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ABSTRACT
In order to efficiently disclose the ever-growing amount of
distributed RDF data in Semantic Web environments, RDF
query engines must optimize the join order of partial query
results. Existing methods include two-phase optimization
(2PO), a genetic algorithm (GA), and ant colony optimiza-
tion (ACO), which have mostly been evaluated on a single
source. We adapt these methods to a distributed setting and
evaluate the effects of distinct join methods, i.e., nested-
loop join, bind join, and AGJoin. When optimizing RDF
chain queries combining real-world data from 34 different
SPARQL endpoints, the ACO method produces the best
results in the least amount of time for most chain queries
consisting of up to about ten joins. For larger chain queries,
each of our considered algorithms may have its benefits, de-
pending on the join method used. When using the least
naive join method, i.e., AGJoin, a GA approach produces
solutions of a competitive quality in significantly less time
than both ACO and 2PO.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query process-
ing ; I.2.8 [Artificial Intelligence]: Problem Solving, Con-
trol Methods, and Search—Heuristic methods

General Terms
Algorithms, experimentation, performance
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1. INTRODUCTION
Today’s decision makers face an overwhelming, continuous

flow of data that needs to be processed in order to extract
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information, understand its meaning, and acquire knowl-
edge [10]. The Semantic Web [3] enables effective, well-
informed decision making, as it allows for an ever-growing
amount of linked data to be stored in heterogeneous, in-
terconnected sources. Data representation is facilitated by
the Resource Description Framework (RDF) for describing
and interchanging meta-data [13], which facilitates machine-
interpretability of data.

The Semantic Web has the potential of addressing today’s
typical users’ complex information needs in a more effec-
tive and efficient way than the current Web can. Semantic
Web technologies allow a user to combine data from many
different sources in order to address very specific informa-
tion needs. In this process, RDF data sources are typically
queried by means of the SPARQL Protocol and RDF Query
Language (SPARQL) [16]. Fast RDF query engines are cru-
cial in order for SPARQL queries to efficiently disclose the
ever-growing amount of widely distributed RDF data to de-
manding users in real-time environments.

When querying multiple sources, a query typically consists
of multiple subqueries, the results of which are combined in
order to match the information need specified by the query
as a whole. In order to enable efficient querying, it is crucial
to optimize the order in which the distinct parts of a query
are executed, as the total execution times of queries depend
on these query paths. However, the number of possible query
paths grows exponentially with the query size.

Several methods have been proposed in order address the
query path optimization problem in an RDF environment.
One of the first proposed techniques was a two-phase op-
timization (2PO) algorithm [20], consisting of iterative im-
provement (II) followed by simulated annealing (SA). More
recently, a genetic algorithm (GA) [11] and an ant colony
optimization (ACO) approach [10] have been shown to be
promising alternatives when optimizing chained RDF queries.

Existing work [10, 11] assesses the performance of such
techniques on a single source only. However, as a typical
use case for RDF queries involves querying multiple hetero-
geneous sources, the purpose of our current endeavors is to
adapt existing work in order for it to be useful in a dis-
tributed environment, and to subsequently assess the per-
formance of our methods. As such, our current work is a
generalization of existing work [10] for a distributed envi-
ronment in which the join order of the results of a series of
SPARQL queries, i.e., chain queries, is to be optimized. Ad-
ditionally, we evaluate the effects of various join methods,
i.e., nested-loop join, bind join, and AGJoin.



The remainder of this paper is structured as follows. First,
Section 2 provides a short introduction to RDF chain query
optimization in a distributed setting. We then describe our
considered RDF chain query optimization approaches and
how they can be applied in a distributed setting in Sec-
tion 3 and Section 4, respectively. In Section 5, we evaluate
the performance of our considered methods. Last, we draw
conclusions and propose directions for future work in Sec-
tion 6.

2. QUERYING DISTRIBUTED RDF DATA
In RDF, data is modeled as a sequence of facts, organized

as a collection of triples. An RDF triple consists of a sub-
ject, a predicate and an object, and can be visualized as a
node-arc-node link in a directed graph [13]. The relation-
ship of a subject node to an object node is defined by an
arc denoting a predicate. When querying RDF data, triples
are matched against patterns, described in SPARQL queries.
These queries may consist of subqueries, the results of which
may come from different sources and are joined in order to
process the full query. The join order of these results must
be optimized in order to enable efficient querying.

