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i. Introduction

The econometric analysis of the laws of demand and supply makes, in many
cases, use of the assumption that prices and quantities traded of economic
commodities are jointly determined. Well known examples are the demand
and supply for agricultural and financial commoditie. Econometric research
is also directed towards the analysis of the joint dynamic behaviour of such
variables as gross national product, investment, consumption, money
supply, infiation, and unemployment. In particular, the secular and cyclical
properties of these variables are of interest. The econometric study of market
processes and of business cycle phenomena is, in this century, greatly
advanced by the formulation of the Simultaneous Equations Model (SEM )
(see Haavelmo, 1943).'
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Given the specification of the SEM, estimation methods for its parameters
were developed using the maximum likelihood and least squares principles.
However, in an unpublished paper in 1962, Dréze argued that these classical
estimation methods were inadequate in two respects. First, available infor-
mation on parameters of interest is ignored. A classic example is the marginal
propensity to consume, which is an unrestricted parameter in the simple
Keynesian consumption function, while past experience and economic
knowledge restricts it, for most countries, to a subinterval of the unit interval.
Second, too much prior information is used in the sense that some variables
are omitted from an equation without proper justification. For instance, the
interest rate is deleted from the consumption function mentioned above.
Thus, the interest elasticity of consumption is assumed to be zero in the
long run. Starting from these limitations of classical estimation methods,
Dréze made several contributions to the econometric analysis of the SEM
from a Bayesian point of view.” A major result, contained in Dréze’s 1976
Econometrica paper is the derivation of the functional form of the posterior
density of the parameters of a single structural equation, which is analyzed
from a limited information point of view (i.e., ignoring information on the
parameters of the other structural equations).” This posterior density is
proportional to a ratio of multivariate-t densities and is defined as the class
of (1-1) poly-t densities (Dickey, 1968; Dréze, 1977, Zellner, 1971,
p. 269).

In the present paper we reanalyze and extend some of the results obtained
by Dréze. The organization of this paper is as follows. We start in Section
2 with an analysis of the exact form of the likelihood function of an
underidentified SEM, in the structural parameter space. Using a two-step
integration procedure we show that a uniform prior density on the structural
parameters gives explosive behaviour of the marginal posterior densities of
several parameters of an underidentified model. So, noninformative priors
may give sharp, albeit, pathological behaviour of posteriors. For expository

? Dréze (1975, 1976), Dréze and Morales (1976) describe results on identification, limited
information and full information estimation. An extensive survey is given by Dréze and Richard
(1983).

3 The reason for the focus on Bayesian limited information estimation was the difficulty of
deriving computationally tractable and flexible results in the full information case. It is to
some extent the same reason why, earlier, at the Cowles Commission, several researchers (e.g.,
Anderson, 1949) developed the limited information maximum likelihood estimator (LIML)
as an alternative to the full information maximum likelihood estimator (FIML). We note that
several computational procedures that are useful for Bayesian limited information analysis
aregivenin Richard and Tompa (1980), Bauwens and Richard (1985) and Bauwens etal. (1981).
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purposes, the integration steps are spelled out in detail since they are
repeatedly used in the sequel of the paper.

In Section 3, we give a proof that, for a standard class of noninformative
prior densities, the posterior density of the parameters of a single structural
equation derived in a limited information framework, is a ratio-form poly-/
density if, and only if, the prior degrees of freedom parameter has the value
suggested by Dreze (1976). The noninformative priors that are discussed
by Zellner (1971, p. 225) and Malinvaud (1978, p. 122) give different classes
of posterior densities.

In Section 4 we discuss the approach where a single structural equation
is completed with the unrestricted reduced form equations of the
endogenous variables. This so-called incomplete simultaneous equations
model has been used by, e.g., Hendry and Richard (1983), Richard (1984),
Zellner (1971, Section 9.4), Dréze and Richard (1983, Sections 2 and 5)
and Zellner, Bauwens and Van Dijk (1988). The advantage of this alternative
approach is that it fits naturally to the field of modelling a single equation
when one intends to investigate whether some explanatory variables are
exogenous. We discuss several representations of the incomplete simul-
taneous equations model and show that the representation of Dréze and
Richard and the representation of Zellner, Bauwens and Van Dijk are in a
certain sense dual to each other. The duality follows from two different
decompositions of the likelihood function. One may argue that the Dreéze
and Richard representation yields the Bayesian counterpart of the limited
information maximum likelihood estimator or least variance ratio estimator
and that the Zellner, Bauwens and Van Dijk representation yields the
Bayesian counterpart of the instrumental variable estimator (in particular
two-stage least squares and k-class).

In Section 5 we state the conditions under which the prior specification
is invariant under the different representations of the model that are intro-
duced in Section 4. Next, we derive the posterior densities of the equation
system parameters for the different model representations. It is shown that
Dréze and Richard (1983) use a conditional matrix-t density for the reduced
form coefficients given a value of the structural coefficients and a marginal
(1-1) poly-t density for the struttural coefficients while Zellner, Bauwens
and Van Dijk (1988) make use of a conditional multivariate-t density in
the structural coefficients given a value of the reduced form coefficients and
a so-called marginal (2-1) poly-matrix-t density in the reduced form
coefficients. As a next step we discuss, briefly, in Section 6 how the different
model representations of Section 4 and the distribution theoretic results of
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Section 5 can be used for Bayesian inference on the validity of overidentify-
ing restrictions and exogeneity assumptions. Some conclusions and sugges-
tions for further work are given in Section 7. The appendices contain
technical details and proofs.

