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Abstract 

This paper has two themes. First, we classify some effects which outliers in the data 
have on unit root inference. We show that, both in a classical and a Bayesian framework, 
the presence of additive outliers moves ‘standard’ inference towards stationarity. Second, 
we base inference on an independent Student-t instead of a Gaussian likelihood. This 
yields results that are less sensitive to the presence of outliers. Application to several time 
series with outliers reveals a negative correlation between the unit root and degrees of 
freedom parameter of the Student-t distribution. Therefore, imposing normality may 
incorrectly provide evidence against the unit root. 

Key words: Outliers; Robustness; Unit root inference; Student-t distribution; Bayesian 
analysis 
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1. Introduction 

Graphical presentation of several economic time series reveals a number of 
common characteristics. Two of these characteristics are the presence of an 
upward trend and the presence of outlying observations. Both properties of 
economic time series have been extensively studied in the past decade. 

First, following the seminal article of Nelson and Plosser (1982), an interesting 
debate is going on in the econometric literature whether most macroeconomic 
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time series contain a deterministic or a stochastic trend. The latter may cor- 
respond to a unit root in the autoregressive representation of the series. An 
overview of classical unit root analysis is provided by Campbell and Perron 
(1991). Bayesian contributions include, e.g., Sims (198Q DeJong and Whiteman 
(1991a,b), Kleibergen and van Dijk (1993) Schotman and van Dijk (1991a,b, 
1993), Phillips (1991), and the references cited there. 

Second, robust statistical inference has spawned an extensive literature on the 
treatment of outlying observations (see, e.g., Huber, 1981; Hampel et al., 1986). 
In particular, estimators are proposed that are robust with respect to contami- 
nation of the data. Robust estimators and statistics in a time series context can 
be found in, e.g., Kiinsch (1984), Martin (1981), Martin and Yohai (1986), and 
Lucas (1995a,b). 

In the present paper we discuss some aspects of both fields. The aim is to 
classify the effect that outlying observations in the data have on both classical 
and Bayesian unit root inference. Next, we discuss a relatively simple way to 
reduce the effects of outliers. The.basic idea is to base inference on an underlying 
Student-c error distribution instead of the usual Gaussian distribution (see, e.g., 
Kleibergen and van Dijk, 1993; Geweke, 1993). Note that we use the hypothesis 
of independently and identically distributed (iid) disturbances, which is different 
from the hypothesis of a multivariate Student-t error distribution, studied by 
Zellner (1976). 

To motivate the use of the iid Student-t, some concepts from the robustness 
literature are used, in particular the notion of influence functions; see Section 2. 
These concepts are applied to classical unit root testing procedures in Section 3. 
We show that the often used Dickey-Fuller t statistic is sensitive to aberrant 
observations. Assuming a Student-t distribution with finite degrees of freedom, 
we show that the influence of an outlier on the maximum likelihood estimators 
(and indirectly on test statistics derived from these estimators) is bounded. 
Bayesian unit root inference using an iid Student-t likelihood is discussed in 
Section 4. Section 5 provides some empirical illustrations and discusses the 
relation of our work to previous results obtained in the literature. The 
effect which additive outliers have on the maximum likelihood estimates 
and the posterior means is shown. The posterior evidence, based on the 
analysis of series with outliers, suggests a negative correlation between the 
unit root parameter and the degrees of freedom parameter. We give some 
concluding remarks in Section 6. Finally, some technical results are given in 
the Appendix. 

2. Some robustness concepts 

In order to analyze the effects of outliers on unit root inference and to propose 
methods that are less sensitive in this respect, some concepts from the literature 
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on robust statistical inference are introduced. First, we specify a model which 
generates outliers. A useful model is the general replacement model, given in 
Martin and Yohai (1986), 

y, = (1 - ZJX, + ztw, . (1) 

The binary random variable z, equals 1 with probability y and is 0 otherwise. The 
core or outlierji-ee process x, has cumulative distribution function (cdf) F,(e), while 
the contaminating process w, has cdf F,,,(.). Both of these processes can be non-iid. 
For instance, they may belong to the ARMA class. Finally, the realization of the 
y, process contains the actually observed values of the time series. Note that 
y, = w, with probability y and yt = x, otherwise. The parameter y controls the 
amount of contamination. Usually y is small, typically 0.05 to 0.15. The cdf of the 
y, process obviously depends on y. We denote this by adding a superscript to its 
cdf F;(.). 

Model (1) is easily recognized as a finite two-component mixture model, since 
F:(.) = (1 - y)F,(.) + yF,,,(.). Therefore, we could make use of the literature on 
modeling finite mixtures for constructing outlier robust inference procedures. In 
our parametric context, this requires the full specification of the w, process. We 
refrain from this strategy and let the w, process be (partially) unspecified; see (2) 
and (3) below. This allows us to specify procedures that are robust to more 
general forms of outlier behavior than those implied by the mixture of two 
stochastic processes. Informally, our aim is to develop procedures that are 
nearly optimal for y = 0 and ‘satisfactory’ for y equal to some small, positive 
number. The advantage of this approach is that we do not need to specify 
a complete model for the w, process. This automatically yields a more 
parsimonious model parameterization. Also, the estimation of a finite mixture 
model may be problematic if there are only few outliers. In that case there is 
little information in the data to identify the values of the parameters of 
those components of the mixture that correspond to the small group of out- 
liers. We note that in the second stage of our analysis we make use of 
the Student-t distribution, which is an uncountable mixture of Gaussian 
distributions, with the inverted gamma-2 distribution as the mixing distribution 
(see Section 4). The advantage of the Student-t is that it has attractive 
robustness properties while one does not have to specify the number of compo- 
nents in the mixture distribution as in the case of a finite mixture distribu- 
tion. 

By imposing certain structure on the z, and w, processes, model (1) can 
generate different types of outliers. For example, if the z, are iid, model (1) 
generates isolated outliers. If the z, are intertemporally dependent, patches of 
outliers can occur (compare the examples in Martin and Yohai, 1986). The two 
types of outliers usually encountered in the literature are additive outliers (AO’s) 
and innovative outliers (IO’s). The difference between these is illustrated using 
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an autoregressive (AR) process and the general replacement model (1). Let CJ, be 
a process independent of x, and zl. AO’s can now be modelled by specifying 

AO: Cp(L)x, = E,, w, = x, + Cl, t = 1, . . . , T, (2) 

and IO’s by specifying 

IO: C$(L)xt = E,, w, = x, + 5,/4(L), t = 1, . . . , T, (3) 

where 4(L) is a polynomial of order p in the lag operator L, Lx, = xt_ I, and z, is 
an iid process. 

Using (1) and the A0 specifications of x, and w,, we obtain that y, = x, + z,t,. 
Given that z, equals 0 most of the times, y, is in many cases equal to the 
uncontaminated AR process x,. Now and then, i.e., with probability y, y, is 
observed with a measurement error &. For IO’s on the other hand we can write 
#I(L)Y~ = E, + z,<,. The additional error term now appears in the innovations 
that drive the time series. 

The effect of both isolated AO’s and IO’s is visualized in Fig. 1. The figures 
show a realization of the y, process for d(L) = 1 - 0.9L, y = 0.01, w, = 10, and 
{E,} a set of iid standard normal innovations. Also a scatter diagram of y, versus 
y,_ 1 is presented. The same set of innovations is used to generate both time 
series. The outlier occurs at time r = 25. 

