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A flexible numerical integration method is proposed for the computation of moments of a 
multivariate posterior density with different tail properties in different directions. The method 
(called mixed integration) amounts to a combination of classical numerical integration and Monte 
Carlo integration. Mixed integration is parsimonious in the sense that is makes use of the same 
parameters as the more restrictive multivariate normal importance function. The method is applied 
in order to compute the posterior scores of three candidates for a professorship in operations 
research, taking into account four different decision criteria. 

1. Introduction 

Our research is directed towards the efficient computation of posterior 
moments of measurable functions of parameters of econometric models in 
multivariate cases. 

Given our prior assumptions these posterior moments cannot be evaluated 
using analytical integration methods without gross approximation errors or 
excessive computational costs. In our earlier work [Kloek and Van Dijk (1978) 
and Van Dijk and Kloek (1980)] we made use of Monte Carlo integration 
methods [cf. Hammersley and Handscomb (1964) and Rubinstein (1981)]. As 
an example of an econometric model we took the simultaneous equation 

model, which is non-linear in the sense that the expected values of the 
endogenous variables are usually non-linear functions of the parameters of 
interest 8. As a Monte Carlo integration method we made use of importance 
sampling. 
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Our applications of importance sampling may be described briefly as fol- 
lows. Let g(e) be a measurable function of the parameters of interest 8, where 
g may be a scalar, a vector or a matrix. Standard examples of g are elements of 
6’ and Be’, but we are also interested in marginal posterior densities [cf. Kloek 
and Van Dijk (1978)] and in non-linear functions of B such as short-run and 
long-run multipliers [cf. Van Dijk and Kloek (1980)]. Our purpose is the 
efficient computation of 

Eg(e) = id+4wwd~ 
jw(e)z(e)de . 0) 

The weight function w(0) is defined as p(e)/Z(e), where p(B) is a kernel of a 
multivariate posterior density function and the importance function Z(0) is a 
multivariate density function with properties to be discussed below. The region 
of integration in (1) is the set of all B satisfying Z(0) > 0. The importance 
function is supposed to be a good approximation of p(B), so that w(e) is 
roughly a constant, and the importance function is supposed to have conve- 
nient Monte Carlo properties, so that it is relatively easy to generate random 
drawings from it. As an importance function we made use of the truncated 
multivariate Student I density. For details we refer to Kloek and Van Dijk 
(1978) and Van Dijk and Kloek (1980). We shall use the term simple impor- 
tance sampling for the approach used in these references. 

In several econometric applications we found that the surface of the pos- 
terior density of a non-linear model may be ill-behaved. An important reason 
for this phenomenon is small sample size. Then the question arises whether 
such a density can be approximated with a reasonable degree of accuracy by a 
multivariate Student t density. A limitation of the Student t is its symmetry, 
while truncation of the density is helpful only in special cases. Since our 
experience with the Student t density was not always successful, we started to 
consider alternative approaches. 

In the present paper we consider the case where the kernel of the posterior 
density p(8) is unimodal but has different tail properties in different direc- 
tions, and we propose a flexible numerical integration method, which is 
intended to handle this situation. The method proposed transforms the s- 
dimensional parameter space of vectors 0 into another s-dimensional parame- 
ter space of pairs (7, p), where q is an (s - 1)-dimensional vector and p a 
scalar. For p we take 5 d, where d is a measure of the distance between a point 
8(‘), generated at random, and a point e”, a location estimate of 8. As a 
location estimate we take, e.g., the posterior mode or a preliminary estimate of 
the posterior mean. The vector n is taken as the direction (e(l) - B’)/p(‘) with 
one coordinate deleted to avoid degeneracy. After having performed the 
transformation, we generate a vector 77 (i) by means of Monte Carlo and apply 
classical numerical integration with respect to p given T$‘). So the method 
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amounts to a combination of classical numerical integration and Monte Carlo 

integration. We call it the mixed integration method. More details on the 

transformation are given in section 2 and appendix B. The mixed integration 
method is discussed in section 3. Further comments are contained in section 4, 
while our conclusions are given in section 5. An application of mixed integra- 

tion is presented in appendix A. 

2. A transformation 

In this section we describe a particular transformation of a multivariate 
normal random variable. We start by defining a multivariate normal density 

function on the parameter space as 

with - 00 < 8, < 00, j = 1,. . . , s. Here 8’ is the posterior mode or a (possibly 
rough) first-stage estimate of the posterior mean; v is minus the inverse of the 
Hessian of the log posterior evaluated at 8’ or another preliminary estimate of 
the posterior covariance matrix. For more details on the choice of parameters 

for importance functions we refer to Van Dijk and Kloek (1980). 