2.1 Chain Queries on SPARQL Endpoints
In the subset of SPARQL query patterns we consider in

our current work, the WHERE statement essentially joins
sets of node-arc-node patterns resulting from SPARQL sub-
queries. These triple sets are chained together such that one
node set contains a mapping to the next node set.

When querying RDF data in on-line knowledge bases,
SPARQL endpoints offer a machine-friendly interface to ac-
cess the underlying RDF data. As more and more data
gets published in the distributed Semantic Web, combining
on-line SPARQL endpoints allows for answering queries em-
bodying multiple distributed RDF data sources.

A typical example of a chain query on multiple distributed
sources is the following1. Consider five on-line RDF data
sources, accessible through SPARQL endpoints, with triple
amounts ranging up to a billion per source. Suppose one
wants to know which musicians from countries of a certain
population range have contributed to comedy movie sound-
tracks. This query can be split into the following five lo-
cal queries: (1) a query on WordNet for hyponyms of the
literal “comedy” to capture genres marked by different but
narrower terms (e.g., romantic comedy, black comedy, tragi-
comedy, etc.) too, (2) a query at LinkedMDB for the names
of the music contributors for all soundtracks of all movies
in all genres, (3) a query at DBpedia for the birth places of
all persons, (4) a query on the CIA World Factbook for the
population sizes of countries, and (5) a query on FactForge
for the countries associated with specific places. In order to
resolve the complete query, local queries can be sent to the
mentioned data sources, and the local query results can be
joined one-by-one in any order.

2.2 Solution Space
A sequence of joins in a chain query can be visualized as

a tree, where the leaf nodes represent local query results
and the internal nodes model algebra operations, enabling
one to specify basic retrieval requests on the inputs [6]. The
leaf nodes of a chain query tree are RDF triple responses

1Available on-line at [URL suppressed for anonymization].

(a) Right-deep tree. (b) Bushy tree.

Figure 1: Examples of join orders for an RDF chain
query with five joins. Square nodes represent triples
matching subqueries, whereas circular nodes repre-
sent joins.

of local queries and the internal nodes represent join oper-
ations. The nodes in a chain query tree can be ordered in
many different ways, referred to as query paths. The result
of executing a query is independent of the ordering of the
nodes in a query tree. Yet, the total execution time of a
query depends on the order of the joins of its subqueries.
Therefore, query path optimization is crucial in today’s dis-
tributed RDF environments. In this optimization process, a
solution space is typically explored, where each solution is
associated with solution costs – quantified as its execution
time – and where similar solutions are located close to one
another.

The solution space can contain two types of query trees,
i.e., bushy trees and their subset of right-deep trees. In
bushy trees, base relations as well as results from earlier joins
can be joined, whereas right-deep trees require the left hand
operands to be base relations. For example, Figure 1 shows a
right-deep and bushy query tree for the query in Section 2.1,
where {t1, t2, t3, t4, t5} corresponds with its local query re-
sults, and ./ represents a join. For n base relations, or leaf
join sets, and thus n−1 joins, there are n! possible solutions
for right-deep trees, whereas there are

(
2(n−1)
(n−1)

)
(n− 1)! pos-

sible solutions for bushy query trees [19]. In practice, in
70% of the cases, a bushy tree solution exceeds right-deep
solutions in terms of quality, i.e., has an execution order
associated with lower costs [19].

2.3 Two-Way Join Techniques
In a query path, an individual join is executed over two

data sources, thus resulting in a two-way join. The most
naive two-way join method is the nested-loop join, where
all (intermediate) RDF triple responses in the join operands
are compared with one another in order to check whether
they meet the join condition. An attractive alternative to
this method is the bind join method [8], which is essen-
tially a nested-loop join in which intermediate results from
the smallest operand are used as a filter for the largest join
operand [7, 17].