It is clearly seen that the A0 only causes a single departure from the normal 
pattern of the time series. The series jumps upward at the time the outlier occurs 
and immediately jumps back the period afterwards. As can be seen in the scatter 
diagram, this causes two outliers in the (y,_ i , y,) plane. The IO also causes the 
series to jump upward at the time of the outlier. Afterwards, however, the series 
gradually adjusts to its normal pattern. In the scatter diagram this results in one 
vertical outlier, followed by a set of points with large y, and y,_ 1 values, which 
all lie in the neighborhood of the line with slope 4 = 0.9. This last set of 
observations provides a strong signal for the true value of C#J. 

Note that if 4(L) = 1 - L, the A0 pattern remains comparable to the one 
shown in Fig. 1, whereas the IO results in a level shift. 

Outliers may seriously affect the ‘usual’ estimation and test procedures, like 
those based on ordinary least squares (OLS). If one is interested in describing the 
bulk of the data, then procedures that are less sensitive to the presence of 
aberrant observations are attractive. Several outlier robust estimators have been 
proposed in the literature (e.g., Huber, 1981; Hampel et al., 1986). In order to 
evaluate the properties of such estimators, different concepts are available. 
Among these, the influence function (IF) plays a prominent role. Heuristically, 
the IF measures the change in the value of an estimator when a few outliers are 
added to the sample. Its finite sample approximation for the OLS estimator is 
closely related to the DF-BETA diagnostic of Belsley et al. (1980), which 
measures the standardized contribution of the rth observation to the estimator 
(see Hampel et al., 1986, Sec. 2.1.e). In a more formal context the IF is an 
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asymptotic concept. It depends on the cdf and not on the sample. We define 
estimators 4 that can be considered as functionals on a space of cdf’s, so 
$ = $(Fz). Next, consider the change in $(.) that is implied by increasing y from 
0 to some small positive number. So, we study ($(F:) - &FF)). If y is very 
small, this difference is negligible. We therefore standardize by dividing by y. The 
IF is now defined as the limit of this standardized difference as y approaches 
0, or 

- 0 
IF($, (F;}) = lim ‘(“) i ‘(F’ ) , (4) 

Y10 

if this limit exists (Martin and Yohai, 1986). For more details on the IF we refer 
to, e.g., Hampel et al. (1986). By way of illustration, consider the IF of the mean. 

Example 1. Let wI, x,, y,, and z, from (1) be iid processes. Furthermore, let 6 be 
the mean, so $(FJ) = ly dFJ( y). Now consider a special choice for F:(e), namely 
F:(y) = (1 - y)Fi(y) + yd,(y), where d<(e) is a cdf which jumps from 0 to 1 at i. 
If this special choice is made for FJ( .), we use the term influence curve (IC) rather 
than an IF. Using the definition in (4), we obtain 

i@‘:) - @‘;I = bW1 - M;(Y) + y#y)l - JydF,o(y) 

(3 

If Fi(.) is the standard normal, the IC is equal to [. Note that this is an 
unbounded function in {. 

Estimators with a bounded IF possess certain robustness properties and are 
therefore desirable (Hampel et al., 1986, Ch. 2; Martin and Yohai, 1986). The IF 
was originally developed to measure the change in the value of an estimator in 
the iid setting. Rousseeuw (1981) invented a similar concept to measure the 
change in the variance of an estimator: the change-of-variance function. A differ- 
ent line was followed by Kunsch (1984) and Martin and Yohai (1986). They 
generalized the IF to situations with dependent observations. 

Martin and Yohai (1986) prove that the OLS or conditional Gaussian ML 
estimator for AR models has an unbounded IC under A0 contamination. This 
suggests that the estimator is not robust. The nonrobustness of the OLS 
estimator can be made explicit quite easily. This is shown in the next section. 

3. Classical analysis 

Following Nelson and Plosser (1982), the most popular classical unit root test 
has been the Dickey-Fuller t test (see Dickey and Fuller, 1979). The 
Dickey-Fuller t statistic (DF-t) is traditionally obtained by estimating an 
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autoregressive (AR) model by ordinary least squares. However, it was argued in 
the previous section that the OLS estimator is nonrobust against AO’s. A test 
statistic based on this estimator might therefore also be nonrobust, as the 
following example illustrates. 

Example 2. Consider the AR(l) x, = 4x,_ I + E,, with t = 1, . . . , T. The process 
E, is iid with finite variance. Let z, = 0 for all t # s and z, = 1 for some 1 < s < T. 
Finally, w, = x, + {. Now all variables in (1) are defined. The OLS estimator of 
4, calculated with the observed series y,, equals 

&XYtYt-l i(xs-1 +x,+l)+Cx,x,-1 
TK= c2 + 21x, + xx:- 1 

= o(r-‘). 

A large A0 corresponds to a large value of <. Therefore such an outlier causes 
the OLS estimator to be biased towards zero. This is easily understood by 
considering the bad leverage point in the lower-right corner of the scatter 
diagram for the A0 series in Fig. 1. As the OLS estimator takes all observations 
of the sample into account, this outlier causes a flatter regression line to be fitted 
and thus a smaller value of 141 to be estimated. It can also be shown that the 
standard error of the OLS estimator is (T - 1)) “‘(1 + o(l)), so that the DF-t 

tends towards - 4T - 1) for large values of [. Hence, rejection of the unit root 
hypothesis seems likely in the case of a large AO. 

‘Overrejection’ of the unit root hypothesis due to large AO’s is reported by 
Lucas (1995a, b) and Franses and Haldrup (1994). The intuition behind this 
phenomenon is straightforward: an A0 is, by its definition, in contrast with the 
persistence of shocks implied by the unit root hypothesis. The consequences of 
IO’s are less clear. It is known that the OLS estimator of the AR parameters is 
not very sensitive to the occurrence of IO’s (see, e.g., Martin, 1981, and the 
remarks in Bustos and Yohai, 1986). However, using similar calculations as in 
Example 2, Lucas (1995a) shows that large IO’s can either cause overrejection or 
underrejection of the unit root hypothesis, depending on the true value of the 
autoregressive coefficient. 

As was noted previously, the OLS estimator has an unbounded IF. Therefore, 
we look for an alternative estimator that possesses a bounded IF. One of the 
simplest alternatives is the conditional pseudo maximum likelihood estimator 
within the class of iid Student-t distributed innovations (MLT); compare 
Gourieroux et al. (1984). As an example, consider the AR(l) model 
y, = 4yt_ 1 + E,. The MLT estimator of 4 is defined as the value $ that solves 

c 1 +2!gri2v Yt-1 = 0, 

where EI, = y, - $yt_ 1, (T is a scale parameter, and v is the degrees of freedom 
parameter. It is easily seen that the MLT estimator for 4 falls within the class of 
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M estimators.’ It is known (see, e.g., Hampel et al., 1986) that for regres- 
sion problems in the iid setting the IF of this class of estimators can be 
decomposed into two parts. One part measures the influence of large 
residuals, while the other measures the influence of the design. Ordinary M 
estimators impose a bound on the former, but leave the latter untouched. 
Therefore, the compound IF for these estimators is often unbounded in the 
iid setting. However, the following proposition shows that ordinary M 
estimators like the MLT estimator can have a bounded IF in the time series 
context. 

Proposition 1. Consider model (1); let x, be an AR(p) process with iid innovations; 
let w, be as in (2) and let z, be a binary iid process with P(z, = 1) = y; then the 
MLT estimator has a bounded IF. 

