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This paper proposes a unified framework for optimization over two or more 

components (risk/time; risk/welfare; etc). Using a century-old theorem on macro-

micro aggregation, we show that many existing debates, on incentive compatibility of 

random incentives, hedging confoundings in ambiguity measurements, equity in 

Harsanyi’s veil of ignorance, multiattribute risk aversion, and many others, all 

concern the same bifurcation question “row-first or column-first aggregation?” For a 

single component, behavioral models typically relax separability while maintaining 

monotonicity. For two or more components, this is, surprisingly, no longer possible. 

Then at least one monotonicity must be violated. The question of which one is 

equivalent to the above bifurcation question. Our analysis clarifies many ongoing 

debates in many fields, including the aforementioned ones. We provide diagnoses and 

techniques for overcoming undesirable violations of monotonicity. A mathematical 

online appendix shows how our framework can be used theoretically to generalize 

many well-known preference axiomatizations.   
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1. INTRODUCTION 

It may come as a surprise, but many existing debates in the literature, from Harsanyi’s 

veil of ignorance to incentive compatibility of the random incentive system or 

multiattribute risk aversion, share a common hidden cause. That is, when the decision 

problem involves multiple components, in which order should we aggregate the 

components? As a simple example, consider choices from probability distributions 

over intertemporal outcome streams. Here risk is one component and time the other. 

Should we first aggregate over time, taking the present value of each possible 

outcome stream, and next aggregate over the probabilities, taking a certainty 

equivalent? Or should we first aggregate over risk, taking the certainty equivalent of 

the probability distribution at each timepoint, and only then aggregate over time, 

taking the present value? Whereas the order of aggregation does not matter in 

classical (rational) models, it becomes essential in behavioral generalizations, not only 

for time and risk but for every situation where two or more components are involved 

(persons, commodities, production inputs, health attributes, and so on). 

 For decisions with a single component, behavioral decision models typically 

relax strong separability assumptions while preserving monotonicity, e.g., in 

nonexpected utility for risk or equity models for welfare. We show that when two or 

more components are involved, relaxing (strong) separability while maintaining 

monotonicity is no longer possible. Relaxing separability then comes at the cost of 

giving up monotonicity regarding at least one of the components. The question of 

which monotonocity to give up, is equivalent to the question of which component to 

aggregate over first. 

 There have by now been 100s, or even 1000s, of discussions of the order of 

aggregation in many fields, showing its importance and ubiquity. Many references 

will follow later, but the literature is too broad to cite or survey completely. We 

provide a unifying framework to study the aforementioned problem concerning the 

proper order of aggregation. Most prior treatments focused on single domains and 

implicitly chose the order of aggregation without discussing it. Several authors, cited 

later, did critically discuss the order of aggregation and did compare different 

domains, but the fundamental nature of the problem and its universality have not been 

observed before. 
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 Our paper builds on Nataf’s (1948) century-old theorem on macro-micro 

aggregation. It leads to the paradoxical result that when two or more components are 

involved, relaxing separability has to go hand in hand with relaxing monotonicity. 

This has vast implications for all modern behavioral approaches involving 

aggregation over multiple components. We show that many behavioral paradoxes or 

puzzles in different domains, even though exhibiting different symptoms on the 

surface, do share the same underlying cause: the middle ground of partial rationality 

in the form of monotonicity with relaxed separability, which exists for uni-component 

problems, is not available for multiple components. This fundamental problem comes 

as an implication of Nataf’s theorem. As a result, behavioral approaches face a 

bifurcation question (give up column monotonicity or row monotonicity; see Figure 3 

and Theorem 5), that is a more fundamental and serious problem than was thought 

before. Even though our results derive from known mathematical theorems, the vast 

impact for behavioral approaches, ranging from hedging in ambiguity meassurements 

to ex ante/ex post equality in Harsanyi’s veil of ignorance, has not been understood 

before. We provide general suggestions for how to determine and generate the proper 

order of aggregation, providing a unified road map for many fields. 

 This paper is organized as follows. The first part (Sections 2-3) starts with a new 

and thought-provoking preference axiomatization of discounted expected utility 

(DEU). We show that unobjectionable technical and standard axioms, such as 

monotonicity (presented in Section 2.2), when assumed for both time and risk (more 

than one component) are strong enough to give rise to DEU, the workhorse of 

classical economics, satisfying complete separability. This result is surprising: how 

can unobjectionable and widely accepted axioms characterize a widely falsified 

model? This sets our quest to uncover the underlying cause shared by many 

seemingly unrelated but essentially similar paradoxes and debates. Section 3 presents 

the formal framework of this paper and our basic theorem, a modern version of 

Nataf’s theorem, and explains what underlies the paradox of Theorem 1.  

 The novelty of our theorems is in their simplicity and appeal, and not in 

mathematical generality. Our preference conditions can be stated verbally and are 

accessible to nonspecialists more than any preceding axiomatization of DEU.  

Although many authors, cited later, used advanced implications of the preceding 

results in various decision theories, their basic impact for empirical and theoretical 

work, specified in Section 4 and applied in the rest of this paper, has not been 
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observed before. Mongin & Pivato (2015 Proposition 1) and other papers presented 

more general theorems. Details are in Online Appendix A. We do not seek for 

mathematical generality but for applied relevance and conceptual implications.  

 A moral of the story follows in Section 4, where we consider behavioral 

generalizations of classical models. We identify the culprit that gives rise to the 

paradoxical axiomatization of DEU and we further explain the problem of bifurcation. 

With the culprit identified, Section 5 gives general suggestions of how to deal with 

the absence of the middle ground. 

 Section 6 elaborates on two widely debated issues upon which our results shed 

new lights (monotonicity in the Anscombe-Aumann framework and validity of the 

random incentive system), and briefly mentions several others. Then a conclusion and 

proofs follow. To limit the size of this paper, the mathematical power of our 

aggregation results, generalizing several well-known preference axiomatizations with 

simplified proofs, is presented in Online Appendix C. For instance, Gul’s (1992) 

axiomatization of subjective expected utility readily follows as a corollary of our 

Theorem 1 and thus, essentially, of Nataf (1948). 

 

2. DISCOUNTED EXPECTED UTILITY: A PARADOX TO REVEAL 

THE UNDERLYING PROBLEM 

This section considers the aggregation problem by providing an appealing, but 

paradoxical, axiomatization of discounted expected utility. 

 

2.1. Definitions for Uncertainty and Time 

We consider choices between “actstreams,” i.e., matrices as in Figure 1. Here, if state 

of nature 𝑠𝑖 obtains then, at timepoint 𝑡𝑗 one receives money 𝑥𝑗
𝑖. Columns designate 

acts, i.e., maps from states to outcomes, and rows similarly are outcome streams. An 

actstream gives a stream of acts or, equivalently an act yielding streams. 
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Preferences ≽ are over actstreams. Any outcome stream can be identified with the 

matrix having that outcome stream in each row, i.e., the degenerate lottery giving that 

outcome stream with certainty. Any act can be identified with the matrix having that 

act in the first column, and outcome 0 elsewhere. This way, preferences are generated 

over acts and over streams. 

 Expected utility (EU) holds if there exist positive probabilities 𝑝1, … , 𝑝𝑚 and a 

utility function 𝑈(𝑈: ℝ → ℝ continuous and strictly increasing) such that preferences 

over acts (elements of ℝ𝑚) are represented by expected utility 

 (𝛼1, … , 𝛼𝑚) ↦  ∑ 𝑝𝑖 (𝑈(𝛼𝑖))𝑚
𝑖=1  (1) 

 Discounted utility (DU) holds if there exist discount factors 0 < 𝑑𝑗 (𝑗 = 1, … , 𝑛) 

and a utility function 𝑈 such that preferences over streams are represented by 

discounted utility (DU) 

 (𝛽1, … , 𝛽𝑛) ↦  ∑ 𝑑𝑗 (𝑈(𝛽𝑗))𝑛
𝑗=1  (2) 

Constant discounting can readily be obtained by adding an appropriate preference 

condition that guarantees the same discount rate over time. 

 Discounted expected utility (DEU) holds if there exist probabilities, discount 

factors, and a utility function 𝑈 such that preferences over actstreams are represented 

by their discounted expected utility (DEU) 

 ∑ 𝑝𝑖 ∑ 𝑑𝑗 (𝑈(𝑥𝑗
𝑖))𝑛

𝑗=1
𝑚
𝑖=1  (3) 

 DEU has the following implications: 

FIGURE 1. An actstream 
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(1) EU holds for uncertainty preferences. 

(2) DU holds for intertemporal preferences. 

(3) EU and DU use the same utility function. 

Each of these implications has often been criticized on normative grounds. For 

instance, numerous debates on cardinal utility (Moscati 2018) and on the difference 

between risky and riskless utility (Fleurbaey 2010 p. 675; Keeney & Raiffa 1976) 

have been advanced, challenging implication (3). The three implications have also 

been extensively criticized on empirical grounds, so much that DEU may qualify as 

the most falsified decision model (Attema 2012; Starmer 2000). In DEU, the order of 

aggregation, first over time or first over risk, is immaterial: first computing discounted 

utilities and then computing their expectation gives the same result as first computing 

expected utilities and then their discounted value. In Sections 2.2 and 2.3, we present 

the axioms needed to axiomatize DEU. 