In a distributed environment, the data sources to be joined
are not readily available from memory or hard disk, but
should be accessed via a wide-area network (WAN), e.g.,
the (Semantic) Web. Therefore, rather than waiting for all
data to be loaded before joining, a distributed join technique
should start as soon as both data sources are streaming.



Recent work [1] describes such a technique, called adaptive
group join (AGJoin). It is based on the symmetric hash
join and XJoin operators and designed to rapidly produce
answers from streamed data accessible trough a WAN [1].

3. RDF CHAIN QUERY OPTIMIZATION
As not every query path is as efficient as others, the chal-

lenge in query path optimization is to find a query path that
minimizes query execution costs. In order to explore the
potentially large solution spaces associated with the RDF
chain query optimization problem, several soft computing
techniques have been proposed in existing work.

3.1 Two-Phase Optimization
A 2PO approach [19] explores the solution space by means

of an II phase, followed by a SA phase. In the second phase,
the optimum obtained in the first phase is improved in an
attempt to reduce the risk of obtaining a local optimum.

In the II phase, random starting points are generated,
from which the exploration of the solution space is started.
For each encountered solution, a number of random neigh-
bors is explored. In this process, as soon as a neighbor
with lower associated execution costs is found, a step to
this neighboring solution is performed. Here, a neighboring
solution is defined as a solution that can be reached by per-
forming one of the following moves: join commutativity, join
associativity, left join exchange, and right join exchange [12].
This procedure is repeated until no solution with lower cost
can be found or a time limit is reached.

A drawback of II is that it is likely to find local optima. To
counter this drawback, SA complements II by allowing, with
a declining probability, to move to a neighbor with higher
cost, as this move may, in the future, reveal a neighbor with
a lower-cost local optimum. Usually, SA is only applied on
the best local optimum found in the II phase.

3.2 Genetic Algorithm
An alternative to the 2PO approach is to use a GA [11,

19]. In a GA, a population of solutions is subject to a pro-
cess of simulated evolution, adhering to the principle of sur-
vival of the fittest. Here, the fitness of a solution is in-
versely proportional to its associated execution costs. The
starting population is typically a collection of randomly se-
lected solutions from the solution space. Then, for each
subsequent generation, a fraction of the fittest solutions is
selected for proliferation. Additionally, randomly selected
solutions from the current generation are combined in order
to generate offspring for the subsequent generation, where
their selection probability depends on their fitness. Last,
mutation is applied to a fraction of the new generation. The
evolution process continues until the maximum number of
generations has been simulated or a number of generations
have not yielded any improvement. The fittest member of
the last generation’s population is selected as solution.

3.3 Ant Colony Optimization
ACO [4] is an optimization method inspired by the forag-

ing behavior of ant colonies, where ants explore their envi-
ronment and mark their paths to a food source with traces
of pheromones. The paths taken by foraging ants partly de-
pend on these pheromone traces. Over time, shorter paths
are traversed with increasing frequency and as such attract
an increasing amount of pheromone, whereas the pheromone

traces on less efficient paths evaporate over time. The colony
thus converges to using a short path from the nest to the
food source.

The ACO algorithm translates the foraging behavior of
ant colonies to a graph used by artificial ants, dropping
pheromones on edges. The graph contains paths from a
starting node s, representing the nest, to an ending node t,
representing the food source.

If ant k arrives at node u, the probability pkuv (i) of an
edge between nodes u and v to be chosen at iteration i is
defined as

pkuv (i) =

{
φαuv(i−1)ηβuv∑

z∈Nu φ
α
uz(i−1)η

β
uz
, v ∈ Nk

u ,

0, v 6∈ Nk
u ,

(1)

where φuv (i− 1) represents the pheromone level at the edge
between nodes u and v, as deposited at iteration i− 1, and
ηuv is a local heuristic measure capturing the inverse of the
length of the edge connecting nodes u and v, and Nk

u rep-
resents all unvisited nodes by ant k after visiting node u.
Last, α controls the weight of the pheromone level, whereas
β is a weight for the local heuristic measure.