2. The likelihood function of an underidentified simultaneous
eguations model

The complete SEM can be written in the structural form as
YB+ZI=U, (2.1}

where Y is a T x m matrix of observations on m endogenous variables, Z
is a T Xk matrix of observations on k predetermined variables, and the
data matrix (Y Z) has full column rank. The matrix B is an m X m nor-
singular matrix of unknown coefficients and I" is a k x m matrix of unknown
coefficients. U is a T x m matrix of unobserved disturbances. The T rows
of U are assumed to be independent, each of them being normal with
expectation zero and identical positive definite symmetric (PDS) covariance
matrix 2. The predetermined variables in Z that are not lagged values of
variables in Y are assumed to be weakly exogenous (see Engle et al., 1983).
At this stage, no restrictions are imposed on the matrices of parameters 2,
I and 3 {except for the PDS restriction). So, the model is underidentified.
The reduced form of (2.1} is

Y=ZII+V, (2.2)
with JT and V given as
I=-IB"", V=UB"" (2.3)

It follows immediately from (2.1)-(2.3) that the SEM is an example of
a nonlinear regression model in the sense that E( Y |Z) is nonlinear in the
parameters B and I, and also that given a particuiar value of B, the expected
value of Y 1s linear in the parameter matrix . So, given a value of B,
one can make use of results from the statistical analysis of the multivariate
linear regression model (see, e.g., Anderson, 1984, Chapier §; Zellner, 1971,
Chapter 8).

We study the functional form of the likelihcod function of an underiden-
tified SEM in the structural parameter space. Consider the likelihood
function of (B, I, &) given the data matrix D=(Y Z):

LB, I, 2|D)=Cm)" " 2| B|T|Z17 2 exp{—3t[Q(B, )3 ']}, (24)
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LB, I, 2|D)=L(Z|B I, D)L,(B, "I D)

l

inverted Wishart step on X: equation (2.6)
l

L. (B T|D)y=LJ{l|B, D)L, (B|D)

l

complete squares on 17: equations (2.7)-(2.9)
l

matrix-/ step on I7: equations (2.10)-(2.12)
l

L.(B|D): equation (2.13)

Figure 1. Marginalization of the likelihood function of (B, I, ). (One may interchange the
order of integration and first integrate with respect to I by making use of the matrix normal
distribution. As a next step one integrates with respect to 2.)

where
Q(B, F)=(YB+2ZI')(YB+ZI'). (2.5)

For a derivation of (2.4) we refer to standard textbooks in econometrics,
e.g., Zellner (1971, Chapter 9). One can marginalize (2.4) with respect to
Y and I as indicated in Figure 1.

The inverted Wishart step on T (loss of m+ i degrees of freedom)

By making use of the definition of the inverted Wishart density function
(Anderson, 1984, Chapter 7; Zellner, 1971, Appendix B.4) one can integrate
(2.4) with respect to X as follows:

me,rlmocuBuTJ S| 7 exp{-Lu[Q(B, I)E ']} 5

o 1B |Q(B, )| T (2.6)

under the conditions |Q(B, I')|>0 and T >2m. The proportionality signs
indicate that the normalization factors of the likelihood and the inverted
Wishart density, that do not depend on the parameters (B, I'), have been
deleted for notational convenience. The exponent —(T —m —1}/2 indicates
the loss of m + 1 degrees of freedom due to the marginalization with respect
to X. If one conditions (2.4) on the maximum likelihood estimator (¥B +
ZIY(YB+ ZI')) T for X, one obtains the same functional form as (2.5),
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except that the exponent is —7/2. This is the well-known concentrated
likelihood function. We emphasize this difference between conditionali-
zation and marginalization since it plays a major role in the sequel.

Complete squares on I’

As a next step, we analyze the functional form of (2.6) by factorizing it as
the product of a conditional function of I', given a value of B, and a function
of B. Consider the matrix of sums of squares and cross-products (YB+
ZI')'(YB+ZI') and complete the squares in I, given a value of B. Then
one obtains

(YB+ZIY(YB+2ZI')=B' OB+ (I+I11B)Z'Z(I"+ IIB), (2.7)
where (2 is a function of the data only, given as

D=Y'MY, M.=1,-2(22)"'7, (2.8)
and IT is a function of the data, given as

N=(z'z)y"'z'Y. (2.9)
The matrix-t step on I (loss of k degrees of freedom)

We make use of the definition of the matrix-1 density. (See, e.g., Dréze and
Richard, 1983, p. 589; Zellner, 1971, Appendix BS; Dickey, 1967.) Given
this definition and using equations (2.7)-(2.9), one can write (2.6) as

Lo(B, I'|D)c|B OB+ (I +IIB)Z' Z(I+1IB)| T ~m~"/?

~ ,B:(")B'(T~m -k —13)/2 B/B|(m—: A-+])/2. (210)

Note that we have used the equality || B||*=|B'£2B| |2|"" and dropped the
factor in [£2| in the second line. The first two factors on the right-hand side
of (2.10) form a kernel of a matrix-f density in I So, one can write

L.(B,I'|D)=LJ{I'|B D)L,(B|D), (2.11)
where

LAT|B, D)< fi5"(I'|~1IB, BB, Z'Z, T—m —k — 1), (2.12)
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which is a conditional matrix-f density® under the usual conditions and the
condition 0 < || B|| < 0. So, one can write

Lm(B|D):J L.(B,I'|D)dIl «c|B'B|"*" 172, (2.13)

Clearly, if the elements of B are not restricted in an adequate way, the
function (2.13), which can be interpreted as the marginal posterior density
of B based on a uniform prior on all the parameters, is not integrable in
R™*™, This reflects simply the lack of identification of the structural par-
ameters assumed at the beginning of this section. As a consequence, the
marginal posterior density of I isin principle also not integrabie. In practice,
one could define (2.13) on a region of integration that is finite, e.g., the set
{B|e=|B'B|= M}, where ¢ is a small positive constant and M is a large
finite constant. The results of the integrations of the functions (2.13) (or
(2.12) times (2.13)), with respect to B may of course be sensitive with respect
to the choice of ¢ and M, depending on the data.