 

2.2 “Unobjectionable” Axioms 

AXIOM 1. Weak ordering: transitivity and completeness (including reflexivity). 

AXIOM 2. Continuity: the usual (Euclidean) continuity on ℝ𝑚×𝑛. 

AXIOM 3. Outcome monotonicity: strictly increasing any 𝑥𝑗
𝑖 strictly improves the 

actstream. 

AXIOM 4. Act monotonicity: at any timepoint, replacing the act there by a weakly 

[strictly] preferred act leads to a weakly [strictly] preferred actstream. 

AXIOM 5. Stream monotonicity: at any state, replacing the stream there by a weakly 

[strictly] preferred stream leads to a weakly [strictly] preferred actstream. 

 

2.3. Objectionable Axioms 

This section is supposed to list the critical axioms, to be added to the preceding ones, 

needed to axiomatize DEU. Given the strong separabilities over states and timepoints 

involved in DEU, so widely falsified empirically, strong axioms may be expected to 

come. However, there will be none. This section does not provide any further axiom. 

That is, the axioms in Section 2.2 suffice to give DEU! This may come as a surprise. 

How can the least objectionable axioms be equivalent to the most objectionable 

model? How can such seemingly weak preference conditions have such strong 
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implications? The paradox becomes most salient from the theorem in the following 

section. 

 

2.4. Axiomatization of Discounted Expected Utility 

 THEOREM 1. The following two statements are equivalent. 

(i) Discounted expected utility holds. 

(ii) Weak ordering, continuity, and monotonicity with respect to outcomes, acts, and 

streams hold.  □ 

 

 Because of its simplicity, we claim that Theorem 1 provides the most appealing 

axiomatization of DEU presently available.1 However, a question yet to be resolved is 

how such seemingly weak preference conditions can have such strong implications. 

Resolving the paradox will lead us to the surprising fact that, for decision problems 

involving multiple components, the combination of seemingly weak rationality 

requirements for each component easily gives rise to strong rationality requirements 

in full force when the components are combined. Before touching on the crux of the 

problem, Section 3 introduces a unified framework that we need to showcase the 

problem underlying this paradox, and many other debates or paradoxes of the same 

nature. 

 In many contexts, extensions to infinite components are desirable. Online 

Appendix B shows that this can readily be achieved using standard tools from 

mathematical measure theory (e.g., Theorem 9). The important point to note is that 

our intuitive axioms, mainly the monotonicities, remain unaffected in this process. 

Only the technical continuity is modified. Thus, these modifications do not affect the 

practical implications discussed in the main part of this paper. 

 

3. GENERAL DEFINITIONS AND THEOREM 

Our general framework considers preferences ≽ over matrices 

 

1 The theorem can readily be extended to risk. For example, if all 𝑠𝑖 have known probabilities 1/𝑚 

implying symmetry (and subjective probabilities 𝑝𝑖=1/m) we obtain all equal-probability distributions. 

Online Appendix B shows that extensions to all probability distributions readily follow. 
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There are two components: (1) a finite row set 𝑅 = {𝑟1, … , 𝑟𝑚} with its attributes 

being 𝑚 rows and (2) a finite column set 𝐶 = {𝑐1, … , 𝑐𝑛} with its attributes being 𝑛 

columns. Before, the components concerned uncertainty and time, with 𝑚 states and 𝑛 

timepoints as their attributes, respectively. In general, components can also designate 

persons, commodities, production inputs, health attributes, and so on. Wakker (2010 

Appendix D) gives many other examples. For simplicity, we continue to assume that 

the outcome set is ℝ. In some examples outcomes may concern nonmonetary 

commodities.2 We assume 𝑚, 𝑛 > 1 fixed. Throughout, superscripts do not designate 

powers. ℝ is the outcome space, say monetary. Rows ℝ𝑛 map 𝐶 to ℝ and columns 

ℝ𝑚 map 𝑅 to ℝ. A matrix ℝ𝑚×𝑛 (actstream before) maps 𝑅 × 𝐶 to ℝ. It specifies a 

row (𝑥1
𝑖 , … , 𝑥𝑛

𝑖 ) for each 𝑟𝑖 and a column (𝑥𝑗
1, … , 𝑥𝑗

𝑛) for each 𝑐𝑗. Continuity of 

preference is as usual, referring to the Euclidean topology. 

 We throughout assume that all decisions are made at one fixed timepoint, 

preceding all timepoints of a time component if present. The decision timepoint also 

precedes any information about the resolution of risk or uncertainty if an uncertainty 

component is present. Thus, if the true state was determined prior to the decision, the 

decision maker does not know which it is. Prior resolution of uncertainty is only a 

matter of perception and never of strategic relevance. Dynamic decision principles 

and updating play no role in this paper. 

 

2 Mathematical extensions of our theorems to connected topological outcome spaces (e.g., convex sets 

of commodity bundles) are straightforward. 

FIGURE 2. A matrix 
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 Outcome monotonicity is defined as before (strictly increasing any cell strictly 

improves the matrix). We generalize the other monotonicity conditions. We now 

consider underlying preferences ≽𝑖 over rows (𝑥1
𝑖 , … , 𝑥𝑛

𝑖 ) and ≽𝑗 over columns 

(𝑥𝑗
1, … , 𝑥𝑗

𝑚) that may depend on 𝑖 and 𝑗, respectively, and we will consider 

monotonicity for preferences ≽ over matrices with respect to such underlying 

preferences. In particular, the preferences ≽𝑖 and ≽𝑗 can be derived from ≽ over 

matrices by keeping “outside cells” fixed. This procedure works smoothly if proper 

separability/monotonicity conditions hold. For consistency, we maintain the 

monotonicity terminology. 

 

 DEFINITION 2. A subset of cells is separable if preferences over those cells, while 

keeping the outcomes at all other cells fixed, are independent of the levels where the 

other cells are kept fixed. Weak separability of rows, or row monotonicity, holds if 

each row is separable; that is, for each 𝑖, preferences over rows (𝑥1
𝑖 , … , 𝑥𝑛

𝑖 ) by keeping 

all other rows fixed are independent of the levels where the other rows are kept fixed. 

Weak separability of columns, or column monotonicity, holds if each column is 

separable. Complete separability holds if each subset of cells is separable.  □ 

 

 Row monotonicity means that improving a row improves the matrix, and column 

monotonicity is similar. Complete separability can concern any subset of cells, also if 

this subset is not a union of rows and/or columns. Additive utility (AU) holds if 

preferences over matrices are represented by 

 ∑ ∑ 𝑉𝑗
𝑖(𝑥𝑗

𝑖)𝑛
𝑗=1

𝑚
𝑖=1  (4) 

for strictly increasing continuous functions 𝑉𝑗
𝑖(𝑥𝑗

𝑖). It readily implies complete 

separability. The following well-known result is basic to this paper. It has been known 

as the “theorem of aggregation.” Its history is discussed later. 

 

 THEOREM 3 [of aggregation] The following two statements are equivalent. 

(i) Additive utility holds. 

(ii) Weak ordering, continuity, and monotonicity with respect to outcomes, rows, and 

columns hold.  □ 
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It is obvious that Statement (i) implies Statement (ii), and even complete separability. 

For the reversed implication, it is clear that row and column monotonicity preclude 

particular interactions between cells. However, the tradeoffs directly precluded this 

way are only few. The surprising point of Theorem 3 is that, in this setting with 

multiple components, all interactions are precluded “indirectly” after all, also for the 

many subsets of cells besides rows and columns. This was, essentially, Nataf’s (1948) 

finding, although his proof has sometimes been criticized for being inaccessible. 

Nowadays, the result can readily be obtained as one of the many surprising 

implications of Gorman’s (1968) strong result. Hence, we will not give a separate 

proof. This result also explains the paradox of Theorem 1, and underlies the 

bifurcation result and absence of middle grounds derived later. 

 The analysis in Theorem 1 and preceding sections concerned the special case 

where ≽𝑖 and ≽𝑗 were independent of 𝑖 and 𝑗, respectively, implying that the 𝑉𝑗
𝑖 can 

be taken proportional. In general contexts we use the terms uniform row monotonicity 

instead of stream monotonicity and uniform column monotonicity instead of act 

monotonicity for these special cases. The difference between DEU and AU, or 

between uniform and general monotonicity/separability, or between Theorems 1 and 

3, never plays a role in any of the conceptual debates later in this paper. The 

generalizations (“state- and time-dependence”) increase the applicability of our 

results. 

 Whenever risk, the most-studied component in the literature and also in this 

paper, is involved we let it correspond with rows 𝑟𝑖, which then are states with known 

probabilities. We then refer to row monotonicity as risk monotonicity. 

 Our results can easily be extended to more than two components. In particular, 

each component may itself combine several components. Section 6.2 will illustrate 

this point. 

