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This paper presents preference axiomatizations of expected utility for nonsimple lotteries while avoiding
continuity constraints. We use results by Fishburn (1975), Wakker (1993), and Kopylov (2010) to
generalize results by Delbaen et al. (2011). We explain the logical relations between these contributions
for risk versus uncertainty, and for finite versus countable additivity, indicating what are the most general
axiomatizations of expected utility existing today.
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1. Introduction

von Neumann and Morgenstern (1947) provided a well-known
preference axiomatization of expected utility (EU) for simple
lotteries. Delbaen et al. (2011, DDK hereafter) extended it to
nonsimple lotteries while avoiding continuity constraints for
utility. We present a simplified proof of their results using the
more general Theorem 3 of Fishburn (1975). Generalizations
by Wakker (1993) to finitely additive lotteries and by Kopylov
(2010) to uncertainty are also discussed. Because of these two
generalizations, we also cover the domains of de Finetti (1937) and
Savage (1954). We show how to apply the uncertainty models of
the latter three authors to risk, providing further generalizations
there. Our analysis shows the relations between different EU
derivations in the literature. In particular, we generalize DDK’s
result to general (possibly nonreal) outcomes and to more general
lottery domains. The latter may (but need not) contain finitely
additive rather than countably additive lotteries, and need not be
convex.

We assume a preference relation 3= on a convex set M of lotteries
(measurable probability distributions over an arbitrary outcome set
S, with all degenerate lotteries & included). Then weak ordering,
an independence condition, and an Archimedean condition are
necessary and sufficient for the existence of an affine functional
U that represents =. Defining u(x) = U(8y), the affine functional is
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uniquely determined as the EU of u on the linear space spanned by
the degenerate lotteries, i.e., on the set of simple (finite-support)
lotteries. Nonsimple lotteries are linearly independent of the
degenerate lotteries, and here the affine functional canin principle
be chosen freely. It can differ from EU as examples can show.

The extensions of EU to nonsimple lotteries provided in the
literature often assumed S to be a subinterval of the reals. Then
monotonicity or continuity-in-probability usually is enough to
ensure EU for bounded lotteries, because these can be sandwiched
between simple lotteries. As pointed out by DDK (p. 401), several
authors used a continuity condition known as weak continuity,
which in fact is restrictive, implying continuity-in-probability and
continuity of utility wu.

DDK argued for relaxing the aforementioned continuity con-
straints because they considered them not to be normative (DDK,
p.401). Another argument against continuity is that its observabil-
ity status is problematic in the presence of other preference condi-
tions (Krantz et al., 1971, Section 9.1; Pfanzagl, 1968, Section 6.6;
Schmeidler, 1971; Suppes, 1974, Section 2). Thus continuity is not
as innocuous and “merely technical” as has sometimes been sug-
gested (Arrow, 1971, p. 48; Dréeze, 1987, p. 125). This point adds to
the interest of DDK’s approach.

DDK (Theorem 1.2) showed that, if the domain of preference
consists of the set M of all countably additive lotteries, then the
usual stochastic dominance condition is enough to imply EU with
no continuity constraint needed for u. Boundedness of u is implied
here. This result is appealing because, unlike preceding results in
the literature, it does not use advanced concepts and is accessible
to a wide audience.
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DDK provided two generalizations of their Theorem 1.2. Their
Proposition 2.2 deals with lotteries with compact support, and
their Theorem 2.5 deals with lotteries that have a finite i
expectation for some continuous function ¥ : S — [1, c0). Both
results generalize the case of bounded u, allowing for unbounded .

This note focuses on DDK’s derivations of EU. DDK also provided
continuity results with respect to some metric topologies, to
which we have nothing to add. We do not discuss these results
further. For brevity, we follow DDK in assuming an affine functional
U! throughout and omitting the aforementioned necessary and
sufficient preference conditions for the existence of U. For the
preference conditions that we introduce later to be directly
observable, they should not use U or u as input, and none of the
preference conditions in this paper will do so.

2. Deriving the results of DKK from Fishburn’s (1975) Theo-
rem 3

Fishburn’s (1975) Sections 1-4 consider a general setup where
the preference domain M is allowed to contain finitely additive
lotteries. We reproduce Theorem 3 from Fishburn’s Section 5.
As did DDK, this theorem focuses on countably additive lotteries
and does not allow finitely additive lotteries in the preference
domain. In Fishburn’s analysis, the outcome set S is allowed to
be general. Denote by u”* the conditional distribution of u over
outcomes weakly less preferred than x, i.e., over u~!(—o0, u(x)],
whenever the latter set is « nonnull. Similarly, by . x we denote
the conditional distribution of i over outcomes weakly preferred
to x, i.e., over u~'[u(x), +00), again for outcomes x where the
latter set is w nonnull. When using this notation we implicitly
assume that the distributions are well defined, i.e., the conditioning
events are nonnull. A preference interval contains, for every pair of
elements x, z, all outcomes y with x 3= y 3= z. That is, a preference
interval is the u inverse of an interval. Fishburn made the following
assumptions about the preference domain.