A more precise statement and a proof are given in the Appendix. Here, we 
present a heuristic derivation of a finite sample analogue of the IC for the MLT 
estimator. Consider the uncontaminated AR( 1) series, xt = 4x, _ 1 + E,, which is 
observed from t = 0, . . . , T. Let w, = x, + &, with r, = 0 for all t # s, and 5, = i 
with 1 < s < T. To avoid unnecessary complexities, we assume that 
x, = x,_ 1 = E, = E,+ 1 = 0, o = 1, and that 1*/T is negligible. We now look at 
the difference between the MLT estimator based on the clean or outlier free 
sample (with [ = 0) and on the contaminated sample (5 # 0). Denote these 
by 4 and 6, respectively. Note that the contamination parameter y of 
(4) equals T-l. We therefore look at the quantity T($ - 6). Define 

&(4) = JG - 4yt- 1 and e,(4) = x, - 4x, _ 1. It is obvious from (6) that 6 solves 

c 4(B) 
1 + &($)“/v yf-l = O. (7) 

Substituting e,($) for &($) and x,- , for y,_ 1 in (7), we obtain a similar equation 
for 4. Taking a first-order Taylor expansion of the right-hand side (rhs) of (7) 
around 4 and omitting higher-order terms, we obtain 

OZE 6(6) 1 - &(i$)“/v 
1 + t?f;($,‘/V Y,-1 - T-lx (1 + &($)‘/v)2 yf- l 1 T@ - $1. (8) 

Next, we notice that &($) = e,(d) for all t # s, s + 1. Denote the factor between 
square brackets in (8) by IT($). Using the estimator generating function of 

’ In the AR(l) context, the OLS estimator solves xyt_ ,E, = 0. M estimators solve Cy,- I$(~,) = 0, 

where the function CL(.) is chosen such that outliers are weighted less heavily. For examples, see 

Huber (1981) and Hampel et al. (1986). 
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$ [compare (7)], th e values of x, and E, for t near s, formula (8) can be rewritten 
as 

wj - 6, = uT(wf 1 Yt- 1 +;(;)‘/u 1 
f 

= (Mw l 
[ 

6+ l(d) d4 
1 1w2/v Ys + c e,($)2/v xt - + k+ 1 + 1 1 - =u74w1 Jr2 1 42c2,v’ + 

Note that this function is bounded in 5. The OLS estimator is obtained by 
letting v + co. It is easily seen that in that case (9) becomes unbounded in i. 
A more formal statement of these results is given in the Appendix. 

It follows from the proposition that the IF of the MLT estimator is bounded 
for a wide variety of uncontaminated cdf’s Fi. This suggests that the MLT 
estimator can still provide useful information about the true value of 4 if the true 
cdf is in some neighborhood of the assumed t distribution with v degrees of 
freedom. A necessary condition for the boundedness of an M estimator in a time 
series context is that the estimator is defined by a weakly redescending $ func- 
tion.2 More specifically, I&) must be O(E, ‘) for large values of 6,. In this sense, 
the MLT estimator forms a borderline case, because for this estimator 
I,@,) = (E~/o)/( 1 + .$/~a’) = O(.s- ‘) for large a,. The finding that ordinary M es- 
timators can have a bounded IF in the time series context was to our knowledge 
not noted earlier in the literature. A few examples of IC’s of the class of MLT 
estimators of 4 in y, = +yt_ 1 + E, for the case of standard normal iid innova- 
tions are given in Fig. 2. 

The bounded IF property also holds for the general AR(p). Incorporating 
deterministic functions of time, like a linear time trend or a constant, causes no 
special problems. As long as they are generated correctly, they will not be 
outlying in the space of explanatory (or predetermined) variables. Therefore the 
use of an ordinary M estimator is enough in order to deal with outliers. 

So far, we assumed that the scale parameter 0 was known. Usually, it has to be 
estimated simultaneously with the autoregressive parameters &, i = 1, . . , p. 
This can be done by using the first-order conditions of the MLT estimator for 
both 4 and B. Such an estimator for (r has a bounded IF, because its correspond- 
ing $ function is bounded and only depends upon the true process through 
yl - $yO. However, there may arise some problems with the number of outliers 
this simultaneous estimation procedure can cope with (Maronna and Yohai, 
1991). 

‘The function $J(.) is called weakly redescending if lim,, km I/J(X) = 0. It is called strongly redescend- 

ing if for some positive constant c it holds that t&x) = 0 for all 1x1 > c. 
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Fig. 2. Influence curve for #J = 0.8 for several values of Y evaluated at F,” = Gaussian. 

A harder problem has to be faced if one wants to estimate the degrees of 
freedom parameter v simultaneously. Simply using the first-order conditions of 
the MLT estimator for 4,0, and v results in an unbounded IF for both 8 and 
v^ for all finite values of v (Lucas, 1992). Developing a bounded influence 
estimator for v that is consistent for the family of t distributions is difficult. 
However, it was noted previously that the MLT estimator belongs to the class of 
M estimators. Most of these make use of a tuning constant, which is fixed at 
a value prespecified by the user. The parameter v can also be treated as such 
a tuning constant. In this case the user does not believe that the innovations are 
actually drawn from the prespecified t-distribution, but (s)he only uses the first- 
order conditions of the likelihood under this distribution in order to obtain 
a certain degree of robustness. The efficiency loss caused by fixing v if the sample 
is actually driven by t distributed innovations with a different degrees of freedom 
parameter, can be kept within bounds. However, some tradeoff has to be made 
between efficiency and robustness (Hampel et al., 1986, p. 44). Similar arguments 
are encountered in the literature on pseudo maximum likelihood estimators 
(Gourieroux et al., 1984), a class of estimators that also comprises the MLT 
estimator. 
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Another point is that for 4 = 1 the IF of both the OLS estimator and the 
MLT estimator are identically equal to zero. This can be seen from the formulas 
in the Appendix. There the scalar C, which is closely related to the second 
unconditional moment of y,, diverges to infinity if 4 approaches unity. As 
a result, one might think that for integrated processes there is no need to use the 
more complicated MLT estimator in order to obtain robustness. Two things can 
be said about this. First, the MLT estimator for a fixed value of the degrees of 
freedom parameter v is not more difficult to compute than the OLS estimator. It 
can be obtained by using an iterative weighted least squares algorithm (Prucha 
and Kelejian, 1984). Second, under the alternative hypothesis of stationarity the 
MLT estimator is more robust than its OLS counterpart according to Proposi- 
tion 1. Moreover, power can be gained by using the MLT methodology if the 
innovations are leptokurtic; see Lucas (1995b). 

Upon closer inspection of (2), the A0 model can also be regarded as 
a measurement error model, with x, the clean process and z,<, the measurement 
error. Therefore, under this type of contamination, yt in fact follows an ARMA 
instead of a pure AR process. Consequently, the nonrobustness of the OLS 
based DF-t might be repaired by constructing a test that takes into account the 
temporal dependence of the disturbances that drive the time series. These tests 
can be found in the work of Phillips (1987) and Phillips and Perron (1988). 
However, the results in Lucas (1995a) show that the approach of Phillips and 
Perron is not outlier robust in finite samples, as opposed to the results based on 
robust estimation procedures. 