 

4. FORMALIZING THE RESTRICTIVENESS OF MONOTONICITY: 

A BIFURCATION 

As with DEU, the complete separability of many classical economic theories has been 

challenged on normative and descriptive grounds. It is therefore natural for 

researchers to think of behavioral relaxations of complete separability to increase the 

models’ validity. Common strategies of behavioral relaxations were originally 
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developed for single components, first risk, and later uncertainty, time, welfare, and 

so on. Even though different relaxations focus on different psychological insights or 

behavioral patterns, they typically share the same structure. That is, they operate in a 

middle ground, where complete separability is relaxed but weak separability is still 

maintained. For instance, nonexpected utility models aim to maintain mononicity 

(thus weak separability) or, equivalently, stochastic dominance, but search for proper 

relaxation of complete separability (the “sure-thing principle” or mixture-

independence). Kahneman & Tverky’s (1979) original prospect theory is an example 

that, by violating stochastic dominance, fell out of the middle ground. It was, 

therefore, replaced by a rank-dependent version that satisfies monotonicity and hence 

is in the middle ground (Tversky & Kahneman 1992). In this section, we will show 

how Theorem 3 implies that such middle grounds do not exist for multi-component 

decision problems. 

 For our analyses, weak ordering and continuity will be taken as unobjectionable 

and thus will not be discussed further. We focus on the monotonicity conditions. We 

follow the terminological convention that for any product structure, monotonicity 

with respect to that structure refers to changes in single attributes. Thus, for outcome 

monotonicity, we treat the space of matrices as if one component, i.e., one product 

space with 𝑚 × 𝑛 attributes, being cells. We then consider changes in single cells. 

The underlying relation, ≥ on money, is “physical” and objective, and outcome 

monotonicity is usually unobjectionable. It is a version of weak separability, and is 

not very restrictive. Then changes within single attributes are not ordinally affected by 

other attributes, but changes within nonsingle subsets of attributes, involving 

(cardinal) tradeoffs between attributes, can still be. 

 We next consider row and column monotonicity. We now take the space of 

matrices as a combination of two product structures. That is, we take it as comprising 

two components—the topic of this paper. Row monotonicity refers to an 𝑚 fold 

product space, with rows, element of ℝ𝑛, as single attributes. This monotonicity again 

concerns a change in a single attribute, now a row. Similarly, column monotonicity 

refers to an 𝑛 fold product space with columns, element of ℝ𝑚, as single attributes. It 

again concerns a change in a single attribute, now a column. 

 Row monotonicity refers to underlying preference relations ≽𝑖 over rows that are 

subjective. They are not beyond doubt, and can readily be impacted by other 
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variables, as many examples below will show. Therefore, monotonicity now is 

debatable.3 This holds similarly for column monotonicity. 

 In our quest for behavioral relaxations of complete separability, we will first 

reformulate the monotonicity conditions in terms of functional forms that can 

represent preferences. For quantitative optimizations with two (or more) components, 

recursive procedures are commonly used because they are tractable. They can occur 

in two ways, i.e., two orders of aggregation. In row-monotonic aggregation one first, 

for every row 𝑟𝑖, aggregates over the columns 𝑐𝑗 there. There then exist row-functions 

𝑅𝑖 and a column-function 𝐶, all continuous and strictly increasing in each coordinate, 

such that preferences are represented by 

 𝐶 (𝑅1(𝑥1
1, … , 𝑥𝑛

1), . . . . . . , 𝑅𝑖(𝑥1
𝑖 , … , 𝑥𝑛

𝑖 ), . . . . . . , 𝑅𝑚(𝑥1
𝑚, … , 𝑥𝑛

𝑚)) (5) 

The second procedure uses column-monotonic aggregation. Now one first, for every 

column 𝑐𝑗 aggregates over the rows 𝑟𝑖 there. There then exist column-functions 𝐶𝑗 and 

a row-function 𝑅, all continuous and strictly increasing in each coordinate, such that 

preferences are represented by 

 𝑅 (𝐶1(𝑥1
1, … , 𝑥1

𝑚), . . . . . . , 𝐶𝑗(𝑥𝑗
1, … , 𝑥𝑗

𝑚) , . . . . . . , 𝐶𝑛(𝑥𝑛
1, … , 𝑥𝑛

𝑚)) (6) 

Under uniform row monotonicity, we can take all 𝑅𝑖 in Eq. 5 the same, i.e., 

independent of 𝑖, and under uniform column monotonicity, we can take all 𝐶𝑗 in Eq. 6 

the same, independent of 𝑗. 

 In the literature, terminologies of row-first and column-first aggregation are 

popular, as used in our title. Unfortunately, those terms have been used 

interchangeably, with several linguistic requirements and conventions going in 

opposite directions. Ambiguities cannot be avoided then. In our formal analysis we, 

therefore, chose the terms row-monotonic and column-monotonic aggregation instead. 

 The two procedures do not seem to be very restrictive because they involve many 

functions that can be chosen independently and with almost no restrictions imposed 

on those functions. The following observation shows that orders of aggregation, i.e., 

 

3 Bommier (2017) weakened row monotonicity to hold only with stochastic dominance as underlying 

preference, so as to maintain objectivity. 
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aggregation monotonicities, are, indeed, quantitative versions of preference 

monotonicities. The observation is standard in consumer theory. 

 

 OBSERVATION 4. Given weak ordering, continuity, and outcome monotonicity, 

column-monotonic aggregation can be used if and only if column monotonicity holds. 

Row-monotonic aggregation can be used if and only if row monotonicity holds.  □ 

 

As for the proof, row- (column-)monotonic aggregation can be derived from the 

corresponding preference condition by taking constant-equivalent functions for the 

functions 𝑅𝑖, 𝐶𝑗, 𝑅, and 𝐶. The rest is straightforward. 

 The following result, mathematically a corollary of Nataf’s (1948) Theorem 3, 

has vast and paradoxical implications for behavioral theories. Figure 3 illustrates it. 

 

 OBSERVATION 5 [Bifurcation]. If one wants to adopt a behavioral model with 

interactions (i.e. relaxing complete separability), and for tractability reasons use a 

recursive model, then the two routes available, row-monotonic and column-

monotonic aggregation, are exclusive, and one faces a bifurcation.  □ 

 

 
 

 

 

 

 

 

 

The paradoxical point is that there is no middle ground. The moment one commits to 

the, ordinal, weak separability of both components, one is committed to their cardinal, 

complete, separability. And the moment one commits to one, all the interactions 

allowed by the other are precluded. The following example illustrates how this 

paradox can lead researchers astray. 

 

FIGURE 3. Bifurcation 

with no middle ground

Recursivity with 

interactions
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 EXAMPLE 6 [Paradoxical absence of the middle ground]. A researcher, facing 

actstreams as in Figure 1, wants to relax complete separability and allow for 

interactions between risky states 𝑠𝑖 but not between timepoints 𝑡𝑗. She aims at a 

middle ground with risk monotonicity, i.e., stochastic dominance, kept. Thus, in Eq. 3 

(DEU), the right summation, DU over columns is kept, but the left summation, EU, is 

replaced by a nonexpected utility formula that satisfies stochastic dominance. This 

replacement adapts Dejarnette et al.’s (2020) generalized local bilinear utility to our 

context. 

 At first sight, we seem to have achieved the desired middle ground, with cardinal 

but no ordinal interactions between states 𝑠𝑖. However, the bifurcation of Observation 

5 shows that it cannot be. Act monotonicity must be violated. Figure 4 gives an 

example, for 𝑑1 = 𝑑2 = 1, 𝑃(𝑠1) =  𝑃(𝑠2) = 0.5, 𝑈 linear (𝑈(𝛼)= 𝛼), and any 

nonexpected utility model with overweighting of the worst outcome. In the example, 

preferences over columns at timepoint 𝑡1 depend on the levels at which the outcomes 

at timepoint 𝑡2 are fixed—timepoint 𝑡1 is affected by 𝑡2. Even though the adapted 

formula seems to have preserved separable discounting, in reality, interactions 

between timepoints are still happening under the cover. Nonseparable discounting is 

not only possible here (Dejarnette et al. 2020 p. 630) but it even is unavoidable. 

Further, interactions even occur at the elementary level of single timepoints. Possibly 

unbeknownst to the researcher, she has introduced interactions between timepoints 

after all. 

 

 

 

 

 

 

 

 

 

 

 In behavioral approaches, the choice in the bifurcation presented in Figure 3 is 

mostly made implicitly (Andreoni & Sprenger 2012; Machina 2014 Eq. 6 & footnote 
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11 & p. 3821 l. -3). As we have shown, the choice is critical though and explicit 

arguments for the monotonicity assumed are desirable. Several papers did discuss this 

point explicitly, including Bommier, Kochov, & le Grand (2017 Sections 3 and 6), 

Dejarnette et al. (2020 Section 4), Epper & Fehr-Duda (2021), Marinacci (2015 p. 

1026), and Onay & Öncüler (2009). But the critical nature of the issue (Figure 3) has 

not been noted before. Now it is clear why in the numerous discussions in the 

literature no-one ever proposed a middle ground: because it doesn’t exist. 

 The following claim, mathematically a corollary of Observation 5 and, thus, of 

Nataf (1948), highlights another practical implication of essentially Nataf’s theorem. 

While not fully formalized, dividing logical implications over assumptions, it shows 

the true face of monotonicity, signalling the alarming restrictiveness of resursive 

procedures. They may inadvertently preclude many relevant interactions. The “at 

least” clause below is because of the interactions precluded by both monotonicities. 

 

 INTERPRETATION 7 [Precluding many interactions]. Given weak ordering, 

continuity, outcome monotonicity, and 𝑚 = 𝑛, row monotonicity precludes at least 

half of the possible interactions (violations of complete separability), and so does 

column monotonicity. Each condition precludes all interactions allowed by the other.  