Axiom 1 (0: Fishburn, 1975; A0.2: Fishburn, 1982, Section 3.3).
[Structural Assumption] M is a set of countably additive lotteries
over a general set S, measurable with respect to an algebra on
S that contains all singletons and every preference interval. M
contains all degenerate lotteries and is convex. There exists an
affine functional U on M that represents a preference relation 3=
on M. M is conditionally closed, i.e., if f € M then the lottery
conditional on a nonnull preference interval A C S, denoted f, is
also in M.

Fishburn used the following two conditions. The first one is
stochastic dominance imposed only if at least one lottery involved
is degenerate.

Axiom 2 (4': Fishburn, 1975; A4*: Fishburn, 1982, Section 3.4). If
u e MACS, u(A) = l,andy € S,then u 3= yifx = y for
allx € A. Similarly, y = p ify = x for all x € A.

The second condition restricts the set of unbounded lotteries
and is the main one to imply that all lotteries have a finite EU, equal
to their U value.

Axiom 3 (5’: Fishburn, 1975; A5*: Fishburn, 1982, Section 3.4). If
W, v € M, vissimple,and i > v then u™* 3= v for some x € S. If
W, v € M, vissimple,and u < v then puy, < v forsomey € S.

We now reproduce Fishburn’s EU derivation.

T This by definition means that U is real valued and does not take the values co
or —oo.

Theorem 1 (3: Fishburn, 1975; 3.4: Fishburn, 1982). Assume that
Axiom 1 holds. Then the affine U is an EU functional if and only
if Axioms 2 and 3 hold.

We next show that the conditions of Fishburn’s Theorem 3 hold
under the assumptions of DDK’s EU results. Fishburn’s Axiom 0
holds in all these results. Conditional closedness, trivially satisfied
in DDK’s Theorem 1.2 and Proposition 2.2, also holds in their
Theorem 2.5 because, if the Lebesgue integral of ¥ is defined over
the space S, it surely is defined over subsets of S. We next derive
Axioms 2 and 3, i.e., Fishburn’s (1975) Axioms 4’ and 5’.

Lemma 2. Assume that S is an interval, and (weak) stochastic dom-
inance. If M contains all countably additive lotteries (DDK Theo-
rem 1.2), or all countably additive lotteries with compact support
(DDK Proposition 2.2), or all countably additive lotteries that have a
finite first moment with respect to a continuous function ¢ : S —
[1, c0) (DDK’s Theorem 2.5), then Axioms 2 and 3 hold.

Corollary 3. The EU derivations in DDK (their Theorem 1.2, Proposi-
tion 2.2, and Theorem 2.5) follow from Theorem 3 in Fishburn (1975).

3. Related work

Wakker (1993, Theorem 3.6) provided a generalization of
Fishburn’s (1975, 1982) EU representations. As in DDK, he did
not require continuity of utility. And as in Fishburn’s Sections
1-4, Wakker considered cases where M is allowed (but not
required) to contain finitely additive probability measures. Wakker
also considered general outcome sets. Instead of stochastic
dominance (properly extended to general outcomes), he used a
conditional monotonicity condition (a counterpart of Savage’s P7)
which, under the other assumptions, is equivalent to stochastic
dominance under countable additivity, but is stronger under
finite additivity. Wakker’'s Example 4.10 showed that stochastic
dominance is too weak under finite additivity. His domain
assumptions and truncation condition were more general than
those of Fishburn (1975, 1982). They only require the availability of
all simple functions, the existence of an equivalent simple lottery
for each lottery, and the existence of truncations. This domain
need not be convex. Then necessary and sufficient results were
given.