In the maximum likelihood framework one substitutes —I1B for I in the
likelihood function which is already concentrated with respect to 2. Then

one obtains
L.(B]| D) constant (2.13)

as is well known since the structural form is not identified. The result that
the likelihood function concentrated with respect to both X and I ie.,
(2.13)', is flat, but that the marginal likelihood of B, given as (2.13), is not
flat was implicit in Dréze (1976); see also Maddala (1976). A summary of
the results on marginalization and conditionalization of the likelihood of
an underidentified SEM 1s given in Table 1.

Table |
Likelihood functions of equation system parameters B and I
Marginal likelihood L, Conditional likelihood L.
L(B, I'|Dyec [|B|T|Q(B, )|~ Tm=tV/2 Bl 1Q(B, M}~
L(B|D)x || B H”” constant

* In this paper, we use the notation of Dréze and Richard (1983, Appendix A) for density
functions: the subscripts of f are a mnemonic for the name of the density (e.g., MT for
matrix-¢), the superscripts indicate the dimension of the random variable the name of which
is given as argument; then follow the parameters.
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To get (2.10)-(2.13), we have implicitly used a truncated uniform prior
density on the parameters (B, I, 3). In order to show the effect of marginali-
zation of I and X, one can introduce an extra positive parameter h through
the following noninformative prior

p(B, I, S)ec|x|™"2 (2.14)
Then, after multiplication of (2.4) by (2.14), and after repetition of the steps

from (2.4) to (2.12), one obtains the result that the posterior density of B,
I and X can be decompcsed as follows:

p(B, I, 2| D)=p.(2|B, I, D)p.(I'| B, D)p.(B| D), (2.15)
where

pZ|B I D) Z|Q(B,T), T+h—m—1), (2.15a)

p(| B, Dyocfix™(I|~1IB, BB, Z'Z, T+h—m—k—1),  (2.15b)

p(B|D)cc|B'B| Pk, (2.15¢)

A kernel of the conditional posterior density p.(I"| B, D), equation (2.15b),
is shown in Figure 2 for the case where T=15 h=m+k+1 with m=1
and k = 1. Note that for this value of 4 the conditional density p.(I'| B, D)
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Figure 2. Kernel of p{(B, I'| D) or p{I"| B, D) for h=m+k+1 and T=15,
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and the joint density p(B, I'| D) are the same, since the marginal density
pn(B| D) is uniform. The choice of the parameter values and the data is
discussed in Appendix A. Clearly, the conditional densities become more
concentrated when B -0 and have thick tails when B becomes large in
absolute value. The conditional density is not defined for B =0. Kernels of
the marginal density p,(B|D) and of the joint density p(B,I'| D) are
shown in Figure 3 and Figure 4, respectively, for different values of the
degrees of freedom parameter h. One may distinguish three cases. If h is
less than m + k+ 1, one has a “polynomial” weighting function. See Figure
3, at the point B =0, the function p_, is equal to 0, while it tends to c0 in
the areas where B tends to +00. If h is greater than m + k+1, one has an
“exponential” weighting function. See Figure 3, when B tends to 0, the
function p,, tends to co, while it tends to 0 when B becomes large in absolute
value. Finally, if h=m+ k+1, one has a flat weighting function. This is
the value used by Dreéze (1976). In practice, it appears a sensible strategy
to experiment with a sequence of prior densities.

In order to illustrate further the difference between marginalization and
conditionalization, one can work with the implied reduced form parameters
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Figure 3. Kernels of p,.(B| D) for different values of .
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Figure 4c. Kernels of p(B,I'| D) for h=2and T =15.
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Figure 4f. Kernels of p(B, I'| D) for h=6 and T =15.
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IT and 2, where (2 is the PDS covariance matrix of each row of V, and is
therefore related to the structural parameters by the relation

N=B"'3B7". (2.16)

As the transformation from (B, I, 2) to (11, £2) is not one-to-one, we proceed
as follows. First, perform the transformation of random variables that are
elements of (B, [, %) to variables that are elements of (B, [T, {2). The
Jacobian determinant of this transformation is || B||™"*"" (see, e.g., Magnus
and Neudecker, 1988, pp. 30-31 and Chapter 9). Second, marginalize the
posterior density of (B, IT, {2) with respect to B. in order to study the effect
of this marginalization we transform the prior (2.14) to

p(B,I1, Q)oc || B||™ <10 |72, (2.17)
The likelihood function (2.4) can be rewritten as
L(B,IT, Q| D)oc|Q|7 77 exp{—3t[(Y=ZIT)(Y - ZI1)27']}. (2.18)

The posterior density of (B, IT, £2), which is proportional to the product of
(2.17) and (2.18), can be marginalized with respect to {2 by using again the
definition of the inverted Wishart density. Then one obtains

p(B,II| D)oc p,(IT| D)p(B| D), (2.19)
where
p T D)= (oI, 0, Z'Z, T+h—m—k—1) (2.20)