After an artificial ant has selected and traversed an edge
euv, it drops a quantity of pheromones on this edge, which
is defined for iteration i as

∆φkuv (i) =

{ Q
Lk(i)

, euv ∈ Tk (i) ,

0, euv 6∈ Tk (i) ,
(2)

where Q is a constant and Lk (i) is the total length of the
path Tk (i) from s to t, taken by ant k at iteration i. The
pheromone drop is computed based on the total length of
the tour, instead of the length of individual edges, as an
individual lengthier edge can be part of an overall shorter
tour [4].

The quantity of pheromones at an individual edge de-
creases in a continuous process, referred to as evaporation.
The level of pheromone φuv (i) on an edge at the end of
iteration i is defined as

φuv (i) = (1− ρ)φuv (i− 1) +

m∑
k=1

∆φkuv (i) , (3)

where ρ represents the evaporation factor and ∆φkuv (i) rep-
resents the pheromone deposit for each ant k out of m ants
that have traversed edge euv.

In existing work [10], ACO has been applied to RDF
chain query optimization, by using a graph-based encod-
ing scheme, which is based on the ordinal encoding scheme
proposed in [19]. This ordinal encoding scheme iteratively
joins two operands, i.e., base relations or results of earlier
joins. These operands occur in an ordered list of operands.
The result of a join of two operands which is saved in the
position of the first appearing operand. The sequence of
pairs of indices of operands thus obtained, i.e., one pair for
each join, is used to encode the solution.

For example, the query path in Figure 1(b) has an initial
ordered list {t1, t2, t3, t4, t5}, and then first joins t4 with t5,
encoded as (4, 5). This initial join yields the ordered list
{t1, t2, t3, t4t5}. A subsequent join of t1 with t2, encoded
as (1, 2), results in the ordered list {t1t2, t3, t4t5}. A third
join, i.e., a join of t4t5 with t3, encoded as (3, 2), yields the
ordered list {t1t2, t4t5t3}. A final join of t1t2 with t5t4t3,
encoded as (1, 2), results in the ordered list {t1t2t5t4t3} and
the encoded query path [(4, 5) , (1, 2) , (3, 2) , (1, 2)].



Figure 2: Our considered graph representation for
the example query discussed in Section 2.1. A di-
rected path from s to t represents one query path,
where each node other than s or t represents a
join of two operands given by their index and an
edge represents the choice towards a subsequent
join. In case of ACO, pheromones are dropped
on edges, and a thicker edge in this representa-
tion signals a higher pheromone concentration. The
bold black edges highlight a typical query path
s− (1, 4)− (1, 2)− (1, 3)− (1, 2)− t. The full graph con-
tains all possible query paths in the bushy solution
space.

The graph-based encoding scheme models an encoded query
path as a directed path between s and t, with a number of
intermediate nodes, each representing a choice for a subse-
quent join of two operands. Starting from node s, all possible
choices for a subsequent join are given by the outgoing edges
to any node v, where a choice is described by the comma-
separated index of both operands. Figure 2 depicts how all
possible choices for subsequent joins can be represented in
one graph. In such a graph, the ant’s observed distance of
moving from one node to another is based on its estimated
costs of making that move, given the partial path taken so
far. Each time an ant moves from a node u to a subsequent
node v, it drops an amount of pheromone on the connecting
edge euv, as computed in (2). A thicker edge in Figure 2
represents a bigger amount of pheromone, indicating a part
of a better query path.

4. DISTRIBUTED OPTIMIZATION OF
CHAIN QUERIES

Existing work [10, 11] assesses the performance of tech-
niques like those discussed in Section 2 on a single source
only. In our current endeavors, we adapt existing methods
in order for them to be useful in a distributed environment.
In this light, we propose a distributed solution cost model,
focused on the transmission cost of local query results.