Kopylov (2010) provided a counterpart to the aforementioned
works for Savage’s (1954) EU representation. Kopylov and Savage
did not consider decision under risk with lotteries, but decision
under uncertainty, with a state space T and acts mapping states
to outcomes. However, decision under risk can be considered to
be a special case of decision under uncertainty (Kothiyal et al.,
2011, Appendix C). To see this point in the present context, assume
the DDK model, with an interval outcome set. Define T = [0, 1] as
state space with the usual Borel sigma algebra. We endow T with
the uniform probability distribution. Preferences between acts are
determined by preferences in the DDK model between the lotteries
that the acts generate over the outcomes. In this way, DDK’s models
become models of Kopylov. Then all the conditions in Kopylov’s
Theorem 1 are satisfied in the results of DDK, and DDK’s expected
utility follows from the expected utility that Kopylov’s result gives.
In this way, Kopylov’s theorem is also more general.

Kopylov (2010) also contains remarkable results for intertem-
poral choice. His Corollary 4 provides the first axiomatization in the
literature of constant discounting in integral form. It is remarkable
that this form, one of the most widely used evaluation formulas in
the literature, had not received a preference axiomatization before.
Axiomatizations of constant discounting had as yet been provided
exclusively for discrete summations rather than continuous inte-
grations over time (Koopmans, 1972; Bleichrodt et al., 2008).
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Appendix. Proofs

Proof of Lemma 2. DDK’s Theorem 1.2 is a corollary of their
Theorem 2.5 (take i constant). Cases of compact supports,
containing their maximum « and minimum, are simple (see the
first lines of the two cases below). Hence we focus on DDK’s
Theorem 2.5. The following proof will amount to constructing,
for contradiction, St. Petersburg lotteries in the domain of DDK’s
Theorem 2.5.

Part 1 (Proof of Axiom 3). Take a lottery u with support A with
supremum « = inf{ : u(B, oo) = 0}. Assume, for contradiction,
u > vbut u™ < v for every x for which p”* is well defined. (Cases
of # < v and always ity = v similarly lead to a contradiction.) o &
A because otherwise a contradiction ™ = @ > v = u”® would
follow. Take a sequence of outcomes a; € A strictly increasing to .
Aj = p(aj, o0) > 0 tends to 0 by countable additivity. For j large
enough, A; < 1. We assume this for all j (take a subsequence and
reindex). Now u% is well defined.

Decompose
=i+ (1= A (1)
with ;" = (.00 a0d 1] = [(—c0.q. Both conditional dis-

tributions are well defined because 0 < A; < 1, and are con-
tained in the preference domain (finite y» expectation as with w).
U(p;) < U(v) because v = u”% 3= p; (w"% may involve out-
comes larger than but equivalent to g;).

Uu) = U(n;) = (U(p) —U(v)) = 2A > 0. Substituting
Eq. (1) for U(w), we get

WU = KU = 24, (2)
By stochastic dominance, U(uj_) is nondecreasing in j; it is
bounded above by U (v).

Observation. With u, A, o, «j, Aj, A, and Egs. (1) and (2) as
above, a contradiction results.

)»,»U(;Lj_) tends to O as does A;. There must exist J such that

MU = A (3)
for all j > J. We may assume that ] = 1 (take a subsequence and
reindex). By countable additivity, f( 4j.00) Ydu tends to 0. By taking
an increasing subsequence and reindexing, we can get

1
/ Y = f Ydp < - (4)
(—00,00) (aj,00) 2

for all j. Given ¢ > 1,also 4; < 1/2 and uj = > ", A +

a - Z;; Aj)ay is well defined. Obviously, given positivity of
v, ff;o Ydu; < 14+ (aqy), whichimplies that y} is in the domain
of U for all n, also for n = oo.

By stochastic dominance, U(u%,) > U(u;) for all n. Hence, by
Eq. (3), U(ul,) > Z;;] A+ - Z};l 1)U (ay) for all n, and it
cannot be finite. A contradiction has resulted.

Part 2 (Proof of Axiom 2). Axiom 2 trivially follows by restricting
stochastic dominance to the case where one of the two lotteries
involved is degenerate if stochastic dominance is strict, or if
stochastic dominance is related to the preference order over
outcomes rather than to the natural order on R. For the weak
stochastic dominance with respect to the natural order on R used
by DKK, the derivation is nontrivial, as can be inferred from their
Example 2.1.2

Assume, for contradiction, © > x buty < x for every y in the
support A of . (The case of 4 < x buty = x is similar.) Take «, o,
and A;j as in Part 1. Again o ¢ A (otherwise o > @ > X » «
gives a contradiction). Again we have 0 < A; < 1, and we get
Eq. (1). By stochastic dominance, U(uj’) < U(g) < ux). U(,uj’) is
nondecreasing in j and bounded above by u(x). U(un) — U(uj_) >
U(u) —UKx) = 24 > 0, and we get Eq. (2). From here on we
proceed as after the Observation in Part 1.
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