Next, we partition 0 - 8’ and T/-l as 

8--B”=[i] and V-l= s “f , [ 1 (3) 

where v and r are scalars. 

We shall make use of 

d:=(u’Pu+2u’qv+rv2)‘, 

U:= E(vlu)= -u’q/r. 

(4) 

(5) 

Note that d measures the distance from 8 to 8’ according to a norm based on 
VP’ and that U is the mean value of the conditional normal distribution of u 
given U, which is called the regression function [Anderson (1958, p. 29)]. We 
partition the region of integration of 8 as 

S,= {818ElR”and~2u}, 

S,= (6leERSand u<u}. 
(6) 

The transformation that carries 8 into (7, p) is given by the following 
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transformation formulae: 

(7) 
=T,(B)=(--u/d,-d) if u<V. 

The regions of integration of (7, p) are given by 

where R + and [w- are the sets of positive and negative real numbers, 
respectively. The characterization of D will be discussed in appendix B. Note 
that the sign of p determines the region of integration S; or S;. 

The inverse transformation that carries (7, p) into 0 is defined on Sr’ and 5’; 

as the function 

with 

where we make use of (4) and (7). Note that u can be rewritten as 

So the transformation 7;( 6) maps the elements of S, onto S,‘, i = 1.2. The 
purpose of the inequality conditions in (7) is to make this transformation 
one-to-one. We shall give a geometric interpretation below. 

The Jacobian determinant J, obtained by taking derivatives of u and v with 

respect to 77 and p, equals 

J= ,@J,(d, (12) 
with 

J2h) = ~-+d, (13) 

which can straightforwardly be verified. So the absolute value of the Jacobian 
determinant IJI is the same in both regions of integrations. 
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Fig. 1. A transformation of the bivariatP normal random variable 0 = (u, 11) into (q. p) 

The density function of (7, p) is given by 

z*cv> P) = ~P(77~ dl IJI 
(14) 

= (27r-:‘]V)Piexp( - $2) Jp]“-‘.Z*(_rl), 

where we have deleted an index for the region of integration Sr’ or S; [cf. Rao 
(1973, pp. 156 and 157)] because the density of (q, p) is invariant with respect 
to changing the region of integration. This result is due to the symmetry 
properties of the multivariate normal density. 

A geometric interpretation of the transformation of the random variables 8 
is presented in fig. 1. At the top we have drawn a contour of a bivariate normal 
importance function Z( 13) = c with 8’ = 0 and d = 1, for convenience only. The 
regression line qu + rv = 0 partitions the region of integration of &elements 
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into S, and S, [compare (6)]. Consider the point A generated at random from 
Z(8). A is an element of S, because u, > UA [see (7)]. It follows that A is 
mapped into the point A’ E Si’ at the bottom of fig. 1, where A’ has the 
coordinates nA. = uA and pA, = + 1. A similar analysis can be given for point 
B. The points C and D are elements of S, for which p = - 1 and TJ = -u. 

Note that C’ and D’ [in the (TJ, p) space] are reflected with respect to the 
vertical axis compared with C and D. 

We conclude this section with a remark. If we do not use the inequality 
conditions of (7) the transformation of B into (9, p) will be two-to-one in the 
following way. Let 17 = u/p and p = d, instead of the transformation (7). Then 
the inverse transformation 0 = T-‘(17, p) will give two solutions of u that are 
not symmetric around 0’. This is illustrated in fig. 1. Consider the point 
A’ = (qAS, + 1) at the bottom. Given u,_, = ~~~[compare (9)], it is seen that there 
exist two solutions of 8: the points A and A on the contour Z(0) = c. This is a 
disadvantage for practical applications. Another disadvantage of the two-to-one 
transformation is the asymmetric treatment of the elements of 8. In order to 
define the direction 77 one may delete any element of the s-vector (0 - 0’) 
instead of the last one. In such a case one obtains s + 1 solutions of 0 by 
inverting the transformation. Because of these disadvantages we have con- 
structed the transformation described. 

3. The mixed integration method 

In this section we apply the transformation of section 2 to the integrals of 
eq. (1). We write the numerator as A = A, + A,, where 

A, = / de4~)zwd~, i= 1,2. (15) 
s, 

The denominator is handled in the same way after substitution of g( 0) = 1. By 
making use of the inverse transformation (9) we can write A, in terms of TJ and 
p. Let 

de) = g[T-‘h P)] =:g*h P>Y 

w(e)=PITdl(g’p)l =:w*(v p). 