4.1 Distributed Solution Cost Model
A query path consists of two-way joins, each joining two

local query results. To execute an individual join, the lo-
cal query results need to be transmitted and subsequently
merged. A join j in query path p is associated with join
costs cpj . The total costs cp associated with all J joins in a
full query path p can be modeled as

cp =

J∑
j=1

cpj . (4)

The costs cpj associated with individual joins j in a query
path p depend on the join method. A substantial part of
the join costs is formed by transmission costs. We model
the transmission costs τopjΩdΩh for join operand Ω as

τopjΩdΩh = γdΩh +
∣∣opjΩ ∣∣χdΩhλopjΩ . (5)

Here, γdΩh represents the initialization costs for retrieving
anything from the data source dΩ for join operand Ω to the
query processing host h, χdΩh quantifies the transmission
costs per character from source dΩ to processor h, λopjΩ
denotes the average triple length of join operand Ω, and∣∣opjΩ ∣∣ represents the cardinality of this join operand.

For nested-loop joins [5], we define the nested-loop join
costs cNpj as a function of the transmission costs of all RDF
triples in its join operands, and the host’s processing costs
associated with comparing all combinations of these triples,
i.e.,

cNpj = τopj1d1h + τopj2d2h +
∣∣opj1 ∣∣ ∣∣opj2 ∣∣ψh, (6)

with τopj1d1h and τopj2d2h representing the transmission costs

for the first join operand opj1 and second join operand opj2 ,

respectively. Additionally,
∣∣opj2 ∣∣ and

∣∣opj2 ∣∣ in (6) repre-
sent the respective cardinalities of the first and second join
operand. Last, ψh quantifies the processing costs per com-
parison of two triples.

When using a bind join method [8], a nested-loop join
is performed, where the intermediate results of the first
operand are used as a filter for the second join operand,
thus realizing a join selectivity σpj on the second operand.

As such, we define the bind join costs cBpj as

cBpj =τopj1d1h +
∣∣opj1 ∣∣ · (γd2h + σpj

∣∣opj2 ∣∣χd2hλopj2

)
,∣∣opj1 ∣∣ ≤ ∣∣opj2 ∣∣ . (7)

Using an AGJoin operator [1], the merge process can be
started as soon as the first data streams in, provided that
two data streams are processed simultaneously. As local
merging is much faster than transmission over a WAN, the
merge process can finish the moment after the transmission
of the last triple is finished, giving no significant additional
merge costs. Consequently, the AGJoin costs cApj of a join j
in query path p are modeled as the maximum of the trans-
mission costs τopj1d1h and τopj2d2h of the join operands from

their respective data sources d1 and d2 to the query process-
ing host h, i.e.,

cApj = max
(
τopj1d1h, τopj2d2h

)
. (8)

4.2 Cardinality Estimation
A chain query path p consists of multiple joins, where each

join j results in a join set pj . For base join sets, the cardinal-
ity can be accurately measured by counting the number of
triples that match the pattern, or by using VoID [2] provided
by the SPARQL endpoints. The cardinality of a non-base
join set pj , however, is the result of a join and depends on
both join sets. Multiple approaches exist to estimate the car-
dinality of a non-base join set in, e.g., distributed databases,
by using histograms [14] or Bloom filters [9, 15].



In the worst-case scenario, no triple occurs in both sets
and the new cardinality

∣∣opj ∣∣ is a Cartesian product of both

operands
∣∣opj1 ∣∣ and

∣∣opj2 ∣∣. Conversely, in the best-case sce-
nario, all triples occur in both sets, resulting in a new car-
dinality equal to max

(∣∣opj1 ∣∣ , ∣∣opj2 ∣∣). In a typical case, the
cardinality will be in between both extremes. Therefore, the
join cardinality is defined as∣∣opj ∣∣ =

∣∣opj1 ∣∣ ∣∣opj2 ∣∣σpj , (9)

where σpj represents the selectivity of join pj for query path
p. In our current endeavors, no mapping is applied yet and
therefore, the join selectivity is expected to be unknown a
priori. Consequently, we apply a rule of thumb from tradi-
tional databases in order to estimate the join selectivity, by
giving σpj a value of 10% [18]. This estimate can be updated
on the fly in real-time, real-life systems.

5. EVALUATION
Our proposed distributed solution cost model enables the

application of several methods for RDF chain query opti-
mization in a distributed setting. These methods have been
tested on a single source previously [10], and in our current
endeavors, we assess the performance in terms of quality and
optimization time on multiple distributed sources, while ap-
plying various cost functions.

