be used as the goal functions to be
optimized in intertemporal choice. At the same time, they
are directly defined in terms of preferences and, hence, the
subjective and behavioral character of preference axioma-
tizations is not lost by using PVs. Our efficient results are
based on this dual nature of PVs.

We used tomorrow’s values in the characterizations of
constant discounting, but conditions entirely in terms of
present values are also possible. For example, �4�1 t5 =
√

�4�1 t − 15�4�1 t + 15 characterizes constant discounted
value.13 We were unable to find an easy way to extend
this condition to nonlinear utility. An alternative condi-
tion is �4�1 t5 = �4�4�1151 t − 15, reflecting that the
recursive structure at period t should be the same as at
period 1 under constant discounting. The condition can be
extended to nonlinear utility by specifying the relevant e
levels: �4�1 t1 e01 et5=�4�4�111 e′

0 = et−11 e
′
1 = et5, t − 1,

e01 et−15. Because of the many e levels, the latter condition
is not very transparent. Our formulations using tomorrow’s
value are more transparent. This case suggests that it is
not always easy to find simple reformulations of preference
conditions in terms of present values. We were also unable
to find an easy condition in terms of present values for the
representation

∑T
t=0 �tU4xt5 (Equation (11)).

The preference conditions directly corresponding with
our present value conditions are weaker (leading to stronger
theorems) than the ones commonly used in the litera-
ture. First, our present value conditions relate to indiffer-
ences rather than preferences. Conditions for indifferences
are logically weaker, making their implications logically
stronger.14 Second, our conditions only involve the simplest
trade-offs possible, involving the change of the present out-
come and one future outcome. This further enhances their
generality. For example, commonly used stationarity con-
ditions are more restrictive than are the conditions in our
Statements 4(ii) and 5(ii). The derivations of the full force
preference conditions used in the literature from our prefer-
ence conditions are based on known techniques (including
Gorman 1968).

An empirical advantage of our preference conditions
is that they can be directly tested using statistical tech-
niques such as analyses of variance and regressions. For
example, if we take PV as the dependent variable, Equa-
tion (3) predicts that �, t, e0, and e1 may be significant
predictors, but the ej ’s with j 6= 0, t are not. We can test
this prediction using standard regression analyses. These
allow us to use the sophisticated probabilistic error theo-
ries underlying econometric regressions, which are easier
to use than the more recently developed error theories for
preferences (Wilcox 2008). There is extensive data on the
present values of future options in the financial market that
can be used to test the various independence conditions
proposed in this paper. For individual choice, we are not

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
0.

11
5.

15
8.

15
3]

 o
n 

05
 F

eb
ru

ar
y 

20
16

, a
t 1

0:
23

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Bleichrodt et al.: Discounted Utility and Present Value—A Close Relation
1428 Operations Research 63(6), pp. 1420–1430, © 2015 INFORMS

aware of tests of preference axioms using regression tech-
niques. Such tests become possible through the theorems
presented here.

In the main text, we confined our analysis to periods with
upper bound T . Many papers have studied extensions of
representations to infinitely many periods. Usually, in the
first stage representation results are established for finitely
many periods. Then in the next stage, the extension to
infinitely many periods, continuity conditions are added to
avoid diverging or undefined summations. Such two-stage
techniques can readily be used to extend our results to
infinitely many periods, where we can simply copy the
second stage of previous analyses. An advanced general
reference is Pivato (2014). Further references for nondis-
counted utility include Alcantud and Dubey (2014), Basu
and Mitra (2007), and Marinacci (1998); for constant dis-
counted utility, see Harvey (1995), Bleichrodt et al. (2008),
and Kopylov (2010); for time-dependent discounted utility,
see Hübner and Suck (1993), Streufert (1995), and Wakker
and Zank (1999).

We assumed that present values always exist, which
implies that utility (in period 0) is unbounded from both
sides. These restrictions can be dropped if we modify
the preference conditions to hold only if all present val-
ues involved exist. In proofs of theorems, we first obtain
the preference conditions in full force for every out-
come sequence only in a neighborhood of that outcome
sequence. This neighborhood is small enough to ensure that
all present values required there exist. Next we combine
these local representations into one global representation
using the techniques of Chateauneuf and Wakker (1993).
Their technique works for our most general model, time-
dependent discounted utility and, hence, covers all cases
considered in this paper.