A practical problem with the use of different estimators for testing the unit 
root hypothesis is that each time new critical values have to be tabulated. This 
also holds for the MLT estimator used in the present context. We use a similar 
simulation setup as in Fuller (1976). The asymptotic distribution of the DF-t 
based on the MLT estimator can be found in Lucas (1995a,b). We generate 
x, from model (1) as a random walk of length 50, 100, or 200 with iid innova- 
tions. First we let w, = x, and estimate the regression models y, = 4yt_ i + E,, 
y,=cr+4y,_, +e,,andy,=cl+/?~+$y,_~ +stwiththeMLTestimator.We 
use several values for the degrees of freedom parameter v. The DF-t for each of 
these models can be calculated. This process is repeated 1,000 times and the 
50th-order statistic of the simulated DF-t values serves as an estimate of the 5% 
critical value. The standard error of I$ for the model without constant and trend 
is estimated by 

(10) 

with $‘(x) = dll/(x)/dx, 2 = y, - $yl_ 1, and 8 is the estimate of the scale of 
E, (compare Hampel et al., 1986, p. 316). Similar formulas are used for the other 
two regression models. For B we use the pseudo maximum likelihood estimator 
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under the Student-t distribution. The same value of v is used for computing 
6 and B. Note that (10) is in fact a kind of heteroskedasticity-consistent 
covariance estimator (compare White, 1980). This causes a discrepancy between 
the critical values tabulated by Fuller and the ones supplied in this paper for 
v = co. As noted by simulations in Lucas (1995b), the use of heteroskedasti- 
city-consistent standard errors also helps to make the standard DF-t more 
robust. For completeness, we report the results for the standard DF-t with 
(v = o) and without (v = co) the heteroskedasticity correction for the standard 
error estimate. The critical values for the Gaussian random walk are presented 
in Table 1 under the heading ‘clean’. 

In order to illustrate the robustness aspects of the test, we perform similar 
simulations with zt from (1) equal to an iid process and y equal to 0.05. For the 
r, process (2), we consider a sequence of iid Gaussian random variables with 
mean zero and standard deviation equal to five. The results of these simulations 
can be found in Table 1 under the heading ‘outliers’. 

The simulation experiment leads to the following four conclusions. 
First, the size distortions due to the presence of AO’s are increasing in v, the 

tuning constant of the MLT estimator. This can be expected, because v deter- 
mines the degree of robustness of the estimator. 

It is illustrative to consider an example of how Table 1 can be used. Consider 
the case T = 100 and a regression model with trend. If the standard DF-t is used 
at the 5% level, the appropriate critical value is - 3.527. For the DF-t with 
heteroskedasticity-consistent standard errors (v = w), the appropriate value is 
- 3.742, while for the MLT based test with v = 3 it equals - 3.661. These 

values are to be used by the applied researcher. Now consider the effect of 
additive outliers on each of these three tests. If we use the outlier generating 
scheme described below Table 1, the actual critical value for a 5% level test 
with the ordinary DF-t for a sample with outliers is - 5.885. However, the 
researcher is unaware of this exact value, because (s)he, in general, is ignorant of 
the exact model that generated the outliers. Therefore, he continues to use the 
critical value - 3.527, which for the present DGP gives a 5 1% level test. Similar 
arguments for the other two cases lead to the result that these tests have a size of 
10% and 7.5%, respectively, for the DGP with 5% AO’s. The size distortion of 
the MLT based test is the smallest. Note, however, that using heteroskedasti- 
city-consistent standard errors also helps in reducing the sensitivity of the size 
with respect to outliers. This finding was also noted in Lucas (1995b). 

Second, the MLT based tests demonstrate a slower convergence to the 
asymptotic distribution. The different behavior for v = 1 and v = cc in Table 1 
is considerable. Therefore, it seems necessary to use the finite sample critical 
values from Table 1 for MLT based unit root tests in small samples. Also note 
that setting v = 1 in samples of this size does not always yield the maximum 
protection against outliers. The convergence behavior and robustness properties 
are further illustrated in Fig. 3, that presents the cdfs of the unit root tests for 
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Table 1 

Critical values at the 5% level for the unit root test with the MLT estimator for standard Gaussian 

iid innovations 

n = 50 n=lOO n=200 

” Clean Outliers Clean Outliers Clean Outhers 

None 

1 - 2.891 - 2.918 - 2.415 - 2.596 - 2.216 - 2.321 

2 - 2.353 - 2.554 - 2.176 - 2.441 - 2.091 - 2.345 

3 - 2.270 - 2.447 - 2.054 - 2.485 - 2.040 - 2.477 

4 - 2.273 - 2.414 - 2.065 - 2.469 - 2.026 - 2.571 

5 - 2.184 - 2.441 - 2.064 - 2.486 - 2.045 - 2.615 

7 - 2.116 - 2.458 - 2.081 - 2.494 - 2.069 - 2.685 

10 - 2.098 - 2.471 - 2.081 - 2.497 - 2.05 1 - 2.752 

0 - 2.047 - 2.749 - 2.086 - 2.736 - 2.009 - 2.818 

cc - 1.885 - 3.517 - 2.034 - 3.990 - 2.001 - 3.863 

Constant 

1 

2 

3 

4 

5 

7 

10 

0 

cc 

- 4.009 - 4.370 - 3.545 - 3.764 - 3.117 - 3.233 

- 3.458 - 3.642 - 3.262 - 3.447 - 3.004 - 3.305 

- 3.429 - 3.393 - 3.097 - 3.358 - 2.974 - 3.395 

- 3.312 - 3.404 - 3.061 - 3.315 - 2.932 - 3.398 

- 3.254 - 3.449 - 3.060 - 3.304 - 2.920 - 3.425 

- 3.279 - 3.461 - 3.076 - 3.226 - 2.93 1 - 3.442 

- 3.224 - 3.532 - 3.082 - 3.189 - 2.912 - 3.446 

- 3.297 - 3.782 - 3.046 - 3.475 - 2.915 - 3.373 

- 2.920 - 4.566 - 2.856 - 5.058 - 2.806 - 4.859 

Trend 

1 - 5.498 - 6.713 - 4.280 - 4.242 - 3.661 - 3.840 

2 - 4.420 - 5.119 - 3.760 - 3.868 - 3.498 - 3.939 

3 - 4.081 - 4.636 - 3.661 - 3.864 - 3.502 - 3.940 

4 - 3.973 - 4.695 - 3.663 - 3.850 - 3.443 - 3.935 

5 - 3.944 - 4.676 - 3.659 - 3.868 - 3.439 - 3.982 

7 - 3.807 - 4.898 - 3.664 - 3.786 - 3.466 - 3.975 

10 - 3.743 - 5.033 - 3.684 - 3.777 - 3.453 - 3.958 

0 - 3.836 - 5.425 - 3.742 - 4.204 - 3.450 - 3.988 

co - 3.438 - 5.586 - 3.527 - 5.885 - 3.349 - 6.238 

The 5% critical values under the heading ‘clean’ are based on simulations that use a Gaussian 

random walk without outliers. For the entries under the heading ‘outliers’, the simulations are based 

on a random walk with 5% additive outliers. The outliers are generated by adding drawings from 

a normal with zero mean and standard deviation 5 to a randomly chosen subset of 5% of the 

original observations. 