Z[T-+J, P)] ’ 

Using (12), (14) and (16) we find 

w*cv, p)z*(v, P> = 
h-‘b~ P)] 

1 [T-‘h P)] 
Z[T-‘h P)] IJI 

(16) 

(17) 

=P[T-%L P)] IPI”-‘J,h). 
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Note that the importance function has been dropped from (17). We shall 
comment on this result in the next section. By making use of (14) and (16) we 

can write the first of the two integrals in (15) as 

We assume that appropriate regularity conditions are satisfied and substitute 

(17) into (18). Then one obtains 

A, = 
jij 

g*(v, p>p [T-b, P)] IK’ dp 
Q !a+ 

(19) 

Similar results can be obtained for A,, where the integration with respect to p 

is over R -. We recall from section 2 that the importance function (14) is 
invariant with respect to the sign of p, but we emphasize that the expressions 
in (16)-(19) will usually not be invariant. 

Now suppose we draw N vectors TJ (‘) from a distribution with a density 
proportional to J,(n). Then we may estimate A, by means of 

The proportionality sign in (20) is necessary since we have not bothered about 
the question which part of the integration constant of (2) corresponds to n and 
which part to p. If we treat the numerator and the denominator of (1) in the 
same way, the constants will cancel. The generation of the random drawings n 
is done by drawing 0 from (2) and deriving 71 through (4) and (7). The 
one-dimensional integrals in (20) are calculated by means of classical numeri- 
cal integration methods. There are two reasons for this choice. First, classical 
integration procedures are known to be quite efficient in handling one-dimen- 
sional integration problems. Second, in the type of non-linear problems we are 
interested in, it will be difficult to find a good importance function, since for 
certain values of 17 the expression p[T-‘(7, p)] considered as a function of p 

will decrease faster than a normal density as IpI tends to infinity, while for 
other values of n it may decrease slowly as a Student t density with a few 
degrees of freedom only. Anyway, this is our experience with the examples we 
studied in Van Dijk and Kloek (1982, 1983a,b). In fact, the integrals in (20) 
may not converge at all for a diffuse prior when p tends to infinity. In our own 
applications we have taken a prior which is positive on a bounded region only, 
but the approach of this section can be applied to integration over lRs provided 
the integrals exist. 
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For the practical application of the integration approach we shall discuss 
one further development. Suppose 8 (I) is a point generated at random from the 
normal importance function (2). Given ti(‘) we know which transformation 
formula, r,(0) or T*(8), we have to take from (7). Suppose we take Tl which 
gives (n(‘), p(l)). Numerical integration is then performed on the half-line 
through the points 8’ and 8(j), consisting of all positive multiples of (19 (‘) - 8 O). 
In case one has to take T, (instead of Tl) one performs numerical integration 
along the half-line consisting of all negative multiples of (/_?ci) - 0’). One may 
generate another direction v(~+‘) (through e(‘+‘)) as a next step. We recom- 
mend, however, a modification in the practical application of the integration 
procedure. Clearly the points 8 (‘)-e” and B”- (e(‘)-fl’) are symmetric 
around 8’. Suppose as before that 8(‘) . 1s a point generated at random. Let 
8’ - (8”) - 6’) be the next point to be considered. Then one can perform 
one-dimensional numerical integration along the line consisting of 8’ plus all 
postive and negative multiples of (0 (l) - 0’). This method of generating one 
point by Monte Carlo and the next one by a symmetry argument is well-known 
in the literature as antithetic sampling [cf. Hammersley and Handscomb 
(1964), Rubinstein (1981)]. Thus (20) is replaced by 

(21) 

We divide by 2N since each point drawn is used twice. The posterior kernel is 
not defined at p = 0, but since this event has measure zero it is of no 
importance in the computation of the integrals. 

In our integration approach the proportionality (21) is the basic formula for 
the estimation of the integral A. Since this approach amounts to a combination 
of classical numerical integration and Monte Carlo integration, we call it the 
mixed integration method. In the next section we give some further comments. 