□ 

 

For 𝑚 ≠ 𝑛 the implications should be divided modulo 𝑚, 𝑛, but the situation is 

similarly alarming, 

 The following example will serve as lead example in Section 5. It applies our 

framework to Harsanyi’s (1955) utilitarianism, a version of DEU. 

 

 EXAMPLE 8 [Welfare and risk]. Columns 𝑐𝑗 refer to persons and rows 𝑟𝑖 to risk, 

i.e., states with known probabilities 𝑝𝑖. For simplicity, we assume 𝑝𝑖 = 1/𝑚 for all 𝑖. 

Harsanyi’s (1955) utilitarian model is AU with 𝑉𝑘
𝑖 = 𝑈𝑘/𝑚 for all 𝑖, 𝑘, where 𝑈𝑘 is 

the utility function of person 𝑘. It is a column-dependent generalization of DEU. 

Preferences over a matrix are of a benevolent social planner with no own stakes. 

Harsanyi’s Pareto optimality is column monotonicity, and his expected utility for the 

social planner implies uniform risk (= row) monotonicity. 
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 An axiomatization of Harsanyi’s model readily follows from Theorem 3 by 

adding symmetry of rows (implying uniformity of row preference and EU with equal 

probabilities). The extension to general probabilities follows from Theorem 9 in 

Online Appendix B. This result is more general than Harsanyi’s (1955) 

axiomatization in weakening his assumption of expected utility. In return, Harsanyi 

did not need continuity in outcomes, and could handle subdomains of the matrix 

space.4 Harsanyi’s axiomatization was received as a paradox because many were 

misled by the “hidden” restrictiveness of column monotonicity. But with our 

preceding theorems and Interpretation 7, his result comes as no surprise. 

 Harsanyi’s model has often been criticized for ignoring inequality aversion, 

which involves interactions between different persons (= columns). In the following 

Figures 5 and 6 we assume symmetry of 𝑐1 and 𝑐2 (i.e., anonymity) and also of 𝑟1 and 

𝑟2 (which have probability 0.5). 

 

 

 

 

 

 

 

 

 

 

 Broome (1991 p. 185) proposed Figure 5 as a criticism of Harsanyi’s 

utilitarianism. In all matrices, both persons always receive 10.50. Hence, under 

column monotonicity (“Pareto optimality”), all matrices are indifferent, and so are 

they under Harsanyi’s utilitarianism (Fig. 5a). Broome pointed out that, to the 

contrary, the strict preferences in Fig. 5b are plausible under inequality aversion. The 

dispreferred matrices certainly, under both 𝑟1 and 𝑟2, give inequality, and the 

preferred matrices certainly (for every row) give equality. The preference over the 

 

4 Harsanyi did not explicity introduce persons as different attributes, but his domain can be remodeled 

accordingly, turning it into a subdomain of AA. Thus, AA's theorem is a corollary of Harsanyi's 
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first column is affected by the second here, and column monotonicity and Harsanyi’s 

utilitarianism are violated. Row monotonicity may still hold. 

 Diamond (1967) proposed Figure 6 as criticism of Harsanyi’s utilitarianism. In all 

matrices, both rows (states) give the good outcome to one of the two persons which, 

by symmetry, is equivalent. Hence, by row symmetry, all matrices are indifferent, and 

so are they under Harsanyi’s utilitarianism (Fig. 6a). Diamond pointed out that, to the 

contrary, the strict preferences in Fig. 6b are plausible under inequality aversion. In 

the dispreferred matrices, one person certainly receives the good outcome and the 

other person certainly not, giving inequality. In the preferred matrices there is equality 

in the sense that both persons receive the same lottery, 10.50. Diamond emphasized 

that the sure-thing principle is violated, which in this simple case is equivalent to our 

row monotonicity. The preference over the first row is affected by the second here, 

and expected utility and Harsanyi’s utilitarianism are violated. Column monotonicity 

may still hold. 

 Our bifurcation result suggests that the above two examples are the only two 

tractable recursive ways to deviate from Harsanyi (1955), and that the interactions are 

detectable at the basic level of single persons or risks, as occurring in both figures. 

Broome’s example fits in the upper route in Figure 3 and Diamond’s in the lower one. 

The examples are each other’s dual by interchanging rows and columns. Hence, 

recursive models that allow for ex-ante as well as ex-post inequality aversion, will 

have to give up on both row- and column monotonicity. 
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 We will use our framework to analyze several existing debates and/or paradoxes. 

Ultimately, they all evolve around what is the proper choice in the bifurcation of 

Figure 3, and many valuable interactions may have been lost inadvertently. 

 Before discussing applications, we first tackle the natural question of which route 

in the bifurcation to choose. General guidelines, considerations, and ways to avoid 

undesirable violations of monotonicity are presented in the next section. They help 

shed new light on many existing problems. 

 

5. GUIDELINES, DIAGNOSES, AND WAYS TO AVOID 

VIOLATIONS OF MONOTONICITY 

This section provides guidelines for researchers when facing the choice in the 

bifurcation question of Figure 3. To decide on which separability to keep and which 

to give up, one needs to rank the plausibility of each separability condition. In 

general, separability is most plausible for uncertainty and risk because there can be no 

physical interactions between mutually exclusive events (Broome 1991 Section 5.3; 

Dejarnette et al. 2020 p. 632). Within uncertainty, it is more convincing for risk than 

for ambiguous events (Wakker 2010 Section 10.4). Next, interactions are less likely to 

occur between different persons at different locations than within one person at 

different timepoints. Thus, the  [risk > ambiguity > welfare > time]  plausibility 

ordering regarding separability/monotonicity results, with risk monotonicity usually 

being the most convincing. For time, payment in consumption is more separable than 

payment in money. For commodities or attributes, separability is less plausible than 

for uncertainty, but can take any remaining place in the ordering depending on the 

nature of the attributes. With time and risk involved, risk-monotonic aggregation is 

most plausible (Abdellaoui et al. 2019). Yet, time-(column-)monotonic aggregation 

has sometimes been adopted. 

 Researchers often add a component not for its own interest, but as an auxiliary 

tool to facilitate the analysis of other components. According to our conceptual 

analysis above, risk is most suited to serve as such a tool because separability there is 

very plausible. Risk has indeed mostly been used for this purpose. This is what 

Harsanyi (1955) did for welfare (our Example 8), essentially exploiting the paradox of 
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our Theorem 1.5 Other examples include Anscombe & Aumann (1963) and Keeney & 

Raiffa (1976). The restrictive results of Theorems 1 and 3 were often convenient in 

these applications. 

 Empirically, it is also plausible that decision makers mostly adopt one of the two 

recursive procedures. Again, it is for tractability reasons, but now from the 

psychological perspective of the decision maker instead of conventional theoretical 

modeling for the researcher. Nevertheless, some interactions and spillover effects due 

to the presence of other attributes and stimuli can still be expected. Hence, 

empirically, people will be close to one of the two routes in Figure 3, but with small 

deviations. 

 Whether a version of monotonicity is satisfied, and which route is chosen in the 

bifurcation in Figure 3, can be manipulated by stimuli and their framings. We explain 

three manipulation techniques below. They can be used to avoid undesirable 

violations. For example, spillover effects in preference measurements, hedging effects 

in ambiguity measurements, and perceptions of unfairness, are violations of 

monotonicity that may be undesirable. The first manipulation technique is the framing 

technique. In general, a two-stage display of matrices will enhance one kind of 

monotonicity. Thus, Fig. 7a enhances row monotonicity and Fig. 7b enhances column 

monotonicity. Similarly, in Figure 1, the framing “For each 𝑖, at state 𝑠𝑖 you receive 

stream (𝑥1
𝑖 , … , 𝑥𝑛

𝑖 )” enhances row-monotonicity, similar to Fig. 7a. 

  

 

5 Undoubtedly, Harsanyi (1955) devised his result independently without relating it to the preceding 

Nataf (1948). 
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 In Figure 5, if a social planner wants the dispreferred matrices in Fig. 5b to be 

accepted for some good extraneous reason, then the framing of Fig. 7b (with 𝑐𝑗s 

designating persons) is best suited to enhance the column monotonicity of Fig. 5a. In 

Figure 6, if a social planner wants the dispreferred matrices in Fig. 6b to be accepted 

for some good extraneous reason, the framing of Fig. 7a (with 𝑐𝑗s designating 

persons) is best suited to enhance the row monotonicity of Fig. 6a. 

 The second manipulation technique, the timing technique, can be used if risk or 

uncertainty is involved, and concerns the perceived timing of the resolution of 

uncertainty—early, before decision time, or late, after decision time. Early resolution 

of uncertainty enhances a perception as in Fig. 7a (with the 𝑟𝑗s uncertain events) and 

row-monotonic aggregation. In Figure 6, it leads to Fig. 6a. Late resolution of 

uncertainty enhances a perception as in Fig. 7b and column-monotonic aggregation. 

In Figure 5, it leads to Fig. 5a. Thus, the perception of fairness can be manipulated by 

manipulating prior or late resolution. We stress that this paper only considers 

situations where, if resolution takes place before the decision time, then the decision 

maker knows this but does not know the result of the resolution. It is, therefore, of no 

strategic relevance here and only concerns perception. This timing technique has been 
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widely discussed and tested in the welfare literature and other fields (Section 6.3). 