The headings ‘none’, ‘constant’, and ‘trend’ refer to the deterministic components that are 

incorporated in the regression model. 
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No constant: T=50 No constant; T=200 

a6 -5 -4 -3 -2 -1 0 1 

DF-t 

Constont; T=50 

OF-t 

Constant; T=200 

a6 -5 -4 -3 -2 -1 0 1 2 '16 -5 -4 -3 -2 -1 0 1 2 
OF-t 

Constant and trend; T=50 

OF-t 

Constant and trend; T=200 

a6 -5 -4 -3 -2 -1 0 1 2 a6 -5 -4 -3 -2 -1 0 1 2 
DF-t OF-1 

Fig. 3. CDF of the DF-t based on OLS and on MLT. 



H. Hoek et al. / Journal of Econometrics 69 (1995) 27-59 41 

two values of v. Especially for the regression model with trend the figure reveals that 
the cdf can change considerably if the sample is enlarged. Moreover, if outliers 
are added to the sample, the cdf of the test based on the OLS estimator (v = co) 
shifts more to the left than the one based on the MLT estimator with v = 3. 

Third, in addition to the results reported in Table 1, simulations were per- 
formed using a random walk with Student-t instead of Gaussian innovations. 
The result of using more heavily tailed innovations is that the critical values for 
all of the tests shift somewhat to the right,3 thus decreasing the type I error of the 
tests if the critical values of Table 1 are used. The robustness and convergence 
properties of the test remain similar. 

Fourth, using a different distribution for generating the AO’s does not alter 
the results. We used the Cauchy and the symmetric delta distribution. The latter 
generates the values 5 and - 5 with equal probability. The Cauchy AO’s result 
in a very large shift to the left of the 5% critical values of the OLS based DF-t, 
e.g., from - 3.45 to - 8.46 for v = o, T = 200, and a regression model with 
trend. The critical value for the MLT based test with v = 3 remains remarkably 
stable in the same setting and only shifts from - 3.50 to - 3.95. Similar 
conclusions can be drawn from the remaining experiments. 

4. Bayesian analysis 

Recent years have seen a growing number of Bayesian studies on the possible 
presence of a unit root in macroeconomic time series (e.g., Sims, 1988; DeJong 
and Whiteman, 1991a,b; Phillips, 1991; Schotman and van Dijk, 1991a,b, 1993). 
The focus of these studies is on the specification of a prior distribution: posterior 
inference should, to a certain extent, not be sensitive to the choice of the prior. It 
is this kind of robustness that is usually studied in the Bayesian literature. 
Robustness with respect to ‘irregularities’ in the data has received less attention. 
However, it is easily shown that also in a Bayesian framework AO’s can 
seriously affect unit root inference. 

Example 3. Consider the same processes x,, w,, and z, as in Example 2. Define 
the parameter vector 8 = (4, a2). Assume a diffuse prior rc(%) cc (r- 1 and a Gaus- 
sian likelihood. The marginal posterior for 4 is a t density (see Judge et al., 1988, 
Sec. 7.4.4): 

P(4lYlY ... omBb,[ &I)~]-', T - 1) 

3The change is considerable if Cauchy innovations are used. This is in accordance with Knight 

(1991), who derives that for a certain class of infinite variance innovations the DF-t is again 

asymptotically normal, even if it is based on an M estimator. 
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where $oLs and & are the OLS estimates of 4 and g2, respectively. Further- 
more, t(. ; p, C, v) denotes the density function of the Student-t distribution with 
mean CL, precision matrix C- I, and degrees of freedom v. Looking at the extreme 
case of an infinitely large A0 ({ + co), we obtain 

P(dYl, ... , J+) = Q&O, (T - 1)-l, T - 1). 

Therefore, a sufficiently large additive outlier pushes the posterior away from 
the unit root, even if the true value of 4 is unity. 

Assuming normality in case of (additive) outliers in the data can be regarded 
as a misspecification of the likelihood. Therefore, robustness with respect to 
outliers can be linked to the issue of insensitivity of posterior results to mis- 
specification of the likelihood function (see Berger, 1985, Sec. 4.7). To model 
outliers, fat-tailed distributions have been suggested in the Bayesian literature as 
well. For example, Learner (1978, Sec. 8.2), Smith (1981), and West (1984) 
mention the use of the independent Student-t to ‘robustify’ the posterior results. 
This robustness property of the Bayesian posterior results that are based upon 
the Student-t likelihood can be explained by the close link between the posterior 
and the likelihood, in particular if ‘data-dominated’ priors are employed. As 
argued in the previous section, maximum likelihood results based on a t likeli- 
hood possess certain robustness properties. Intuitively, these properties are passed 
on to results obtained from a Bayesian posterior analysis that uses a Student-t 
likelihood. Analogously, Example 3 shows that the nonrobustness of OLS es- 
timators is ‘inherited’ by Bayesian inference using a Gaussian likelihood. We note 
that in order to evaluate the robustness properties in a Bayesian framework with 
the iid Student-t distribution the concept of the (posterior) score function has been 
used by Smith (1981, Sec. 5) and West (1984). We only analyze the effect of the 
Student-t on unit root inference, since that is our parameter of interest. 

Geweke (1993) also presents a Bayesian analysis of the Student-t linear model. 
Concentrating on computational issues, in particular the implementation of 
Gibbs sampling techniques to compute posterior results, he shows that the 
assumption of an iid Student-t distribution is equivalent to the introduction of 
a certain type of heteroskedasticity. Hence, outlying observations (large resid- 
uals) are weighted less heavily. The ability of the Student-t to model hetero- 
skedasticity of the GARCH type is also discussed by Kleibergen and van Dijk 
(1993). All these arguments lead us to choose an iid Student-t likelihood4 instead 
of a Gaussian one and to label our Bayesian analysis of the unit root hypothesis 
as being robust. 

4 Zellner (1976) analyzes the case of a multivariate Student-t, where the innovations arc uncorrelated but 

not independent. In a flat prior Bayesian framework, an identification problem arises. As Zellner shows, 

specification of a flat prior for the degrees of freedom parameter v leads to a flat marginal posterior. Also, 
the posterior for the location parameters is identical to the posterior under a Gaussian likelihood. 
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The likelihood function for the general linear model y = X/I + e, where e is 
a vector of iid Student-r disturbances, is proportional to 

T T((v + 1Y-a 
w1 g2, VIY) = n 

*= i T(v/2)(va2)“2 [ 

1 + (yt -x;q’ -(v+1)/2 

V02 1 2 (11) 

where J+ and x’, are the tth row of y and X, respectively. In our case, x, contains 
a constant (and possibly a time trend) as well as lagged endogenous variables. 
This leads to the same expression as (11). Note that in time series models one 
usually conditions on a fixed initial value yo. 

In order to examine the effect of the iid Student-r error distribution on unit 
root inference, we consider the following parameterization of the AR(l) model 
with unknown mean: y, = p + 4y,_ I + E,. The generalization to the AR(p) 
model is straightforward. We assume a flat prior for the parameters of the 
model, including v, 

7+, 4, fJ2, v) cc 6 l. (12) 

An improper uniform prior for v imposes normality, because the prior odds in 
favor of normality are infinite (see Geweke, 1993).5 Geweke proposes, therefore, 
to use an exponential prior for v with parameter 1. The sensitivity of the results 
with respect to the choice of 1 is examined by varying this parameter. The 
computations can be performed using the Gibbs sampler if one exploits the 
equivalence of a normal linear model with heteroskedasticity and the homo- 
skedastic Student-t linear model. 