5.1 Experimental Setup
In order to assess the performance of the considered meth-

ods for RDF chain query optimization in a distributed set-
ting, we have run experiments on a 64-bit 3.4 Ghz Intel i7−
2600K machine with 16 GB physical memory. We evaluate
the performance of RDF chain query optimization by means
of 2PO (RCQ-2PO), a GA (RCQ-GA), and ACO (RCQ-
ACO) on multiple distributed sources, i.e., 34 SPARQL end-
points, and one host for executing all joins. Using these
sources, we evaluate our considered algorithms on random
RDF chain queries with lengths of 3 to 20 local query re-
sults, thus covering problem sizes of 2 to 19 joins. For each
query length, we optimize 1, 000 different chain queries and
evaluate each algorithm’s execution times until convergence
and costs of found solutions. In our experiments, we con-
sider three complete solution spaces with bushy query trees,
i.e., solution spaces associated with nested-loop joins, bind
joins, and AGJoins.

In order to enable computation of the transmission speed
for a local query result, we have first sampled the respon-
siveness of each considered SPARQL endpoint host at 100
different points in time, such that in our query optimiza-
tion process, an estimate of the transmission speed of an
endpoint can be modeled as a random value drawn from
our empirically generated distribution of response times for
that specific endpoint. These empirical distributions have
been generated by sending ASK and SELECT queries to
all considered endpoints, respectively querying for any re-
sult, e.g., ASK (?x ?y ?z), and querying for 500 triples that
match the pattern (?x ?y ?z), e.g., SELECT ?x ?y ?z WHERE

(?x ?y ?z) LIMIT 500. For each query, we measured the time
period between sending and receiving all results, and for
each SELECT query, we additionally measured the size of
the result in characters. The responsiveness is measured
in milliseconds and represents the time period of the ASK
query. The performance is measured as the transmission

speed in bytes per millisecond, which is computed as char-
acter length of the 500 triples response for the SELECT
query, divided by the time period for the SELECT query
minus the time period for the ASK query2.

The considered algorithms need to be configured for our
current purposes. For RCQ-2PO, we adopt the settings pro-
posed in [19]. We thus start the II phase with 10 random
starting points for random walks in the solution space. The
best local optimum obtained from II is taken as starting
point for the extended random walk in the SA phase. The
system’s temperature is initialized at 10% of the starting so-
lution’s associated costs. For each next solution on the path
traversed through the solution space, the algorithm tries to
move to neighboring solutions for a limited number of times,
which is set as 16 times the number of joins in the query.
After 16 tries, the system’s temperature is reduced with 5%.
The system is considered to be frozen when the temperature
drops below 1 or when the best solution so far has not been
improved in four consecutive temperature reductions.

The RCQ-GA algorithm is configured in accordance with
the settings suggested in [11]. As such, a set of 64 chromo-
somes is exposed to a process of simulated evolution with
a crossover rate of 0.65 and a mutation rate of 0.05. In
this process, fitness-based selection is applied. In addition
to this, elitist selection is applied, such that in each genera-
tion, the best chromosome is always selected for proliferation
in the next generation. The RCQ-GA algorithm is consid-
ered to have been converged after 30 consecutive generations
without any improvement in terms of fitness of the best en-
countered solution, with the fitness being computed as the
inverse of the associated solution costs.

In order to stimulate the RCQ-ACO algorithm to explore
different parts of our considered solution spaces, we propose
to use six times as many ants as the number of local query
results, with these ants relying as much on global pheromone
trails as they do on local heuristics, i.e., by setting both α
and β to 1. Additionally, we promote relatively quick con-
vergence of RCQ-ACO by using an evaporation rate ρ of
0.25, and by considering the colony to have been converged
after five consecutive iterations without improvement in so-
lution quality. In addition to this, we limit the maximum
number of iterations to 15 in order for the algorithm not
to spend too much time optimizing already good solutions.
Last, the constant Q is set to 10.