Onay & Öncüler (2009) tested the two different framings in Figure 7 for actstreams. 

 The third technique, the partial-info technique, provides only partial information. 

For example, in Figures 5 and 6, the two persons 𝑐1, 𝑐2 may not be informed about the 

outcomes that the other person receives. This enhances separability of the columns 

and, hence, column-monotonic aggregation. There then is less room for inequality 

aversion because the persons themselves cannot perceive it. 

 One can avoid our bifurcation by considering subdomains. Our analysis as yet 

made the idealized assumption, common in decision theory and preference 

axiomatizations, that we deal with a full domain. That is, all matrices are conceivable. 

This is essential for our theorems. Several studies on risk and time only considered 

actstreams with one nonzero outcome, in which case the order of aggregation is 

immaterial under many behavioral models (Baucells & Heukamp 2012; Ida & Goto 

2009). Similarly, McCarthy, Mikkola, & Thomas (2020) and Pivato (2013) 

considered incomplete preferences, Alon & Gayer (2016) imposed Pareto optimality 

only if agreement on probabilities and utilities, and Halevy (2008) considered a 

restricted (comonotonic) domain where both orders of aggregation can hold for 

behavioral theories. For principled discussions of decision principles this escape route 

is not very convincing. If conditions deemed appropriate cannot survive extension to 

all possibilities, then this remains a point of concern. The issue arises and will be 

discussed in several applications in the next section. 

 

6. APPLICATIONS 

This section illustrates several applications of our results. We elaborate on two 

applications in our area of expertise, ambiguity, in Sections 6.1 and 6.2, and indicate 

others briefly in Section 6.3. In all examples in this section, rows 𝑟𝑖 model risky 

events. The common theme of the examples, and of this paper, is that the seemingly 

innocuous conditions of weak separability for each component are more restrictive 

than had been understood before. 
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6.1. Monotonicity in the Anscombe-Aumann Framework for Ambiguity 

We show that the well-known Anscombe-Aumann (AA) framework also made a 

bifurcation choice and apply our results to it. In Figure 2, roulette events (rows) 

𝑟1, … , 𝑟𝑚 partition the universal event and have known probabilities. Horse events 

(columns) 𝑐1, … , 𝑐𝑛 also partition the universal event but are ambiguous. The AA 

framework adopts column-monotonic aggregation, using the same expected utility 

functional (𝐶𝑗  in Eq. 6) for each column. Thus, uniform column monotonicity, called 

horse monotonicity here, is assumed (Observation 4). This implies that only the 

marginal distributions given every horse 𝑐𝑗 matter. This is characteristic of the modern 

AA framework. By 𝛼𝑝𝛽 we denote a lottery, i.e., probability distribution, yielding 𝛼 

with probability 𝑝 and 𝛽 with probability 1 − 𝑝. 

 We first assume a full domain where all matrices are available, as for instance in 

Machina (2014) who assumed simultaneity of the horse and roulette events. Figure 8 

displays ambiguity aversion as commonly assumed in the literature. The rows have 

0.5 probability each. The indifference follows from the AA assumptions: each horse 

yields lottery (10.50), with no ambiguity. The strict preferences reflect ambiguity 

aversion. They reveal a violation of risk (row) monotonicity: preferences over the first 

row are affected by the second row, and rows interact. Having committed to horse 

monotonicity, the common AA framework has to give up risk monotonicity (and 

conditioning on risky events), as shown by Observation 5. However, as pointed out in 

Section 5, in general, risk (row) monotonicity is more plausible than column 

monotonicity. It suggests that the common AA framework chose the less plausible 

bifurcation route. Jaffray (1992, personal communication) emphasized this view and 

recommended risk monotonicity for ambiguity, adopting it in all his works (e.g., 

Jaffray 1989). Eichberger & Pasichnichenko (2021) and Martins-da-Rocha & Rosa 

(2021) followed Jaffray’s approach. The early Keeney & Raiffa (1976) provided a 

rich toolbox for interactions in this approach. In agreement with the timing technique, 

it then works best to let the resolution of the roulette events precede those of the horse 

events. Remarkably, Bommier (2017) kept the original AA framework but 

nevertheless developed a reversed order of aggregation. Saito (2015 Figure 1) used 

the framing of Fig. 7b to enhance horse monotonicity. Subjects are usually told that 

the risk uncertainty is resolved after the horse monotonicity, again, to enhance horse 
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monotonicity (timing technique). Oechssler & Roomets (2021) used Fig. 7b but still 

found much risk monotonicity, providing strong evidence against horse monotonicity. 

 

 

 

 

 

 

 

 

 

 In the version of the AA framework most popular today, the domain of matrices 

considered is restricted. The lotteries for different horses are assumed to be 

stochastically independent.6 Then the matrices in Figure 8 can no more be used and 

we escape from the violation of risk monotonicity there. Theorem 3 still shows that 

correlations between horses cannot be added without violating risk monotonicity (or 

sacrificing one of the other conditions), which remains a worrisome issue. In 

particular, we cannot add risk prior to, or simultaneously with the horse race and have 

EU there, because this would automatically assume away ambiguity attitudes. Several 

authors observed this impossibility and investigated ways to relax other assumptions 

in particular multistage setups, including Ke & Zhang (2020) and Saito (2015). Our 

analysis with the elementary risk monotonicity instead of EU is more basic. 

 Although the modern version of the AA framework escapes from the 

“counterexample” of Figure 8, the underlying problem, weak separability of horse 

events which does not fit well with their ambiguity, remains. We, therefore, illustrate 

this problem through another implication, a variation of Figure 8 that uses only 

stimuli within the restricted domain assumed by the modern version of AA. In Figure 

 

6 Equivalently, they can be taken as unspecified, e.g., by taking them as conditional on a horse 

(“statewise randomization”; Ke & Zhang 2020; Saito 2015 p 1248 “second problem”). Compare 

Figures 9 and 10 below. The essence is that they are considered to be uninformative. Thus, subjects 

may only be informed about the outcome realized for the winning horse and the roulette resolution 

there (partial-info technique). Further, infinite risk models are mostly assumed, for one reason to allow 

for mixing. These points do not impact the conceptual issues discussed here. 
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10 below, for each matrix the two columns are stochastically independent. We take 

outcome 𝛼 such that 𝛼~80.50, i.e., it gives the indifference in Fig. 9a. Under expected 

value maximization, 𝛼 = 4, but in general it depends on the risk attitude. 

 All columns in Figure 9 are indifferent. By AA’s horse monotonicity, all matrices 

should be indifferent. However, under ambiguity aversion the strict preferences are 

plausible. For the dispreferred matrices all outcomes are ambiguous whereas for the 

other matrices none is. Figure 10 displays the same choices as in Figure 9 but now 

using the matrix notation of this paper, with stochastic independence of the two 

columns for each matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Many authors discussed horse monotonicity in the AA framework, both 

theoretically and empirically. Besides those cited before, these include Hill (2019, 

state-consistency), Machina (2014 p. 3835 3rd bulleted point), Oechssler & Roomets 

(2021), and Schneider & Schonger (2018). More general discussions of the role of the 

timing of uncertainty include Battigalli et al. (2017), Berger & Eeckhoudt (2021), 

Calford (2021), Chandrasekher et al. (2022), Eichberger, Grant, & Kelsey (2016), 

Grant et al. (2010), Kochov (2015), Oechssler, Rau, & Roomets (2019), Siniscalchi 

(2022), and Strzalecki (2013). Our results present the issue in its most basic and 

general form, showing that the issue is more acute than what has been observed 

before. 
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6.2. Validity of the Random Incentive System and Hedging for Ambiguity 

Debates about validity of the random incentive system (RIS) and, in particular, a 

hedging confound for ambiguity measurements, are again special cases of the 

bifurcation question. To see this, let each row of our matrices specify one of 𝑚 choice 

situations in an experiment. We assume that in each a subject chooses an option that is 

an 𝑛-dimensional object. It may be a commodity bundle, an outcome stream, a 

welfare allocation over 𝑛 persons, an act assigning outcomes to 𝑛 states of nature, and 

so on. One choice situation (row) will be randomly selected for real implementation. 

Matrices are strategies, specifying a choice for each choice situation in the 

experiment. 

 It trivially follows that incentive compatibility of the RIS is equivalent to risk 

(row) monotonicity (“isolation”) where the underlying preferences are the true 

preferences in the choice situations (Cohen, Jaffray, & Said 1987, appendix; Cox, 

Sadiraj, & Schmidt 2014). Row-monotonic aggregation together with EU for risk is 

sufficient for this. Obviously, EU is not necessary here, as explained by Bardsley et 

al. (2010 p. 269) and many others. Nevertheless, there have been widespread 

misunderstandings about this point in the literature. Adding column monotonicity, 

uniformity of monotonicities, and a full domain would, by Theorem 1, indeed give 

EU for risk. Misunderstandings about the misleading restrictiveness of these extra 

assumptions (Section 4) may underlie the widespread misunderstandings. 

 As explained before, our theorems assumed full domains and complete 

preferences, whereas in many applications only subdomains are relevant or available. 

Nevertheless, the domains are often rich enough for our results to provide new 

insights. This point is further illustrated in this application. 