1s a matrix-f density with parameters that depend on the data and h but
that do not depend on B, and

m(B D)Cf BIB(m+k+l_h)/2, (221)
14

which is equivalent to (2.13) if h=0. Thus, we conclude that inference on
IT is not sensitive to the truncation of | B] to a finite range. However, as
noted before, structural inference may be sensitive to the truncation of the
range of || B||. In other words, the sample is informative on IT but not on B.
In the maximuin likelihood framework, there is no Jacobian involved
and there is no loss of-degrees of freedom. That is, after concentrating
(2.18) with respect to {2, one obtains the concentrated likelihood function
of II, which is proportional to the same function as (2.20), except that
T+h—m—k—1 is replaced by T, and one obtains the ‘“‘concentrated”
likelihood of B, which is proportional to a constant; compare (2.13).
Summarizing, we have reviewed the implications of the lack of iden-
tification of the structural parameters of a SEM through marginalization
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and conditionalization of its likelihood function. Given the results (2.12),
(2.13) and (2.15), there is a need for prior information, since a noninforma-
tive prior on the parameters of a nonidentified SEM may typically give an
explosive behaviour of the posterior density in some directions of the
parameter space while it is more regular in other directions. For work on
informative prior densities in a full information framework we refer to, e.g.,
Zellner (1971), Dréze and Morales (1976), Bauwens (1984), Van Dijk (1984),
Van Dijk (1987, and the references cited there, in particular, Kloek and
Van Dijk, 1978; Van Dijk and Kloek, 1980). A survey is given by Dréze
and Richard (1983).

3. Structural single equation analysis

Suppose one considers only prior information on the parameters of the first
equation of (2.1), chosen without loss of generality, and no prior information
on equations 2 to m. So, we have restricted matrices B, I', U, X, I, V and
0. In particular, we consider the case where (2.1) to (2.3) hold with B and
I' replaced by

1 : _')’lll
Br: _BI : BZ > Fr: ‘l FZ . (31)
0 : 0 !

The submatrices B, and I, correspond to equations 2 to m and are unrestric-
ted matrices of dimension m X (m—1) and kx(m —1), respectively. The
first column of B has 1 as a first element by a normalization constraint,
and the remaining m —1 elements have been partitioned into an m, x1
vector —f3, of unrestricted parameters and an m, X 1 vector of parameters,
say By, restricted to 0. The first column of I', has been partitioned into a
k, x 1 vector of unrestricted parameters —y, and a k,x 1 vector of param-
eters, say 7,, restricted to 0. The zero restrictions in the first equation
correspond to the exclusion of variables from it, usually for the purpose of
identification. Let Y and Z be partitioned as

Y=(y Y, Y, Z=(Z, Z,), (3.2)
where y, is TX 1, Y,is Txm,, Yois Txm,, Z,is Tx k,and Z,is T x k,,
while 1+ m,+my=m and k, + k,=k. In summary, the system in structural
form can be written as

nw=Y.g+Z,yitu, (3.3a)

YB,+ZI5 = Us,. (3.3b)
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Note that u, is different from the first column of U in (2.1). The covariance
matrix of the rows of the matrix (u, U,) is denoted by X..

The likelihood function of the model has the same form as (2.4), but one
makes use of the definitions of B, and I, given by (3.1). Suppose we keep
the prior on X, as given in (2.14), then one can write the posterior density
p(B\, vi, By, I,, =.| D) in a straightforward way as

(B, v, By, 1, Zr[D)oc “BrHT[Z,A["T“”/Z
xexp{~$trl(u, U)'(uy UNETT,  (34)

where (u, U,) is restricted by (3.3a)-(3.3b).

In order to derive the marginal posterior density of the parameters of
interest (B, v,), one has to integrate the join posterior with respect to X,
I',, and B,. The integration with respect to 2 is done in the same way as
in Section 2, equation (2.6), with the extra parameter h. The next step is to
complete the squares on [, as was done in Section 2, equations (2.7)-(2.9)
for the case of I'. Then one follows the steps given in (2.10)-(2.12), or in
(2.15)-(2.15¢). Finally, one obtains

p(Bi, v, By, [ DY fini(I|—11B,, BB, Z’Z, T+h—-m—k—1)
><|BLB,A|("'+""H7/"/Z. (35)

The mnemonic® RMT stands for a restricted (nonnormalized) matrix-t
density in the sense that I, is restricted as given in (3.1). We impose the
condition M =|B/{)B,|= ¢, with £ >0 and M < co.

A next step is to integrate (3.5) with respect to I, by making use of
properties of the matrix-7 density. This involves some tedious derivations.
A relatively easy procedure is the following. Assume that the restrictions
on B, and I, are not yet imposed. We denote the first column of unrestricted
elements of B by ,é, and the first column of unrestricted eiements of I” by
v.. So, one can replace (3.1) by

B=(8,,B,)), I'=($,I). (3.1)’

If the restrictions of (3.1) are not imposed on (3.5}, this density is a
conditional matrix-# in I given a value of B (see (2.15b)). By making use
of properties of the matrix-t density (see Zellner, 1971, Appendix BS; Dréze
and Richard, 1983, p. 589), one can decompose the right-hand side of (3.5)
in two factors. The first factor is a conditional matrix-t¢ density of I, given
a value of vy, (the unrestricted first column of I') and a value of B. The
second factor is a marginal kx 1 matrix-r density of y,, given a value of

* See footnote 4.
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the first column of B, denoted by B,. This latter density is defined as
p(1B,, D)=\ (3| =B, B10B,, Z'Z, T+ h~2m —k) (3.6)

under the condition M = ,E?’,Q,é, = ¢, with ¢ >0 and M <co. We emphasize
that the density (3.6) is conditional on ,8~, only, and not on B-, i.e. ifis
conditionally independent of B,. Note that (3.6) can be interpreted as a
multivariate-¢ density.