The exponential priors, considered by Geweke, give more prior weight to low 
values of v. As a result, the hypothesis of a Student-t distribution is a priori more 
likely than the hypothesis of normality. In this paper we proceed as follows. We 
note that the likelihood specified in (11) approaches the Gaussian likelihood for 
large values of v. Only for low values of v the difference between the two is 
substantial. We therefore choose to specify a uniform prior on the interval 
(0, v*], where v* is such that the Student-t distribution with this degrees of 
freedom parameter is ‘sufficiently’ close to the normal: 

n(v) = 1/v* for 0 < v < v*, 
(13) 

= 0 elsewhere. 

A sensitivity analysis can be performed by considering different values of v*. 
Note that it is argued in Section 3 that simultaneously estimating { /?, g2, v} 
results in a unbounded influence function. A priori imposing bounds on v does 
not solve this problem. 

The posterior resulting from (1 l), (12), and (13) is difficult to handle analyti- 
cally. In order to perform posterior analysis, we apply importance sampling 

5 Normality is equivalent to v = co. 
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using the SISAM program (see Hop and van Dijk, 1992). A multivariate 
t density is used as the importance function. Given the posterior densities, one 
may test for the presence of a unit root (4 = 1). Also the (approximate) normal- 
ity assumption (v = v* versus v < v*) can be tested. Some empirical results are 
presented in the next section. 

5. Empirical illustration 

To illustrate the use of the iid Student-t in a Classical and Bayesian unit root 
framework, several time series are analyzed. First, we consider the Finland/US 
real exchange rate, studied by Perron and Vogelsang (1992) and Franses and 
Haldrup (1994). This series is obtained by deflating the nominal exchange rate 
by a consumer price index. As Fig. 4 clearly shows, this series is characterized by 
the presence of outliers. The outliers appear to be additive: the series almost 
immediately returns to the ‘normal’ pattern. Following Franses and Haldrup, 
we consider the following model for this series: 

Yt = p + PYZ-1 + hey,-I + Et, (14) 

where p denotes the unit root parameter, defined as the sum of the original AR 
coefficients.6 

Next, we consider a well-known series from the marketing literature, the 
Lydia Pinkham annual advertising series (see Fig. 5). The first difference of this 
series contains several (additive) outliers, in particular in the middle of the 
sample. These additive outliers in the first differences correspond to innovative 
outliers in the level of the series. Helmer and Johansson (1977) specified an 
AR(2) model for the first differences of the series, implying a unit root in the 
level. To test for this unit root, we consider the regression: 

Y, = P + PY,-I + 41dy,-I + MY,-2 + ct. (15) 

Finally, as in Schotman and van Dijk (1991b), we consider the extended 
Nelson/Plosser data (see also Lucas, 1995a). To study these data, we consider an 
AR(3) model with linear time trend 

Y, = P + & + PY,-I + &AY,-I + ~JY,-z + ct. (16) 

All three models are first estimated using a maximum likelihood procedure 
under iid Student-t errors. Table 2 presents results for some values of v. 

With the exception of the series of employment, velocity, and S&P 500, the 
estimates of p increase as v decreases, which is an indication of negative 
correlation between the maximum likelihood estimators for p and v. The most 

6 So in the case of the AR(I) model considered in the examples, p = C#I. 
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Table 2 
MLT estimates of p, with v degrees of freedom 

Series Y=O v = 10 v=5 v=3 v=l v* 

Finland/US 

Advertising 

Real GNP 

Nominal GNP 

Real GNP per capita 

Industrial production 

Employment 

Unemployment 

GNP deflator 

Consumer price index 

Wages 

Real wages 

Money 

Velocity 

Interest 

S&P 500 

0.489 0.505 
(0.159) (0.244) 

0.856 0.941 
(0.115) (0.145) 

0.813 0.813 
(0.055) (0.055) 

0.944 0.960 
(0.039) (0.031) 

0.803 0.802 
(0.056) (0.055) 

0.826 0.829 
(0.055) (0.052) 

0.864 0.860 
(0.049) (0.049) 

0.744 0.779 
(0.066) (0.064) 

0.966 0.985 
(0.025) (0.016) 

0.994 0.994 
(0.010) (0.009) 

0.939 0.941 
(0.032) (0.028) 

0.935 0.947 

(0.040) (0.041) 

0.941 0.949 
(0.024) (0.022) 

0.968 0.963 
(0.025) (0.026) 

0.953 0.977 
(0.053) (0.067) 

0.932 0.936 
(0.032) (0.034) 

0.630 
(0.216) 

1.018 
(0.108) 

0.815 
(0.058) 

0.965 
(0‘030) 

0.806 
(0.059) 

0.840 
(0.052) 

0.861 
(0.046) 

0.801 
(0.063) 

0.989 
(0.015) 

0.994 
(0.008) 

0.943 
(0.025) 

0.957 
(0.041) 

0.952 
(0.022) 

0.959 
(0.027) 

0.992 
(0.073) 

0.935 
(0.035) 

0.743 
(0.163) 

1.066 
(0.072) 

0.821 
(0.067) 

0.969 
(0.030) 

0.814 
(0.07 1) 

0.852 
(0.054) 

0.866 
(0.042) 

0.821 
(0.065) 

0.993 
(0.015) 

0.995 
(0.008) 

0.947 
(0.024) 

0.967 
(0.041) 

0.953 
(0.022) 

0.955 
(0.027) 

0.998 
(0.077) 

0.930 
(0.037) 

0.876 
(0.062) 

1.120 
(0.053) 

0.893 
(0.070) 

0.972 
(0.035) 

0.879 
(0.046) 

0.885 
(0.068) 

0.863 
(0.039) 

0.885 
(0.048) 

0.999 
(0.012) 

1.001 
(0.006) 

0.959 
(0.020) 

0.987 
(0.043) 

0.960 
(0.039) 

0.947 
(0.030) 

0.996 
(0.017) 

0.897 
(0.040) 

1.23 

1.81 

3.62 

2.42 

3.55 

3.93 

2.51 

3.47 

2.38 

1.73 

1.74 

co 

3.35 

2.73 

1.42 

7.01 
_ 

The first five columns report MLT estimates of the unit root parameter p using a Student-t 
likelihood with v degrees of freedom. The heading v = w denotes normality. Heteroskedasticity- 
consistent standard errors are given between brackets. The final column gives the ML estimate of the 
degrees of freedom parameter v. 
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remarkable result is obtained for the Finland/US real exchange rate: assuming 
normality gives an estimate of 0.49 for the unit root parameter, while under 
a t distribution with one degree of freedom, this estimate equals 0.88. Note the 
sharp decline in the estimated standard deviation of this estimate, a result that is 
also obtained for the Lydia Pinkham advertising series. For the extended 
Nelson/Plosser series this relation is less clear. The entries in Table 2 can also be 
used to compute the DF-t statistic ((b - 1)/Q). For the Finland/US real ex- 
change rate series, for example, this statistic moves from - 5.74 (v = co) to 
- 3.21 (v = w) and, finally, to - 2.00 (v = 1). Using Table 1, with n = 100, the 

first t-statistic is significant at the 5% level using both the ‘clean’ and ‘outliers’ 
critical values (respectively - 2.856 and - 5.058). The second statistic, using 
the heteroskedasticity consistent standard error, is significant when using the 
‘clean’ critical value ( - 3.046), but insignificant using the ‘outliers’ critical value 
( - 3.475). Finally, the third, more robust statistic is insignificant under both 
processes, the critical values being - 3.545 and - 3.764 respectively. This 
example shows that taking account of outliers in the series can lead to nonrejec- 
tion of the, otherwise rejected, unit root hypothesis. Finally, except for the real 
wage series, the MLT estimates of v are all relatively small, providing some 
evidence against the assumption of Gaussian iid innovations. 