4. Further comments 

First, it seems useful to compare the present approach with an alternative we 
tried before. In Van Dijk and Kloek (1983a) we gave pictures of very skew 
posteriors. Student t densities necessarily yield bad approximations in such 
cases since they are essentially symmetric. Existing families of skew multi- 
variate densities, such as Wishart and poly-t, might be considered but it is 
rather difficult to fit them to a given posterior. We also considered products of 
univariate skew densities fitted along the main axes, but the results were not 
encouraging. Compared with these alternatives the present approach has the 
advantage that it is both flexible and parsimonious. By flexible we mean that 
we perfectly follow the shape of the posterior when we integrate with respect to 
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p. By parsimonious that we do not introduce additional parameters to describe 
the shape of the importance function, given preliminary posterior mode 
estimates or first-stage integration results on posterior mean and covariance 
matrix. 

Second, one might observe that the reciprocal of the density function 
Z[T-- ‘(11, p)] does not appear in (19)-(21) in the same way it appears in (1) 
through w(B). If we are interested in computing the integral 

(22) 

and if p( 8) has no convenient Monte Carlo properties, we substitute p(B) by 
[ p( 6)/Z(e)]Z(O) in order to obtain an expression containing a density from 
which we can conveniently draw points tY(‘) at random. If we apply the 
transformation defined by (3)-(7) we can rewrite (22) as follows: 

j jg[T~l(a.p)lp[T~l(e,p)l IJI~P~V 

=j{ .k[~-l(w)] p[T-‘(w)] It4”-‘d~}J,(dd~~ (23) 

Compare section 2 and, in particular, (12). Since J2( 11) is already proportional 
to a density with convenient Monte Carlo properties, there is no reason to 
introduce an importance function in this stage. In fact, when defining the 
transformation we have already implicitly introduced our importance function. 
Note that the posterior kernel of (9, p) is decomposed as a conditional density 
of p given q and a marginal density of n. We have incorporated the impor- 
tance function Z(O) of (2) explicitly in our derivation, since we want to 

emphasize the link between the kernel .Zz(n) and the normal density Z(e) that 
is used to generate the random directions n(‘), i = 1,. . . , N. We note that there 
exists a computational efficiency problem with respect to the generation of the 
random directions. This is illustrated in fig. 2a (compare our fourth comment). 

Third, we mention that one can use the same integral with respect to p for 
different functions g*(n, p). For instance, when one is interested in the 
computation of the first-order moments of the vector 0 - O”, one takes for g 
the elements of u and U. But (given n) these are constant multiples of p 

[compare (9)]. As a consequence only one integral with respect to p has to be 
computed for all elements of 8 in (21). So moments of linear functions of 8 are 
easy to compute. This holds similarly for the zero order and second order 
moments of 8. Marginal posterior densities may be approximated by making 
use of the integration results for the case g(0) = 1 on some interval and zero 
elsewhere [cf. Kloek and Van Dijk (1978, section 7)]. Moments of complicated 
non-linear functions of 0 require additional numerical integrations. 

Fourth, a geometric interpretation of some of the features of mixed integra- 
tion is illustrated for s = 2 in figs. 2a and 2b. In fig. 2a we have drawn a 
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Fig. 2a. Contours of the posterior density p(0) = c and the normal importance function I( 19) = c 
with 0’ = 0. 

Fig. 2b. Trpical shapes of the function p[T-‘(qas, p)] IpJ considered as a function of p given 1)A,. 

contour of a posterior density p( 0) = c with the mode 8’ = 0, for convenience 
only. The point A, generated at random from a bivariate normal importance 
function with 8’ = 0, is located on the contour I( 8) = c. Numerical integration 
can be performed on the line through the points -A and A by making use of 
antithetic sampling. Note that ( -)A is mapped into (-)A’ (compare also fig. 
1). Typical shapes of the function p[T-‘(qATr p)] IpI, considered as a function 
of p given qA,, are shown in fig. 2b. The different shapes illustrate the flexibility 
of mixed integration. Furthermore, fig. 2a illustrates that it is less efficient to 
take a standard normal importance function (V= I) because one should 
generate more lines in the direction of the main diagonal than orthogonal to it. 

Finally, we mention two cases in the literature where a transformation of the 
multivariate normal density is considered with a Jacobian factor that differs 
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from (12) and (13) only with respect to the expression of J2(q). First, 
Anderson (1958, pp. 175, 176) and Kendall and Stuart (1969, pp. 246, 247) 
give transformations of normal variables into polar coordinates. We opted for 
(7) since it appears relatively easy for practical applications. Second, Trotter 
and Tukey (1956) make use of a transformation of normal random variables in 
what is known as Conditional Monte Carlo. In this approach a possibly 
awkward parameter space is enlarged to a more suitably chosen space. Details 
are discussed in Hammersley and Handscomb (1964, ch. 6). By contrast we 
have reduced the s-dimensional space of f? elements into an (s - 1)-dimensional 
space of n elements. Our approach has the advantage of being parsimonious 

with respect to the number of parameters of the importance function. 