 In the RIS, the more (row-)risk interacts with the components of interest, the 

worse validity is. This is especially problematic for the measurement of ambiguity, 

where risk generates direct contrast effects. Nevertheless, the RIS is commonly used 

there too because no better alternative has been established. We discuss a particular 

problem in detail: hedging in RIS. 

 We assume two Ellsberg urns: a known urn K contains 50 White and 50 Black 

balls, and an unknown ambiguous urn A contains 100 balls, each White or Black, but 

in unknown proportions. From both urns a ball will be drawn at random. 𝑊𝐾 denotes 

the event that the ball drawn from urn K is white, and 𝐵𝐾, 𝑊𝐴, and 𝐵𝐴 are similar. 
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(𝐵𝐴: 101) denotes a gamble yielding €101 if the ball drawn from urn A is black and 

nothing otherwise. Other gambles are denoted similarly. An experiment concerns 

𝑚 = 2 choice situations for a given subject. The first, 𝑟1, reveals the preference 

(𝐵𝐴: 101) ≽ (𝐵𝐾: 100); the second, 𝑟2, reveals the preference (𝑊𝐴: 101) ≽

(𝑊𝐾: 100). The RIS randomly selects 𝑟1 or 𝑟2 for real implementation, each with 

probability 0.5. Can we conclude that there is virtually no ambiguity aversion? 

Hedging, explained below, has often been advanced as a counfound invalidating this 

measurement. 

 Three components can be distinguished concerning: the color from K, the color 

from A, and the selection from {𝑟1, 𝑟2}. We can nevertheless use our techniques for 

two components, by combining the first two into one. We thus define four 𝑐𝑗 as in 

Figure 11. The figure illustrates the two observed preferences. In the usual RIS, we do 

not consider binary choices between any two matrices, but choices from matrices 

(strategies) that combine all possible experimental choices. However, by standard 

revealed preference techniques, they still imply preferences between matrices as in 

Figure 11. Our subject can also choose the two matrices that result from combining 

the upper row of one matrix in Figure 11 with the lower row of the other matrix. But 

these extra options do not affect the following reasoning. Further, they are rarely 

chosen. 

 If we assume column monotonicity, then the preferences in Figure 11 simply 

follow from stochastic dominance: all columns of the preferred matrix stochastically 

dominate those of the dispreferred matrix (1010.50 > 1000.50). In the left matrix, the 

outcomes under 𝑟2 provide a kind of hedge against those under 𝑟1, same in the right 

matrix, which explains the term hedging. The preferences then do not speak to 

ambiguity attitudes in any sense. It has often been observed that, under column 

monotonicity and ambiguity nonneutrality, validity of the RIS may be violated. Our 

Observation 5 shows, more strongly, that it must necessarily be violated. Under 

column monotonicity the RIS cannot be used to measure ambiguity attitudes. Further, 

violations already exist at the basic level of a single measurement in the experiment. 

 The bifurcation in Figure 3 amounts to validity versus invalidity (including 

hedging) of the RIS. The hedging in the above example involved event 

complementarity, an extreme case of hedging (Hartmann 2021). Of course, besides 
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hedging, any other reason to violate risk monotonicity discussed before can invalidate 

RIS. 

 

 

 

 

 

 

 

 

 Discussions of hedging under ambiguity include Agranov & Ortoleva (2022), 

Bade (2015), Cerreia-Vioglio et al. (2019), and Oechssler, Rau, & Roomets (2019). 

Baillon, Halevy, & Li (2022) provided the first empirical demonstration and reviewed 

further literature. Their presentation of stimuli enhanced violations of risk (row) 

monotonicity, demonstrating the potential severity of the basic problem. In empirical 

studies using RIS, stimuli should therefore be framed so as to minimize such 

violations. The techniques of Section 5 apply here. Thus, Johnson et al.’s (2021) 

Prince, an implementation of RIS to maximize validity, selected the real choice 

situation prior to the experiment rather than after as usually done. As explained before 

(the timing technique), their prior selection works better to enhance the desired row 

monotonicity. They further used framing (e.g., as in Fig. 7b) and partial-info 

techniques as best as possible. Baillon, Halevy, & Li (2022), Cox, Sadiraj, & Schmidt 

(2014), and Oechssler & Roomets (2021) also investigated the timing technique. 

 Regarding the partial-info technique for RIS, when facing a choice situation, 

subjects are usually not yet informed about the choice situations that come after, 

precluding all “backward” interactions. To reduce “forward” interactions, each choice 

situation may be presented on a different page or screen, so that subjects can only 

know about preceding choice situations from memory. In general, full understanding 

of strategies in an experiment is humanly impossible. Validity of the RIS can 

therefore be expected to be good (Bardsley et al. 2010 Section 6.5, “behavioral 

incentive compatibility”). Some limited interactions between different choice 

situations can nevertheless occur (reviewed by Johnson et al. 2021). Unfortunately, 

alternatives to the RIS are not easy to devise. 

 

𝑐3 𝑐1 𝑐2 𝑐4 𝑐3 𝑐1 𝑐2 𝑐4 
0 

𝑟1 101 0 101 0 

𝑟2 0 101 0 101 

FIGURE 11. Hedging in ambiguity 

0 
≽ 

𝐵𝐾 ∩ 𝐵𝐴 
= = 

∩ 𝐵𝐴 𝑊𝐾 𝐵𝐾 ∩ 𝑊𝐴 
= 

∩ 𝑊𝐴 𝑊𝐾 
= 

∩ 𝐵𝐴 𝑊𝐾 
= 

𝐵𝐾 ∩ 𝐵𝐴 
= 

𝐵𝐾 ∩ 𝑊𝐴 
= 

∩ 𝑊𝐴 𝑊𝐾 
= 

100 𝑟1 100 0 

100 0 𝑟2 0 100 
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6.3. Implications for Other Domains 

There are numerous cases where aggregation over two or more components is central 

besides those considered before. Our analysis pertains to all those cases, underscoring 

the unity in many debates. Broome (1991) provided deep discussions. We briefly 

mention some further cases. 

 Violations of risk monotonicity as in Fig. 6b can be due to correlation aversion. 

This has been extensively studied in many domains, including intertemporal choice 

(Rohde & Yu 2022), multiattribute utility theory (multivariate risk aversion; Tsetlin & 

Winkler 2009) and consumer theory with 𝑡1 and 𝑡2 competing or completing 

commodities. For temporal ambiguity (unknown probabilities for 𝑟1 and 𝑟2), Kochov 

(2015) emphasized the plausibility of stream monotonicity and correlation preference. 

Epstein & Halevy (2019) considered an interesting case: both rows and columns refer 

to events with known probabilities, but their correlation is ambiguous. Then 

ambiguity aversion gives Figure 6b with reversed preferences. 

 Andreoni & Sprenger (2012) considered actstreams for risk, with probabilities of 

the states given. Their “direct preference for certainty” is exactly our uniform risk 

(stream/row) monotonicity. Contrary to their suggestions, the violations found were 

violations of any existing risk theory7 rather than only of prospect theory. In their 

quantitative evaluations, Andreoni and Sprenger implicitly assumed risk monotonicity 

by taking the upper branch in the bifurcation of Figure 3, and were criticized (e.g., for 

absence of required correlations) by Cheung (2015), Epper & Fehr-Duda (2015), and 

Miao & Zhong (2015). Similar violations of uniform risk monotonicity had been 

found before, by Abdellaoui, Diecidue, & Öncüler (2011), Bleichrodt & Pinto (2009), 

and others.  

 Many papers studied infinite-dimensional recursive temporal lotteries that do not 

readily fit into the finitistic framework of this paper. See, for instance, Bommier, 

Kochov, & le Grand (2017) and their references. 

 For uncertainty, McCarthy, Mikkola, & Thomas (2020) and Zimper (2008) 

observed an equivalence of weak and complete separability, somewhat in the spirit of 

 

7 The utility of gambling theory (Diecidue, Schmidt, & Wakker 2004) accommodated these violations. 

However, this theory is not very tractable or suited for applications. 
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our Theorem 3. They considered only one component and then imposed weak 

separability on all possible decompositions of the component. 

 Besides the references mentioned before, numerous papers examined the timing 

technique, theoretically and empirically. Again, we bring a unification of these 

analyses. We mention some. For time and risk, see Bommier, Kochov, & le Grand 

(2017), Dejarnette et al. (2020 Section 4), Epper & Fehr-Duda (2021), and Onay & 

Öncüler (2009). For welfare and risk (where timing of resolution of uncertainty is 

only one way to manipulate an ex post or ex ante viewpoint), see  Fleurbaey (2010), 

Miao & Zhong (2018), Rohde & Rohde (2015), and Saito (2013). Berger & 

Emmerling (2020) examined the overall effect of inequality aversion in separate 

components under different orders of aggregation. They provided a unifying 

framework of their results for several kinds of components. Applications for 

deliberate randomization in choice include Agranov & Ortoleva (2022), Cerreia-

Vioglio et al. (2019), and Miao & Zhong (2018). 