The Bayesian posterior results, reported in Table 3, are comparable. A nega- 
tive correlation between p and v is found for the Finland/US real exchange rate 
series and, even stronger, for the Lydia Pinkham advertising series. This is 
clearly demonstrated in the contour plots in Figs. 4 and 5. Also, for both series 
the posterior for p shifts to the right when the restriction v = GO is dropped. The 
case against iid normality is the strongest for the exchange rate series: all 
posterior mass for v is concentrated on the interval (0,4). For the advertising 
series, the posterior has a mode near v = 2, but it is skewed to the right. 

Our results for the Finland/US real exchange rate series correspond to the 
results of Franses and Haldrup (1994). By using dummy variables, their estimate 
of p increases from 0.49 to 0.81. The corresponding DF-t statistic increases from 
- 5.74 to - 2.65. However, the inclusion of dummy variables requires pretest- 

ing for the presence and the location of outliers. Our approach does not need 
such a first round and may therefore be easier to implement. 

Results for the extended Nelson/Plosser series are less clear. For half of the 
series the marginal posterior for p changes only slightly when the assumption of 
normality is dropped. Take as an example the Real GNP series. Some marginal 
posteriors for this series are plotted in Fig. 6. The effect of dropping the 
normality assumption on the posteriors for p and 6 is very small. The posterior 
density of v has a mode around 4, but is skewed to the right. The contour plot of 
the bivariate posterior and the entry in the final column of Table 3 give no 
indication of a substantial correlation between p and v. For the interest rate 
series, shown in Fig. 7, the posterior for p clearly shifts to the right. Also, 
this posterior is somewhat less concentrated than the ‘normal’ posterior. 
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Table 3 
Posterior moments for the linear autoregressive model 

Series EN(P) E,(P) E,(v) R 6% Y 

Finland/US 

Advertising 

Real GNP 

Nominal GNP 

Real GNP per capita 

Industrial production 

Employment 

Unemployment 

GNP deflator 

Consumer price index 

Wages 

Real wages 

Money 

Velocity 

Interest 

S&P 500 

0.489 
(0.090) 

0.856 
(0.089) 

0.814 
(0.056) 

0.944 
(0.032) 

0.803 
(0.058) 

0.826 
(0.053) 

0.864 
(0.048) 

0.749 
(0.07 I) 

0.966 
(0.02 I) 

0.994 
(0.011) 

0.939 
(0.029) 

0.935 
(0.045) 

0.941 
(0.024) 

0.968 
(0.025) 

0.953 
(0.035) 

0.932 
(0.036) 

0.829 
(0.085) 

0.993 
(0.116) 

0.813 
(0.058) 

0.966 
(0.03 1) 

0.802 
(0.066) 

0.838 
(0.058) 

0.862 
(0.048) 

0.798 
(0.079) 

0.991 
(0.017) 

0.995 
(0.008) 

0.946 
(0.020) 

0.945 
(0.05 1) 

0.951 
(0.024) 

0.960 
(0.027) 

1.040 
(0.048) 

0.935 
(0.040) 

1.52 
(0.45) 

6.98 
(5.65) 

7.91 
(4.89) 

3.74 
(2.50) 

8.04 
(5.06) 

1.22 
(4.36) 

6.95 

(5.00) 

6.90 
(4.58) 

4.81 
(4.35) 

3.51 
(3.18) 

12.7 
(6.87) 

12.1 
(4.86) 

7.03 
(4.76) 

7.10 
(5.29) 

1.80 
(0.63) 

7.97 
(4.89) 

- 0.39 

- 0.53 

- 0.03 

-0.11 

- 0.03 

- 0.14 

- 0.04 

- 0.22 

- 0.15 

- 0.10 

- 0.12 

-0.11 

- 0.10 

0.14 

- 0.17 

0.01 

E(p) and E(v) are, respectively, the posterior expectation of the unit root parameter and the degrees 
of freedom parameter. The posterior correlation between p and v is given in the column labeled R,.,. 
Subindices ‘N’ and ‘[‘denote results based on the Normal (v = co) respectively the Student-t (v < 20) 
likelihood. 
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Fig. 4. Finland/US real exchange rate: Posterior results, linear model. 
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Fig. 5. Lydia Pinkham advertising: Posterior results, linear model. 
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The posterior for 6 shifts to the left. The correlation between v and p, given in 
Table 3, is negative. Also, the posterior for v is concentrated on the interval (0,5). 
Negligible posterior weight is given to values of v exceeding 5, providing strong 
evidence against the assumption of iid normal innovations. With the exception 
of the velocity series all Nelson/Plosser series reveal either a negligible or 
a negative correlation between p and v. 

The Nelson/Plosser series have also been analyzed by Lucas (1995a) and 
Geweke (1993). Lucas, using the MM estimator (Yohai, 1987), obtains mixed 
results. The unit root hypothesis is rejected for 4 of the 14 series. An explanation 
of the difference between his results and the ones obtained here is as follows. 
Most of the Nelson/Plosser series are characterized by the presence of a struc- 
tural break (see, e.g., Perron, 1989; Zivot and Phillips, 1991). The MM estimator 
can cope with a large number of outliers. In contrast, the MLT estimator is only 
robust to a few outlying observations. Therefore, the MM estimator is probably 
more ‘robust’ to structural changes than the MLT estimator. Loosely speaking, 
the MM estimator discards the observations before or after the structural break, 
depending on their number. 

The Bayesian results of Geweke also differ from our results. Considering the 
original Nelson/Plosser data (until 1970) Geweke finds that the degrees of 
freedom parameter, the unit root parameter, and the posterior odds ratio in 
favor of difference stationarity are positively correlated. However, Geweke uses 
a different prior and model specification. To analyze the differences in some 
detail, consider the ‘structural’ model parameterization used by Geweke (which 
is due to Schotman and van Dijk, 1993): 

y, - p - 6t = u,, hw, = G, (17) 

for t = 1, . . . , T, where a(L) is a polynomial in the lag operator L, and { 4) is 
a set of iid Student-t innovations with v degrees of freedom and variance 
parameter c2. Geweke (1993) shows that an equivalent assumption is given by 
st w N(0, a’~,) with v/at-x2(v), t = 1, . . . , T. 

In case of an AR(3) process, the polynomial a(L) can be decomposed as 
a(L) = (1 - p)L + (1 - r$1L - $,L2)(1 - L). Now, combining the prior speci- 
fication of Geweke (1993)’ with respect to v and the prior specification for the 
remaining parameters of Schotman and van Dijk (1991a,b, 1993), we obtain: 

w = +A-‘, PE[~-A,l), A>O, 
1 

73 p = 1, 

‘The complete specification of Geweke differs by considering an AR(5) model with an increasing 

prior on p and normal priors on the other location parameters. 
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0 I P,~,~o)-N(Yo, a’wo/(l - p2)), 
~w4I v) Nx2(4 t = 0, . . . , T. 