5. Conclusions 

In this paper we have proposed a flexible numerical integration method that 
can be used for the computation of posterior moments in case the multivariate 
posterior density has different tail properties in different directions. The 
method is parsimonious because one makes only use of the parameters of the 
more restrictive multivariate normal importance function, which will ap- 
proximate the tail behavior of the posterior mentioned above very poorly. 
Increased flexibility is, or course, not a free good. But the price of one-dimen- 
sional numerical integration along lines in the parameter space is not very 
restrictive on modem computers. Practical experience with several examples, 
for instance with the Klein-Goldberger model which involves thirty-dimen- 
sional integration [cf. Van Dijk and Kloek (1982)], indicates the feasibility of 

the mixed integration approach in a case where simple importance sampling 
failed to converge. In Van Dijk and Kloek (1983b) we compared mixed 
integration and simple importance sampling with an alternative Monte Carlo 
method, where the importance function consists of a finite mixture of multi- 
variate normal densities. The particular mixture used was tailor-made for the 
example studied. In other words, the finite mixture approach can probably not 
be applied to arbitrary models, without first studying the properties of their 
likelihood functions. The results of some experiments indicate that an impor- 
tance function based on mixtures is rather efficient but that mixed integration 
appears robust and can be used in a rather mechanical way. Of course, more 
experience is needed in this area before any final conclusions can be given. 

Appendix A 

In this appendix we apply the mixed integration method in order to compute 
the scores w 
c;=,w, = 1). 

i, . _. , w, of n alternatives A,, . . . , A, (0 2 w, I 1, vj = 1,. . . , n; 
Th e scores of the alternatives are obtained taking into account m 

different decision criteria C,, . . . , C,,,. More details are given below. As a 
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particular example we consider the case presented in Lootsma (1980) where 
three candidates (A,, A, and A,) have applied for a professorship in oper- 
ations research. In order to compare the abilities of the candidates an advisory 
committee of N = 3 members has identified four decision criteria C,, . . _, C,. 
These criteria are mathematical creativity (C,), creativity in implementations 
(C,), administrative capabilities (C,), and human maturity (C,): the candi- 
dates remain anonymous. 

A traditional method to obtain the score w, of the alternative A, is by means 
of direct assessment. At a first level a weight IY; is assigned to criterion C, 
(0 _< (Y, I 1, Vi = 1,. . . , m; ~~zn=1a, = 1). At a second level the alternative A, is 
given a weight p,, under each criterion separately (0 2 p,, 5 1, Vi = 1,. . . , m, 

j=l 7 . . . > n; En_ fi 
J-1, ‘J 

= 1, Vi = 1,. . , m). Then the scores of the alternatives are 
computed according to 

QJ = ? 4,,, j=l ,...,n. (A.11 
r=l 

In practice, however, the weights (Y, and p,j are frequently unknown. A 
common approach to this problem is to obtain estimates via a method of 
pairwise comparison [cf. Saaty [1980)]. At the first level each of the N 
committee members is asked if he or she prefers either the k th criterion or the 
Ith for all k > 1 (k, I = 1,. . . , m). Further it is assumed that the probability of 
preferring criterion C, over c, is equal to Pk, = ak/(ak + a,). Then the prob- 
ability that Nk, of N independent committee members will vote for C, rather 

than C, is given by the binomial probability distribution 

(A.21 

Hence, assuming that the comparisons of different pairs of criteria are indepen- 
dent as well, the likelihood function of the unknown parameters (~i,. . , a, is 

equal to 

Bradley and Terry (1952) use (A.3) to find the maximum likelihood estimates 
for the weights (~i,. . . , a, of the criteria. At the second level the maximum 
likelihood estimates of the weights /3,, of the alternatives for each criterion 
separately are determined in a similar way. Substitution of the computed 
estimates in (A.l) then yields the scores for each of the alternatives. 