The follow-up paper Keskin (2015) provides extensions
of our results to some popular hyperbolic discount models,
while still maintaining intertemporal separability. Exten-
sions to more general intertemporal models are a topic for
future research, as are further extensions to other optimiza-
tion contexts.

9. Conclusion
We have introduced a new kind of preference condition
for intertemporal choice that requires (quantitative) present
values to be independent of particular other variables. The
quantitative index should be directly observable so that the
independence requirements are observable preference con-
ditions that can be directly tested qualitatively and can
be used in theoretical preference axiomatizations. Unlike
usual preference conditions, our conditions and their inde-
pendence requirements can also be directly tested quanti-
tatively. Our conditions are more concise and transparent
than conditions proposed before in the literature, and they
are weaker, leading to stronger theorems. The technique
of expressing preference conditions as independence con-
ditions for directly observable quantitative indexes can be

extended to other decision contexts such as decision under
uncertainty to give new concise conditions that can easily
be tested empirically.

Endnotes
1. See Attema (2012); Dolan and Kahneman (2008, p. 228);
Epper et al. (2011); Frederick et al. (2002); Keller and Kirkwood
(1999); Loewenstein and Prelec (1993); and Tsuchiya and Dolan
(2005).
2. See Broome (1991); Gold et al. (1996; p. 100), Parfit (1984,
Ch. 14); and Strotz (1956, p. 178).
3. See de Wit (1671), Fisher (1930), and Smith and McCardle
(1999). Present values are used to compute a company’s value
when determining stock prices (LeRoy and Porter 1981) and
to make investment decisions (Ingersoll and Ross 1992). In
such financial decisions at firm or market levels, utility is usu-
ally assumed to be linear and discount rates follow market
interest rates.
4. In individual choice experiments, indifferences between a
future stream of outcomes and an immediate outcome (the present
value) are usually obtained using choice lists. Ahlbrecht and
Weber (1997) used both choice lists and direct matching to mea-
sure present values. Reviews are in Frederick et al. (2002) and
Soman et al. (2005).
5. Predictors are often called “independent variables.” We avoid
this term so as to avoid confusion.
6. The notation here is short for � = �4�1 t1 e5 = �4�1 t5 =

�4�1 t + 15 = �4�1 t + 11 e′5. The two endowments e and e′ are
immaterial and are allowed to be different. Because of the shift by
one period, the condition is imposed only for all t < T . Existence
of � and the equality in Statement 2(ii) imply that � also exists.
7. Here, t refers to the period where � is added and et specifies
the endowment in that period. Note that whereas � depends on
the level of et , it does not depend explicitly on period t, which
we denote by suppressing t from the arguments of �4· · · 5.
8. The condition implies that the endowment levels ej , j 6= 0, t
of the PV endowment e, and similarly the endowment levels e′

j ,
j 6= 1, t + 1 of the tomorrow-value endowment e′, are immate-
rial. Existence of � and the equality imply that � also exists.
The condition holds for all 0 ¶ t ¶ T − 1, and whenever e′

1 = e0

and e′
t+1 = et . We use the convenient argument matching nota-

tion popular in programming languages (R: see R Core Team,
http://www.R-project.org/; Python: see Python Software Foun-
dation, http://www.python.org; Scala: see École Polytechnique
Fédérale de Lausanne, http://www.scala-lang.org, among others)
to express the latter two restrictions. Here the formal argument of
a function (e′

1 or e′
t+1) is assigned a value (e0 or et).

9. See Debreu (1960), Gorman (1968), Krantz et al. (1971), and
Wakker (1989).
10. To wit, if the upper indifference is changed into a strict prefer-
ence, then we find � ′ <� to give indifference. The lower indiffer-
ence follows with � ′ instead of �. By monotonicity, replacing � ′

by � leads to the lower strict preference.
11. See Debreu (1960); Gorman (1968); Krantz et al. (1971, The-
orem 6.13); and Wakker (1989, Theorem III.6.6).
12. In the following equation we write 4et5t′ for e′

t′ to indicate
that the t′ level of e′ is the same as et , the tth level of e.
13. This condition was suggested by a referee.
14. They follow from preference conditions by applying the latter
twice, first with preferences one way and then with preferences
reversed.
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