Integration of (3.5) with respect to I, gives a posterior density of
(B,, %, B>) that is proportional to the right-hand side of (3.6) multiplied
by the factor |B'B|"***' "2 (compare (2.15b)-(2.15¢) for the full informa-
tion case). The factor [B'B|"™"**'""? can be deleted from (3.5) if and only
if h=m+ k+1. Suppose that the prior on B, is uniform on a region of
integration where |B'B| is restricted to be finite. Using the definition of a
matrix-f density, one can derive the marginal posterior density of(,é,, v,) as

p(B.. 7 | D)o (B10f,) Tz
X[G1OF,+ G+ 1B Z'Z (5 + T )} o2, (3.7)

We emphasize that the derivation of (3.7) does not depend on whether the
restrictions on the first columns of B and {" are imposed. That is, one may
start with (3.4), with the restrictions imposed, and one can obtain the same
functional form as given in (3.7) with (B, 1) replaced by (B, v,) and with
a proper adjustment of the data dependent matrices 2, [T, Z'Z see beiow.
However, the properties of the functional form of (3.7), in particular whether
the function is integrable on a large region, depend on the restrictions. We
distinguish two major cases.

First, suppose no restrictions are imposed. That is, equation (3.7) is
maintained as it stands. The functional form of (3.7) has in this case the
same properties as discussed in Section 2 for the full information case;
compare equations (2.15)-(2.15¢) with h = m + k+ 1. The conditional multi-
variate-/ density of vy, given a value of 8, degenerates at B, =0. Kernels of
the joint posterior of (£,, 7,) are given in Figure 5a for T=2 and T =15.
Note that Figure 5a(11) is the same as Figure 2. Further details on the choice
of the parameter values and data are given in Appendix A.

As an intermediate case, consider the case where 8, is replaced by the
first column of B,; see (3.1). Then one makes use of (2.8) and ,é@.(jﬁ}[ in
(3.7) is replaced by

1
(1 =g OI)QK_B] =(y, = Y,B)M.(y,—Y\8), (3.8)
0
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Figure 5a(i). Kernels of p(8,, ,|D); no restrictions on parameters, T =2.
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Figure 5a(ii). Kernels of p(/§, , %1 D); no restrictions on parameters, T = 15.
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Figure 5b(ii). Kernels of the (1-1) poly-r density p(8,, v,| D), T=15.
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where
M,=1-2(Z'Z)"'Z" (3.9)

Given the condition of full column rank of (Y, Z) and given the normali-
zation restriction that the first element of the vector (1 —8} 0) is equal to
one, the right hand side of (3.8) is positive everywhere in the region of
integration. The functional form of p(8,, ¥,| D) is such that no degeneracy
occurs as B3, tends to zero.

Second, consider the case where the first columns of both B, and I,
given in (3.1), are substituted in (3.7) for the unrestricted vectors E, and
v.. We make use of

BiOB +(3,+ B Z' Z(3,+ 1B = (YB, + Z7) (YB,+ Z7,).  (3.10)

Imposing the restrictions implies that (3.10) is replaced by (y,— Y,B,—
Zv,)(y,~ Y, B, —Z,v,). If one completes the squares on B, and v, one
obtains

(J’l - Y. B, _Zl')/l)’()ﬁ -Y.B8—Zv)

A A

:S%_i_(,Bl_‘,[fl)’(YjYI Y:IZI)<,BI‘BA1)’ (3.11)
Yi—™ N zZ\Y, Z\Z Yi— "
where

(é,):<vm Y§Z,)"<Y§y,)
o7 VAD CRRVAVA Zwn)’ (3.12)
s%:(yl_yllél_zl?l)’(yl_Yl,él_zl‘)?l)'

In a similar way one may complete the squares on 3, in (3.8). Then one
obtains

(1= Y\B)Mz(y, = Y B) =53+ (B, —BT) YIMY (B —BT), (3.13)
where

BE=(YIMY) ' YiMzp,, s3=(n = Y1) Moy, = YiB7). (314)
Using the definition of a m-ultivariate-t density one can write (3.7) as

p(By, 7| D)

’:52-4- (BI *él) ' ( YY, YIIZI)(Bl Bl):l~(u'+'7"+k')/2
o ] 71_’91 Z\Y, 2,z 'Yl"fﬁ

[s2+ (B =B YIMY\(B = BT)] 2

. (3.15)
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where
vi=T-m-m+k—k+1, v,=T-m—-m,+1.

The right hand side of (3.15) is a ratio of multivariate-¢ kernels and is
defined as a (1-1) poly-f density function.

We emphasize that this density is integrable if k—k, > m,, which is the
order condition for identification. This can be seen as follows. The tail
behaviour of the marginal multivariate-¢ density of B8, in the numerator
depends on the degrees of freedom parameter whichisequalto T —m —m, +
k—k,+1. In the denominator one has a quadratic form in 8, raised to the
power —3(T —m+1). The tail behaviour of the ratio of the two quadratic
formsin B8, depends on whether the difference in the exponents T —m —m, +
k—k,+1 and T—m+1 is positive. This condition is equal to the order
condition for identification k —k,> m,. More details are given in Dreze
(1976) or Dickey (1968). In Figure 5b we show a simple case of a (1-1)
poly-t density with parameter values that are specified in Appendix A. We
emphasize that the (1-1) poly-r density can have many different shapes
than the one shown in Figure 5b, in particular, bimodality may occur.

We summarize this section in the following theorem.

Theorem 1. Given the model (3.1) and the standard assumptions of a SEM,
and given the class of noninformative priors defined in (2.14), the posterior
density of the parameters of interest (B,, y,) of a single structural equation
is a (1-1) poly-t density, defined in (3.15) under the following conditions:
(1) The order condition for identification is satisfied: k —k, > m,;
(1) The prior degrees of freedom parameter h is given as h=m+k+1;
(iil) |BLB,| is finite. O

We end this section with some remarks.