In this appendix we introduce a Bayesian analysis of (A.3), where the prior 
distributions of the (Y; and p,, are assumed to be uniform, and we apply the 
mixed integration method to compute the posterior expected values and 
covariances of these unknown parameters. Then one can determine the posteri- 
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or expected values and standard deviations of the final weights wr,. . . , a,,, 
using (A.l) and statistical results with respect to the expected value and 

variance of sums and products of random variables. 
Next, we compare the results of the maximum likelihood and the Bayesian 

approach on the example mentioned above. The data for the problem are 
presented in table 1. For each pair of factors C/C, and A/A, we depicted the 
number of committee members which preferred the ith factor over the jth, as 
well as the total number of voters. Note that not all members expressed their 
opinion on each pair of factors. Furthermore, if a committee member consid- 
ered the ith and jth factor equally important this vote is attributed half to 

each of these factors. 

Given these pairwise comparisons the likelihood functions are given by (A.4) 
up to (A.8) apart from normalizing constants. Note that since we have chosen 
our prior distributions uniform, the kernels of the posterior distributions are 
proportional to the likelihood functions, 

ff4 ! i 
1 

X- 
a,+a4 ’ 

x( allP;1P13 II s12:3P13 1’; 
L, ( P219 P22 7 P23 1 a 

( s21:1B22 )‘( a21%3*3 1’; 

~4(P31J33*J333P 
( /33,p;‘832 ii 831p:‘833 )’ 

(A.4) 

(A.51 

(A.61 

(A.71 4 P32?L?33 17 P,*:‘p,, i:3 
&(P4,, P429 P43) a 

( ,,?b43)‘( p,,?B,, i’i b42$B43 )‘. 
(A.8) 
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Table 1 

Data for the operations research professorship. 

c2/c, WC1 C3/G c4/c, c4/c2 c41c.3 

(1.5-3) (0.5,l) (0.2) (3% 3) (133) (1.1) 

As/A, A,/A, A,/A, 

C, (132) (1.5,2) (131) 

c2 (09 1) 

It :; 

(0% 0) 

C3 a 3) (0.5,l) 

G (0.0) (112) (031) 

The resulting maximum likelihood estimates, which coincide with the pos- 
terior modes, have been determined by a constrained numerical optimization 
routine: we used the TWOFAS package of Louter and Van der Hoek (1984). 
In order to compute the Bayesian estimates we used the mixed integration 
method. Our results are shown in table 2. It is of considerable interest to 
observe that candidate A, would definitely prefer a Bayesian procedure for 
choosing the new professor. However, further inspection of the posterior 
standard deviations indicates that the difference is not as clear-cut as suggested 
by the maximum likelihood estimates. 

Table 2 

Results for the operations research professorship 

Maximum likelihood Bayes 

a1 a2 (13 a4 a1 a2 a3 a4 

0.111 0.384 0.037 0.466 0.152 0.357 0.106 0.385 
(0.088) (0.141) (0.090) (0.148) 

PJ, 1 2 3 PI, 1 2 3 

1 0.158 0.119 0.723 1 0.256 
(0.152) 

2 1.000 0.000 0.000 2 0.534 
(0.210) 

3 1.000 0.000 0.000 3 0.623 
(0.187) 

4 0.000 l.OOQ 0.000 4 0.304 
(0.195) 

0.239 
(0.158) 

0.233 
(0.184) 

0.154 
(0.118) 

0.454 
(0.228) 

0.505 
(0.195) 

0.233 
(0.184) 

0.223 
(0.164) 

0.242 
(0.167) 

*1 w2 w3 Wl *2 w3 

0.439 0.479 0.080 0.413 0.311 0.277 
(0.127) (0.128) (0.110) 
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Appendix B 

The set Q in eq. (8) may be defined as 

G’= {nln~Iw”-‘and$V,q<l}. (A.9) 

where 

Vi := P - q(l/r) q’. (A.lO) 

The characterization of D is based on the following argument. We start with 
(2) and (3) and note that u is a real number. Next, given an (17, p) the 
corresponding value of u is obtained from the inverse transformation (9). 
Suppose the discriminant D( 7) in (9) is negative. Then there is no real solution 
for U. This is a contradiction. Therefore, using the definition of D(n) in (lo), 
we have 

$qq’q - rq’Pq + r 2 0. (All) 

This inequality can be rewritten, by making use of (A.10) as 

Tl’Vi?j I 1. (A.12) 

So 52 is an ellipsoid provided Vi is positive definite. It is straightforward to 
verify, using (2) and (3), that Vi is the inverse of the covariance matrix of the 
vector U. The covariance matrix of the multivariate normal random variable 8 
in (2) is positive definite. Then the covariance matrix (and the inverse of the 
covariance matrix) of u is positive definite [cf. Anderson (1958, p. 337)]. 
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