 

7. CONCLUSION 

We considered optimization over two (or more) components. We proposed a unified 

framework to reexamine many puzzling issues under this light, including 

monotonicity and hedging in the Anscombe-Aumann framework of ambiguity, equity 

in Harsanyi’s utilitarianism, and incentive compatibility of the random incentive 

system. We showed that Nataf’s century-old theorem underlies the aforementioned 

debates and paradoxes. They all concern a common cause: the seemingly innocuous 

conditions of weak separability for each component become surprisingly restrictive 

when combined. We also explicitly state the main implication of our result, the 

bifurcation problem, which has often been implicitly dealt with or assumed away in 

the literature. Our analysis shows that the problem is more fundamental and acute 

than what was thought before. We provided guidelines for making a conscious choice 

of optimization when dealing with more than one component. 
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APPENDIX. PROOFS 

As explained in the introduction and in Online Appendix A, Theorem 3 follows from 

Mongin & Pivato (2015 Proposition 1). We next prove Theorem 1. Statement (i) 

readily implies Statement (ii). We assume Statement (ii), and derive Statement (i). By 

Theorem 3, we obtain an AU representation. We derive proportionality of the 𝑉𝑗
𝑖 in 

the AU representation. We can let all 𝑉𝑗
𝑖 take value 0 at 0. The AU representation is a 

state- and time-dependent version of DEU. Gorman’s uniqueness result is at this state- 

and time-dependent stage: the functions 𝑉𝑗
𝑖, all “grounded” at 0, can jointly be 

replaced by 𝜆 × 𝑉𝑗
𝑖 for any 𝜆 > 0, independent of 𝑖 and 𝑗, and by no other functions. 

 By act monotonicity, the 𝑛 arrays (𝑉𝑗
1, … , 𝑉𝑗

𝑚) through their sum all represent the 

same preference relation over acts (“column”). Hence, by standard uniquess, these 𝑛 

arrays of functions, grounded at 0, are proportional to each other. That is, each 

(𝑉𝑗
1, … , 𝑉𝑗

𝑚) is 𝑑𝑗 times (𝑉1
1, … , 𝑉1

𝑚) for positive 𝑑2, … , 𝑑𝑛, where we set 𝑑1 = 1. 

Similarly, by stream monotonicity, the 𝑚 arrays (𝑉1
𝑖, … , 𝑉𝑛

𝑖) though their sum all 

represent the same preference relation over streams (“rows”), and each is 𝑞𝑖 times 

(𝑉1
1, … , 𝑉𝑛

1) for positive 𝑞2, … , 𝑞𝑚 with 𝑞1 = 1. We can normalize the 𝑞𝑖s to sum to 

1, and denote them 𝑝𝑖. All 𝑉𝑗
𝑖s are proportional to each other and to one function that 

can be denoted 𝑈. For 𝑈 we can take 𝑉1
1 or any other 𝑉𝑗

𝑖. 

 For completeness, we give the uniqueness results of Theorem 1. By Gorman’s 

aforementioned uniqueness result at the state- and time-dependent stage, now at this 

state- and time-independent stage we have: 𝑈 is unique up to a positive factor (scale), 

and the 𝑑𝑗s are unique up to one other common positive factor. Because of 

normalization, the 𝑝𝑗s are unique. We can relax the requirement 𝑈(0) = 0 and add 

any constant, after which 𝑈 is also unique up to location. 
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ONLINE APPENDIX A. PRECEDING MATHEMATICAL RESULT 

 The mathematics underlying our results has been known longtime. We do not 

bring mathematical novelties. This appendix discusses preceding literature. Theorem 3 

has been known since Nataf (1948). There, rows described producers and columns 

described production inputs. Nataf presented8 Theorem 3 to show when macro 

(column-first, or column-monotonic, defined below) aggregation of production inputs 

can be equivalent to micro (row-first, or row-monotonic) aggregation: only if there is 

not any interaction9. van Daal & Merkies (1988) provided an early historical account. 

This production example further illustrates the wide applicability of our framework. 

 Mongin & Pivato (2015 Proposition 1) provided the mathematically most general 

versions of Nataf’s (1948) result, implying our Theorem 3. (Hence, we gave no proof 

of it.) In the mathematical theory of functional equations, these results have been 

known as generalized bisymmetry equations.10 See Maksa (1999), who also pointed 

out their relatedness to economic aggregation. The special case of proportional 

representations in our Theorem 1 is equivalent to mathematical theorems on 

multisymmetry functional equations, explained by Münnich, Maksa, & Mokken 

(2000). Mongin & Pivato (2015 Theorem 1) is the most general result of this kind. 

See Zuber (2016) for related results and literature with Anscombe-Aumann outcome 

sets. 

 

8 He heavily used differentiability and his proof is not easily accessible. 

9 Formally, we use the suggestive term interaction to indicate preference relations that violate complete 

separability. In general, not only rows and columns, but every subset of cells can be nonseparable, i.e., 

be impacted by (interacting with) any other subset of cells. 

10 They search for functions allowing identity of Eqs. 5 and 6 im the main text. 
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 Thus, the mathematics underlying our results has been known longtime. As for 

Theorem 1 on DEU, its novelty is not in mathematical generality but in simplicity and 

appeal. The preference conditions there can be stated verbally and are accessible to 

nonspecialists more than any preeding axiomatization of DEU. Although many 

authors, several cited later, used advanced implications of the preceding results in 

various decision theories, their basic impact for empirical and theoretical work, 

specified in Section 4 and applied in the rest of this paper, has not been presented 

before. 

 

ONLINE APPENDIX B. EXTENSION TO INFINITE-DIMENSIONAL 

MATRICES 

Extensions to matrices with infinitely many rows and/or columns are often of interest. 

This holds mainly for Theorem 1. Infinite-dimensional extensions of Theorem 3 are 

less common because they involve nonstandard functionals. Wakker & Zank (1999) 

examined them. We focus on Theorem 1 henceforth, interpreting rows as states and 

columns as timepoints, but using the general notation of Figure 2. 

 Equal-likely states in Figure 2 can capture all simple lotteries with rational 

probabilities (McCarthy, Mikkola, & Thomas 2020). Mixture-closedness or 

continuous distributions require a continuum of 𝑟𝑖. Such extensions can be obtained 

by standard techniques from mathematical measure theory. Theorem 9 provides a 

typical example. It is explained next. 

 We continue to assume 𝑛 columns 𝑐1, … , 𝑐𝑛 with 𝑛 ≥ 2 fixed. A row continues to 

be an element of ℝ𝑛. In the main text, we considered the special case of risk where 

each 𝑟𝑖 had probability 1/𝑚, so that matrices could be identified with some simple 

probability distributions over columns. We now consider more general probability 

distributions over columns, such as the space of all simple probability distributions or 

all bounded ones. To this effect, instead of 𝑅 = {𝑟1, … , 𝑟𝑚}, we now assume 𝑅 =

[0,1), endowed with the uniform distribution 𝑃 and instead of finite-dimensional 

matrices as before, we now consider functions from 𝑅 × {𝑐1, … , 𝑐𝑛} to the reals. We 

continue to call such functions matrices. Preferences will be over matrices. We make 

the assumption characteristic of decision under risk: functions on 𝑅 × {𝑐1, … , 𝑐𝑛} that 

generate the same probability distribution over columns are indifferent. 
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 Using obvious notation, a simple probability distribution over rows can be 

denoted (𝑝1: 𝑟1, … , 𝑝𝑘: 𝑟𝑘), with 𝑘 variable, and all probabilities positive. We identify 

it with a matrix that assigns row 𝑟𝑖 to each set 𝑅𝑖, where (𝑅1, … , 𝑅𝑘) partitions [0,1) 

and 𝑃(𝑅𝑖) = 𝑝𝑖 for each 𝑖. It, thus, is like the matrix in Figure 2, with 𝑅𝑖 for 𝑟𝑖 for 

each 𝑖, and 𝑚 = 𝑘. It will be sufficient to impose our intuitive axioms only on such 

simple finite-dimensional matrices. Row and column monotonicity are now defined to 

hold for all simple matrices.11 For each fixed (𝑅1, … , 𝑅𝑘), Theorem 1 then gives a 

DEU representation. Normalizing 𝑈(0) = 0, 𝑈(1) = 1, these DEU representations 

agree on common domain by standard uniqueness results, giving a probability 

measure 𝑃′ on [0,1) that at this stage might be thought to possibly differ from 𝑃 and 

even be only finitely additive. However, partitions (𝑅1, … , 𝑅𝑘) with 𝑃(𝑅𝑖) = 1/𝑘, by 

symmetry, imply 𝑃′(𝑅𝑖) = 1/𝑘 = 𝑃(𝑅𝑖). The unions of such 𝑅𝑖 show that 𝑃′ agrees 

with 𝑃 on all 𝑅 ⊂ [0,1) with rational 𝑃 probability. By monotonicity w.r.t. set 

inclusion, 𝑃′ and 𝑃 are identical. We have obtained a DEU representation for all 

simple matrices. 

 The extension of our theorems to all bounded matrices now follows using 

standard techniques from mathematical measure theory. Monotonicity with respect to 

rows and columns, but also with respect to outcomes, is imposed only on simple 

matrices. Thus, null events are avoided and strict preferences are properly implied. 