First, we have not used the rank condition for identification but only the
order condition. So uniform priors on a model that is underidentified may
give sharp posteriors, see Maddala (1976). Note that we impose the condi-
tion that |B.B,| is finite. The sensitivity of the posterior results for this
condition has to be investigated for each case. This remains an area for
further research.

Second, in this section we have analyzed a single restricted structural
equation while the remaining structural equations are unrestricted. In the
next section we study the case where a single structural equation is completed
with a set of unrestricted reduced form equations of the endogenous vari-
ables that appear in the structural equations. This is the so-called incomplete
simultaneous equations model (see, e.g., Richard, 1984; Hendry and Richard,
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1983). The connection between these two models can be studied as follows.
Consider the posterior p(8;, ¥, Ba, I,| D), equation (3.5). First, one applies
the transformation of variables from (8., vi, B2, 13) to (B1, i, B,, I1,),
where IT, is the matrix of reduced form parameters of the equations 2 to
m. Next, one integrates the posterior of (81, y1, B, IT,) with respect to B,
and with respect to those elements of II, that do correspond to endogenous
variables, which are deleted from the first structural equation. Then one
has a posterior density p(8., yi, {1, | D). The parameters II, are in this case
the implied reduced form parameters that correspond to the endogenous
variables that are included in the structural equation. We note that one
needs a special value of the prior parameter h in order to obtain a poste_rior
of p(B\, v, IT, | D) that is equal to the posterior studied in the next section.
Details of such a rather tedious exercise are left to the interested reader
and are omitted here, partly for space consideration.

Third, one can derive the result of Theorem 1 also if the prior (2.14) is
replaced by

p(By, vi, B2, o, Z)C | BITIZ (3.16)

and one imposes 7—h=m+k+1. The justification for this prior is not
trivial, since the posterior tends to infinity if B, tends to infinity. In the case
of no restrictions on the structural form one may start with a noninformative
prior on the reduced form parameters (IT, 2) and obtain (3.16) throggh an
enlargement of the parameter space to (I1, B, 2) and a transformation of
variables from (B, IT, £2) to (B, I, X). _

Fourth, our derivation of Theorem 1 is based on a sequence of integration
steps spelled out above. For a different sequence of integration steps based
on, a.0., a decomposition of the Wishard density we refer to Dréze (1976).

4. Three representations of the incomplete simultaneous equations medel

Consider again the first structural equation of the model given in Section
3 (see (3.3a)),

)’1:Y|B|+Zl")’1+ul- (4.1)
The unrestricted reduced form equations corresponding to the right-hand
side variables of Y, can be written as

Y, =ZI,+V,=Z1,,+Zl,t+ V, (4.2)
where IT, = (IT}, IT}o)" is a k x m, matrix of parameters, I1,, and I1, being
k,x m, and ko x m,, respectively, and V,isa T xm, matrix of unobserved
disturbances.
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The model defined by equations (4.1) and (4.2) incorporates no reduced
form equations for other variables than the endogenous variables Y, of the
right-hand side of (4.1). This will be typically the case when one starts an
investigation with (4.1) considered as a regression model (i.e., model y,
conditionally on Y, and Z,), and later questions the exogeneity status of
a subset of variables (Y,) and adds equations (4.2). This is referred to as
the incomplete simultaneous equations model (see Richard, 1984; Hendry
and Richard, 1983; Dréze and Richard, 1983; Zellner, Bauwens and Van
Dijk, 1988).

We note that, if one starts with a structural single equation analysis, some
variables of Y, say Y, do not appear in the structural equation of y,, but
the reduced form (4.2) does contain equations for the endogenous variables
Y, that do not appear in (4.1). Further, the incomplete simultaneous
equations model contains, usually, less predetermined variables than the
structural single equation analysis. A model with extra reduced form
equations and extra predetermined variables is relevant when limited infor-
mation inference is considered as a way to simplify the computational
problem of estimation of a structural form.

By substituting ZIT, + V| for Y, in (4.1), one obtains the restricted reduced
form equation of y,, which can be written as

yw=2Zm+to, =27, +Zymot v, (4.3a)
where 7, =(7,, 7o) is a kX1 vector restricted by

ah=y+1I,,8,, (4.3b)

mo=1I1oB1, (4.3¢)

and v, =u-t V8. Thus, one can interpret (4.3a)-(4.3¢c) as a nonlinear
regression model (see Zellner, 1971, Chapter 9). There are several other
interpretations for the model (4.1)-(4.2), for instance, the unobserved
independent variables model (see, e.g., Zellner, 1970; Zellner, Bauwens and
Van Dijk, 1988).

We make use of the following notation. We write (4.1)-(4.2) in matrix
notation as

Y*L+Z('Y m)=(u, V), 4.1y
where

. B 1 0

e L_(—B, Im.>'
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We assume that the rows of the T X (m,+1) matrix (u, V,) are indepen-
dently, identically and normally distributed, with expectation equal to zero
and PDS covariance matrix 2%, given as

(2 3)
- w) ‘Ql .

The likelihood function can be written as
L(Bi, v, I\, 2%| D)
oo 27" exp{—str{(u, V\)'(uy V,)02°7']} (4.4a)
Cp(Y*L)=fuN"(Y*L|Z(y II)), 2*®I7), (4.4b)

where (1, V) is restricted as in (4.1)', and fun( ) denotes a matrix-normal
density function as defined in Dréze and Richard (1983, Appendix A). In
the sequel, (4.1) and (4.2) will be called Representation I of the incomplete
simultaneous equations model. We shall now define two other representa-
tions from alternative parametrizations.