5.2 Experimental Results
Our RDF chain query optimization experiments reveal

differences among the considered algorithms and solution
spaces in terms of both execution time for the optimization
process and quality of the optimized solution, quantified by
its associated execution costs. Figures 3, 4, and 5 demon-
strate that the patterns exhibited by our considered RDF
chain query optimization algorithms are consistent across
solution spaces. However, the quality of the optimized solu-
tions appears to be sensitive to the join method used.

Irrespective of the cost function used, RCQ-ACO is the
fastest performing algorithm for smaller queries, consisting
of up to about ten joins, whereas RCQ-GA is the fastest al-
gorithm for larger queries. The optimization time needed by
RCQ-2PO typically falls in between the extremes of RCQ-
ACO and RCQ-GA.

2See [URL suppressed for anonymization] for the results.
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Figure 3: Performance of our considered methods
over chain queries with 2 to 19 joins, averaged over
1,000 queries for each query size, when using nested-
loop joins.

When using the naive nested-loop join method, the so-
lutions produced by our considered algorithms hardly differ
from one another in terms of solution costs, even though the
RCQ-ACO method mostly tends to produce solutions of a
marginally better quality. As such, when using the nested-
loop join method, RCQ-ACO is the fastest algorithm that
moreover produces the best results for most smaller queries.
For larger queries, RCQ-GA is the fastest algorithm that
produces solutions of a competitive quality.

The quality of solutions produced by RCQ-GA is less com-
petitive when using bind joins. Here, RCQ-ACO consis-
tently produces the best results, whereas RCQ-2PO pro-
duces solutions of a quality inferior to RCQ-ACO, but su-
perior to RCQ-GA. Therefore, for smaller queries, RCQ-
ACO produces the best query paths with bind joins in the
least amount of time. For larger queries, there is a trade-off
between solution quality (RCQ-ACO) and execution time
(RCQ-2PO).

When considering a space with solutions that use AGJoins,
all algorithms tend to produce solutions of a comparable
quality for queries consisting of up to ten joins. For larger
queries, the solutions produced by RCQ-2PO are of an in-
ferior quality, compared to RCQ-ACO and RCQ-GA. As
such, for smaller queries, it is best to optimize the join or-
der of RDF chain queries that use AGJoins by means of
RCQ-ACO, as this algorithm is the fastest algorithm that
produces solutions of a quality that is comparable with the
quality of those produced by the alternative optimization
algorithms. For larger queries that use AGJoins, RCQ-GA
is the fastest algorithm with a competitive solution quality.
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(a) Solution costs for optimized solu-
tions.
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(b) Execution times of optimization.

Figure 4: Performance of our considered methods
over chain queries with 2 to 19 joins, averaged over
1,000 queries for each query size, when using bind
joins.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have demonstrated that our distributed

solution cost model facilitates efficient chain querying in a
distributed Semantic Web environment, by enabling the ap-
plication of our considered query optimization methods to
distributed SPARQL chain queries. Our experiments on 34
SPARQL endpoints exhibit the competitiveness of the ACO
query optimization approach, as compared to the 2PO and
GA methods. For most smaller chain queries consisting of
up to ten joins, the ACO method produces the best query
plans in the least amount of time. For larger chain queries,
each of our considered algorithms may have its benefits, de-
pending on the join method used. When using the least
naive join method, i.e., AGJoin, a GA approach is the most
promising method, as it produces solutions of a quality sim-
ilar to the quality of ACO solutions in significantly less time
than both ACO and 2PO.

Our considered ACO algorithm has more potential than
our current experiments demonstrate, as it can be run con-
tinuously in order to make real-time adaptations to changes
in the environment, e.g., fluctuating availability and accessi-
bility of SPARQL endpoints or ever-changing data. There-
fore, in future work, we plan to evaluate our methods in a
setting in which the algorithms can be run continuously. An-
other direction of future research is to implement our work
in a SPARQL 1.1 engine, which supports federated queries.
Last, we would like to extend our work to be able to per-
form query optimization for other types of queries, e.g., star
queries or cyclic queries.
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(b) Execution times of optimization.

Figure 5: Performance of our considered meth-
ods over chain queries with 2 to 19 joins, averaged
over 1,000 queries for each query size, when using
AGJoins.
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