We reinforce outcome monotonicity to infinite dimensions by adding pointwise 

monotonicity: a matrix is weakly preferred if all its cells weakly dominate. This 

condition is as unobjectionable for infinite dimensions as it is for finitely many. Every 

bounded matrix is now “sandwiched” more and more tightly by pointwise dominating 

and dominated simple matrices. This determines a unique 𝐷𝐸𝑈 value, such that strict 

inequality of 𝐷𝐸𝑈 values implies strict preference (using transitivity). Next, we 

reinforce continuity into supnorm continuity, ensuring existence of constant 

equivalents. Then equality of 𝐷𝐸𝑈 values, again using transitivity, implies 

indifference and, hence, we have a 𝐷𝐸𝑈 representation. We have shown the following 

result. 

 

 

11 Bear in mind that we assume strictly positive probabilities, avoiding null events as required for 

outcome monotonicity. 
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 THEOREM 9. Assume that: (a) matrices map [0,1) × {𝑐1, … , 𝑐𝑛} to the reals and 

are measurable; (b) preferences are over matrices; (c) decision under risk holds with 

respect to the uniform distribution on [0,1). That is, our domain of matrices is 

equivalent to probability distributions over “rows” in ℝ𝑛. On the domain of simple 

matrices/distributions, and also on the domain of all bounded matrices/distributions, 

discounted expected utility holds if and only if weak ordering, supnorm continuity, 

pointwise monotonicity, and monotonicity with respect to outcomes, rows, and 

columns hold.  □ 

 

 Extension to unbounded matrices and connected topological outcome spaces 

(including all convex sets of commodity bundles) can be obtained by Wakker’s 

(1993) truncation continuity. The total subjective weight of space 𝑅 is still assumed 

bounded here. Unbounded subjective weight of 𝑅 may occur, for instance, if 𝑅 

reflects time rather than uncertainty, or populations of variable size. Then further 

continuity conditions have to be invoked, discussed for instance by Asheim et al. 

(2010), Banerjee & Mitra (2007), Christensen (2022), Drugeon & Huy (2022), 

Marinacci (1998), and Pivato (2022). For extensions to infinitely many columns, 

besides infinitely many rows, our extension techniques are similarly aplied to 

columns. 

 Theorem 9 can be used for all interpretations of columns. If they refer to 

ambiguous events (horses), versions of the AA framework result. Here it is usually 

assumed that only marginal distributions conditional on horses matter, which can be 

added as a preference condition. Then our structure becomes isomorphic to the set of 

maps from {𝑐1, … , 𝑐𝑛} to probability distributions over ℝ. Correlations between 

different 𝑐𝑗 then play no role. 

 

ONLINE APPENDIX C. THEORETICAL APPLICATIONS OF 

NATAF’S AGGREGATION RESULT TO PREFEFENCE 

AXIOMATIZATIONS 

 We briefly sketch some further theoretical applications to preference 

axiomatizations, in addition to Theorem 1 in the main text. We first assume that both 

rows and columns refer to events. Thus, {𝑟1, … , 𝑟𝑚} and {𝑐1, … , 𝑐𝑛} are two partitions 
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of the universal event. In Figure 1, the intersection event 𝑟𝑖 ∩ 𝑐𝑗 gives outcome 𝑥𝑗
𝑖. 

Outcome monotonicity implies that none of those intersections is empty or null. 

Uniform row and column monotonicity can be interpreted as versions of stochastic 

independence: being informed about one partition does not affect preferences over the 

other. Theorem 1 then gives an appealing axiomatization of subjective expected 

utility, alternative to Savage (1954). Pfanzagl (1968; Section 12.5) presented this 

result using the stochastic independence interpretation for 𝑚 = 𝑛 = 2. Mongin (2020) 

and Ceron & Vergopoulos (2021) independently generalized it to general 𝑚, 𝑛. 

 We next continue to assume that rows and columns refer to events, but we further 

assume decision under risk for the 𝑟𝑖, with probability 1/𝑚 for each 𝑟𝑖. We first 

consider the case where the 𝑐𝑗s may have unknown probabilities. Theorem 1 gives 

expected utility for risk (evaluating each column). Our equally-likely case can cover 

all simple rational-probability distributions. Online Appendix B shows how more 

general probability distributions can be incorporated, and that subjective probabilities 

over rows must be equal to the objective probabilities over rows. Theorem 1 also 

gives expected utility for the horse events 𝑐𝑗 and, thus, provides an alternative 

axiomatization of the original expected utility model of AA, using the two-stage 

framework that has become standard today. AA referred to standard mixture 

independence to axiomatize expected utility for risk, and also assumed horse 

monotonicity. In our approach, their mixture independence is weakened to risk 

monotonicity. For our monotonicities the event, say row, to be conditioned on always 

only involves one outcome per column, whereas for von Neumann-Morgenstern 

mixture independence (or Savage’s sure-thing principle) such events to be 

conditioned on must be allowed to involve any number of rows, i.e. any number of 

outcomes per column. The symmetry of our two monotonicity conditions and, thus, of 

the treatment of risk and uncertainty, adds to the appeal of our alternative theorem. As 

a price to pay, we need continuous utility whereas AA allowed for complete 

generality in this regard. 

 If we interpret the 𝑐𝑗s as persons rather than events, Theorem 1 becomes an 

alternative to Harsanyi’s (1955) welfare result based on the veil of ignorance. His 

Pareto optimality is column monotonicity. Like AA, he refers to mixture 

independence to obtain EU, and we similarly generalize here. In Theorem 1 there is 

no middle ground: if the social welfare function is ordinal in the individual utilities 
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then it must be cardinal, leading to a linear sum. This is the essence of Harsanyi’s 

result. Grant et al. (2010) provided generalizations that relaxed the independence and 

monotonicity conditions in Harsanyi’s result. 

 We, finally, present an implication where only one component is available at the 

outset, but we construct a second kind for auxiliary purposes. Gul (1992) considered a 

finite state space {𝑟1, … , 𝑟𝑚}. Acts (𝑥1, … , 𝑥𝑚) map states to ℝ. Gul’s preference 

relation on acts, denoted  ≽ ′ here, satisfies weak ordering, continuity, and outcome 

monotonicity, implying that all states are nonnull. One fixed event 𝐴 (nontrivial 

subset of the state space) plays a special role explained later (reminiscent of Ramsey’s 

(1931) ethically neutral event). We define the function 𝐶 on acts as the certainty 

equivalent (“constant equivalent”) function, and 𝑅1(𝑦1, 𝑦2) = ⋯ = 𝑅𝑚(𝑦1, 𝑦2) as the 

certainty equivalent function of acts (𝐴: 𝑦1, 𝐴𝑐: 𝑦2), using obvious notation. 

 We take matrices as in Figure 2 with 𝑛 = 2, 𝑐1 = 𝐴, 𝑐2 = 𝐴𝑐. We define our 

preference relation ≽ over matrices as represented by Eq. 5. Thus, row monotonicity 

holds (Observation 4) and it is uniform because all 𝑅𝑗’s are the same. The act 

(𝑅1(𝑥1
1, 𝑥2

1), . . . . . . , 𝑅𝑚(𝑥1
𝑚, 𝑥2

𝑚)) can be identified with the equivalence class of 

corresponding matrices with entries 𝑥1
𝑗
′ and 𝑥2

𝑗
′ such that 𝑅𝑗(𝑥1

𝑗
′, 𝑥2

𝑗
′) = 𝑅𝑗(𝑥1

𝑗
, 𝑥2

𝑗
) 

for all 𝑗. Uniform column monotonicity for ≽ over matrices in Figure 2 is equivalent 

to Gul’s Assumption 2 for ≽ ′ on acts, a condition called act independence nowadays 

(Chew & Karni 1994). Thus, we obtain as a corollary of Theorem 1: 

 

 THEOREM 10. Under the assumptions of this subsection, the following four 

statements are equivalent: 

(i) Expected utility holds for ≽ ′ over acts. 

(ii) Discounted expected utility holds for ≽ over matrices. 

(iii) Uniform column monotonicity holds for ≽ over matrices. 

(iv) Act independence holds for ≽ ′ over acts. 

□ 

 

In the above result, standard uniqueness results for DEU imply that the “discount 

weight” 𝑑1 of the left column, after normalization, is the probability of event 𝐴 

resulting from the row probabilities. The conditions in Statements (iii) and (iv) are 
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appealing because they mimic mixture independence for risk to the context of 

uncertainty. 

 Gul’s axiomatization of subjective expected utility through act independence thus 

follows as a corollary of our Theorem 1. Our result is more general because Gul 

required the event 𝐴 to satisfy a symmetry condition implying that it has subjective 

probability 0.5, which we do not need. Chew & Karni (1994) also provided this 

generalization. Our verbal proof, involving the Appendix in the main text and the 

preceding paragraphs, is considerably shorter and more accessible than that in Gul 

(1992 pp. 104-109) or Chew & Karni (1994). It is remarkable that Gul (1992) can be 

obtained as, essentially, a corollary of Nataf (1948). 

 Some other axiomatizations of expected utility used generalizations of 

bisymmetry axioms that are all more restrictive than Gul’s Assumption 2: they also 

consider more than two columns and many events 𝐴 (Köbberling & Wakker 2003 

Theorem 16). Hence, they also follow as corollaries of our Theorems 1 and 10. Such 

results include Krantz et al. (1971, Theorem 6.9.10 which assumes 𝑚 = 𝑛 =2) and 

Münnich, Maksa, & Mokken (2000 Theorem 2). 
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