Representation II is defined by decomposing p(Y*L), the matrix-normal
density of Y*L=(y,— Y,8, Y)), as

p(Y*L)=p(Yi|y, = Y\B)p(3n = Y\B8.), (4.52)
where

pn = Y\B) =14 = YiBi|Ziv,, o I) (4.5b)
and

pY [y = Y\B) = N (Y| ZIT +(y, = Y\B = Z,y,)8, PO I7),

(4.5¢)

with

S=0 "w,, (4.5d)

P=0,-wo ‘w). (4.5¢)

In (4.5b), fi( ) denotes a multivariate normal density function. The par-
ameters B, vy, I1,, 8, o amd @ are in one-to-one correspondence with
those of Representation I (see 4.4a) and the likelihood function L(8,, v,
o?,I1,,8,®| D) is the product of (4.5b) and (4.5¢). This way of parametrizing
the incomplete simultaneous equations model has been used by Dréze and
Richard (1983, Sections 2 and 5).

Representation I is defined by the dual decomposition

p(Y*L)=p(y,— Y8, Y)p(Y), (4.6a)
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where

P YiB YD == ViR Zim+ (Y, = ZI)n, 7 1) (4.6b)
and

p(Y) =fu"™(Y\ |21, Q,®I7), (4.6¢)
with

n=07'w,, (4.6d)

P=0l— w0 w,. (4.6¢)

The likelihood function L(B,, v,,n, 7°, I1,, 2,| D) is proportional to the
product of (4.6b) and (4.6¢). This way of parametrizing the model has been
used by Zellner, Bauwens and Van Dijk (1988).

Both reparametrizations have the advantage of cutting explicitly the
likelihood function (4.4a) of the original parametrization into the product
of two factors. This proves to be useful for defining some classes of prior
densities and for integrating analytically some (possibly) nuisance param-
eters in order to derive posterior densities of parameters of interest, as we
shall see in the next section.

In regression form the three models are summarized in Table 2. In
Representation II the structural disturbances are added as artificial
regressors in the reduced form equation. In Representation III the reduced
form disturbances are added as artificial regressors to the structural equation.
This turns out to be useful if one analyzes exogeneity; see Engle (1984)
and Section 6. Note that v}, denotes the fth row of V,: e/, is the tth row
of E,; u,, is the tth element of u,; and &,, is the fth element of &, .

Table 2
Three representations of an incomplete simultaneous equations model
Representation 1 13 111
Structural form y, - Y,8,-2Z,y, =y, u, remains u, replaced by
(Y, =2ZI)n+¢,
Reduced form Y, -2, =V, V,replaced by (y, — Y,y, V,remains
- X\B\)8'+E,
cov{u,, v,,)=w, coviu,,, e,,)=0 covie,,, v,,)=0

Bayesian limited information analysis revisited 409

5. Prior and posterior densities for the incomplete simultaneous
equations model

When one uses the incomplete simultaneous equations model, one is inter-
ested mainly in doing inference on the coefficients 8, and vy, of the structural
equation (4.1) and in predicting future values of y,; for the latter purpose,
it is necessary to do inference on 7, and IT,; see (4.1)-(4.3). In this section,
we discuss several classes of prior densities that may prove to be useful in
practice and derive the corresponding posterior densities of the parameters
8., v, 1T, c° and 2,. Inference on 7° and @ is not discussed in this paper.
Inference on w,, & and 7 is briefly discussed in Section 6.

5.1. Prior densities

To remain in the spirit of limited information, we assume that prior informa-
tion may be available on the structural parameters 3, and y, and assume
prior densities that are noninformative on the other parameters. We review
three cases:

(1) noninformative prior densities on all structural parameters;

(i) natural-conjugate prior densities on either 8,, y, and o or 8, .,
1 and 7> — natural-conjugate with respect to (4.5b) or (4.6b);

(iil) independent Student prior densities on 8,, vy, and 8, vy, and 7.

Case (i). Non-informative prior densities

For Representation 1, it is given by
p(BI; »yl’HI’Q*)(XI‘Q*,_(UO+m(+2)/2. (51)

That 1s, the elements of B,, y, and II, are distributed uniformly and
independently of £2* which has a degenerate inverted Wishart distribution
with «, degrees of freedom; Dréze (1976) proposes the value o=k (the
number of predetermined variables) by reference to an invariance argument
that is specific to the underidentified simultaneous equations mode! and is
reformulated by Dréze and Richard (1983, Section 5). Zellner (1971) pro-
poses a,=0 by reference to Jeffreys’ invariance principle applied to the
reduced form.

For Representation II, a noninformative prior can be defined as the
product of a noninformative prior p(8,, vy,, o’), defined with respect to
(4.5b), and a noninformative prior p(IT,, 8, @|B,, y., o), defined indepen-
dently with respect to (4.5¢). The two noninformative priors are defined as
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if the regression equations of Representation II in Table 2 are unrelated
and o’ne assumes that 8, and vy, are known in the enlarged reduced form
equation of Representation I1. We write this prior as

p(Bl > Y1 0-2’ Hl b 6, @)x (0-2)_(#U+2)/2|¢|_(”n+ml+”/2' (52)

By setting uo=0 and v,=0, one applies Jeffreys’ invariance principle to
(4.1) ?nd the enlarged reduced form equation of Representation II. By
choosing w,= m,+k,, the number of regressors of (4.1), and v,=k+1, the
number of regressors in the enlarged reduced form equation, one obt’ains
degenerate limits of natural-conjugate densities. In (5.2), the elements of
B, yz,, I, and & are distributed uniformly and independently of o and
D 4 l}as a degenerate inverted-gamma density with u, degrees of freedom
and is independent of @, and the latter has a degenerate inverted-Wishart
density with », degrees of freedom.