For a discussion and justification of the first four priors, we refer to Schotman 
and van Dijk (1991a, b). Note that the prior for p enables us to compute the 
posterior odds in favor of difference stationarity. To avoid the Lindley paradox, 
A is chosen such that [l - A, 1) is the 99% HPD region under stationarity. 
Prior odds are equal to one. Further, to take account of the fact that we consider 
the Student-t instead of the Gaussian likelihood, the scaling factor o. is 
included in the conditional prior for p. Finally, we consider the following prior 
for the degrees of freedom parameter: 

n(v) oc exp( - nv), vE(o,v*]. (19) 

If 1 = 0, this corresponds to the flat prior considered in (13). The posterior, 
obtained by multiplying the likelihood of (17) with the prior densities (18) and 
(19), is evaluated using the Gibbs sampler. Results, both for the original (1970) 
and the extended (1988) Nelson/Plosser series, are reported in Table 4, for the 
case of 1 = 0. Results (not reported here) are qualitatively similar if we consider 
the exponential prior for the degrees of freedom parameter: n(v) CC exp( - v). Of 
course, this prior results in lower posterior means for v. 

For seven series, real GNP, real GNP per capita, employment, consumer 
price index, wages, velocity, and S&P 500, dropping the normality assumption 
results in a decrease of the posterior odds in favor of difference stationarity, both 
for the 1970 and the 1988 sample. For the 1970 sample the posterior correlation 
between v and p for these seven series, with the exception of wages, is positive. 
This supports Geweke’s findings. For the series of unemployment, the GNP 
deflator, and the interest rate, abandoning the assumption v = co results in 
a larger odds ratio for both samples. For the other series, the results are mixed. 
However, considering the 1988 instead of the 1970 sample results in a (stronger) 
negative correlation between v and p for almost all series. As the results for the 
employment and interest rate series show, this is not always accompanied by 
a larger posterior odds ratio. 

We conclude from Table 4 that the difference between Geweke’s and our 
results can, to a large extent, be attributed to the different samples under 
consideration and much less to the model specification. This is also demon- 
strated by Fig. 8 . This figure gives the interest rate series as well as the posterior 
expectation of the vector of scale factors, cc),. We see that the largest scale factors, 
corresponding to large residuals, are concentrated in the final years of the 
sample. This graphically explains the large shift in the posterior mean of v from 
8.86 to 1.68, reported in Table 4. 

Our results, in particular for the Lydia Pinkham advertising and the 
Finland/US real exchange rate series, indicate that the degrees of freedom 
parameter and the unit root parameter are negatively correlated. This 
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Fig. 8. Interest: Series and weights (scaled) 

finding supports our theoretical results of Sections 2 and 3, and is also obtained 
by Kleibergen and van Dijk (1993) in their analysis of the US treasury bill rate 
series. As a result of this negative correlation, maintaining the assumption of 
normality (v = co) in the analysis of series containing outlying observations may 
incorrectly provide evidence against the unit root hypothesis. With respect to 
the Nelson/Plosser data series we reach the conclusion that, both for the 1970 
and the 1988 sample, for six series the posterior odds ratio indicate (trend) 
stationarity and for eight series they favor a unit root. These results are relatively 
robust with respect to the specification of the prior for v. 

6. Concluding remarks 

In this paper we examined the effect of outliers in the data on unit root 
inference. It was shown that additive outliers provide evidence against the unit 
root hypothesis, even if the bulk of the data is described by a difference- 
stationary model. 

The outlier sensitivity of the standard Dickey-Fuller statistic and of Bayesian 
inference under a Gaussian likelihood is caused by the nonrobustness of the 
OLS estimator (which equals the posterior mean in a flat prior Bayesian 
analysis). This estimator has an unbounded influence function. We showed that 
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the influence function of the maximum likelihood estimator which is based on 
a Student-t likelihood with finite degrees of freedom is bounded. Therefore, the 
Dickey-Fuller t test based on this estimator is less sensitive to aberrant observa- 
tions than the DF t test based on OLS. Critical values for the test are computed 
by means of simulation. Its (in)sensitivity to outliers is illustrated by using both 
simulated and empirical data. As an additional result we have shown that the 
use of heteroskedasticity-consistent standard errors in the computation of the 
OLS based Dickey-Fuller t test also provides some protection against the 
distortional effects of additive outliers. 

In a Bayesian context, we argued that replacing the Gaussian likelihood by an 
iid Student-t likelihood results in posteriors that are less sensitive to outlying 
observations in the data. A proper uniform prior for the degrees of freedom 
parameter is proposed. 

The analysis of several time series, in particular the Finland/US real exchange 
rate and the Lydia Pinkham advertising series, provided empirical support for 
our theoretical results. For these series, a negative correlation between the 
degrees of freedom parameter and the unit root parameter was found. The 
results for the Nelson/Plosser series are less clear. The Bayesian analysis of these 
series yields the result that six out of fourteen series are probably stationary. The 
dynamics of these series have yet to be investigated for the presence of structural 
changes next to the presence of outliers. We attribute the difference between our 
result and the positive correlation between the unit root and the degrees of 
freedom parameter found by Geweke (1993) to the different samples that are 
used in both studies. 

Finally, we note that our robustification of the Dickey-Fuller t test is only 
a first step towards the creation of an outlier resistant unit root test. The 
influence function is only one out of several concepts by which the robustness of 
procedures can be assessed. Moreover, the maximum likelihood estimator based 
upon the Student-t distribution has a bounded influence function, but only just. 
An alternative might be to consider the fraction of outliers an estimator can 
cope with. This leads to the consideration of high breakdown estimators, as is 
done in Lucas (1995a). However, the present (low breakdown) estimator has its 
own merits. It is easily calculated and provides at least some protection against 
outliers. In a Bayesian framework it is of interest to compare the iid Student-t 
model with a finite mixture model which is only partially specified. This is also 
a topic for further research. 

Appendix 

This appendix discusses the boundedness of the influence curve (IC) of the 
MLT estimator for autoregressive models under isolated additive outlier (AO) 
contamination. As the results for the AR(p) are qualitatively similar to the 
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results for the AR(l), only the latter case is dealt with in detail. Let x, be 
a stationary AR( 1) process x, = 4x,_ I + E,. The E, process is iid. For ease of 
exposition it is assumed that the mean and variance of E, are known and equal to 
0 and 1, respectively. If the variance parameter is unknown, estimation strategies 
similar to the ones used in the iid setting can be used (Hampel et al., 1986, 
p. 105). Further, consider the A0 model (2) with r, E [ and z, iid. Since the 
formal definition of the IC is of an asymptotic nature (Martin and Yohai, 1986) 
we define the MLT estimator as the functional &F:) + R that solves 

s VE 

2 yn W(y) = 0, 
V+E 

(20) 

with E = y1 - $(Fi)yO, y = ( yl,yO)‘, and F; the cumulative distribution func- 
tion of y, given that P(zt = 1) = y. The IC of the MLT estimator is given by the 
limit in (4). We assume that the regularity conditions given in Martin and Yohai 
(1986) hold. We can prove the following proposition: 

Proposition I’. The IC of the estimator 4, implicitly dejined in (20), under the 
isolated A0 model with t, = [, equals 

with Ed := y, - #yO and 

C=j 
E: - v 

CG + VI 
z y;dF,O(y). 

Proof. It is easily verified that the MLT estimator defined above belongs to the 
class of 9 estimators used by Martin and Yohai (1986). _ is alsc straightforward 
to check that the Gf quantities from their formula ;a the following 
restrictions: GA = 0 and Gjl = 0 for all j 2 2. More< 

Therefore, the proposition follows straightforwardly by applying their Theo- 
rem 4.2. 0 
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