For Representation 111 a noninformative prior can be defined in the same
was as for Representation I1. This yields

p(Bla Y, 727 Hl) Ql)x(7—2)_('(n+2)/2|01|~(’\U+'"|+1)/2‘ (53)

For Jeffreys’ invariance principle, applied to the enlarged structural equation
of Representation IIl where I, is assumed to be known, one sets x,=0
and for (4.2), one sets A,=0. For degenerate limits of natural-conjlj)oatej
densities, one sets k,=2m,+k, and A,=k. )
Th.e noninformative priors (5.1) to (5.3) can differ since they are defined
for different parametrizations; (5.2) and (5.3) have two parameters but (5.1)
has only one. These priors can be made compatible under certain conditions.

”l;;leorem 2. The noninformative prior measures (5.1), (5.2) and (5.3) are
identical if, and only if, their parameters «, ko, A ]

: > s , Ko, Ao, o and vy satisfy th
Jollowing relations: v e ’ Ty the

ay=Ko—m =totl=petm=v,—1 (5.4)

Proof. The Jacobian of the transformation from the parameters of Rep-
resentation I to those of Representation II is (0°)™, and the Jacobian of
the tran_sformation of the parameters of Representation I to those of Rep-
resentation 111 is |£2,]. Since [2%|= 0% ®|= 77|f2,], one can easily make
transformations of random variables from (5.1) to the implied prior measures
on the parameters of Representation II and Representation III, and then
compare the exponents with those of (5.2) and (5.3) to get (5.4)’. O
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Table 3
Prior values of degrees of freedom parameters

Parameters Dreéze’s invariance Jeffreys’ invariance
(ag=k) (ap=0)
e
Ho k—m, -m
I k+1 1
Ko k+m, my
Ao k-1 -1

Notice that it is not possible to satisfy (5.4) and at the same time to
choose both wy and v (or ko and Ag) according to Jeftreys’ invariance
principle or so as to obtain degenerate limits of natural-conjugate prior
densities. Table 3 gives the values of the prior parameters Ko, Ao, Ko and
v, that satisfy (5.4) for the values of «, that have been proposed by Dreze
and Zellner.

We give two remarks on noninformative prior densities.

First, in the incomplete simultaneous equations model one can choose
different values of the degrees of freedom parameter and obtain the (1-1)
poly-t class of posterior densities; see Subsection 5.2, while in the structural
single equation analysis of Section 3 one may take only one value of the
degrees of freedom parameter for the derivation of the (1-1) poly-t density.

Another class of noninformative prior densities is one where the prior is
taken as proportional to the information matrix. We leave it to the interested
reader to work this out for the three model representations; see also Zellner,

Bauwens and Van Dijk (1988).
Note: the reader not interested in informative prior densities can go

directly to Subsection 5.2.
Case (ii). Partially natural-conjugate prior densities

They can be defined only in the parametrizations of Representations II and
[11; this is one advantage of these reparametrizations. In fact, (5.2) and
(5.3) are limiting cases of these partially natural-conjugate prior densities
for Representations 11 and III. The natural-conjugate prior densities that
we shall define are “partial”, in the sense that they are defined with respect
to a part of the likelihood function, e.g., (4.5b) for B, % and ¢” — not
taking into account the occurrence of B, and ¥, in the other part (4.5¢) —and
(4.5¢) for IT,, & and @, assuming that 8, and vy, are known; for the complete
set of parameters, the product of the two partial natural-conjugate prior
densities is therefore not natural-conjugate. However, because we assume
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that there is usually no prior information except on the parameters of the
structural equation, we shall use the limiting degenerate form of the partial
natural-conjugate prior densities that could be defined on the parameters
II,, 6 and @ (Representation 11) or I, and £2, (Representation I11), i.e.,
the second factor that appear in the right-hand side of (5.2) or (5.3).

For Representation 11, the prior is given by

p(Bl’ 71,0'2, II,, 8, QD)OCfIN([fl:l

8o, UZM(;‘)

0, po)| @] T2, (5.5)

where f,,( ) denotes an inverted gamma density. From (5.5), one sees that
conditionally on ¢, 8, and v, are jointly normally distributed, with dn
expectation equal to 6, and a covariance matrix proportional to o> ,and o
is marginally distributed as an mverted gamma variable with u, degrees of
freedom and scale parameter s;.

For Representation 111, the prior is given by

X ig((72

B
7}
p(:Blayl,n’Tz,Hla‘Ql)ocf’;\l Y1 ': 0],7265]
‘ Mo

Xﬁg(’Tz”T(z), KO)[QII7<(\“+HI'+')/2, (56)

where n=1+m,=2m +k,. Conditionally on 7°, 8,, v, and 7 are jointly
normally distributed, with an expectation independent of 72 and a covari-
ance matrix proportional to 7%, and 7’ is marginally distributed as an
1nverted -gamma variable with «, degrees of freedom and scale parameter
7. To be noninformative on 7, one has to fix the appropriate elements of
Goto 0.

Notice that (5.5) and (5.6) can easily be defined so that the marginal
prior distribution of 8 (i.e., 8, and v,) is identical since it is a multivariate-¢
distribution.

Case (iii). Independent multivariate-t densities
It is defined by taking the marginal prior density of 8,, y, (and possibly 7

for Representation I1) obtained from (5.5) or (5. 6).
For representation 1, we write it as

p(By, v, T, Q%) f ([ij 00, Mo, éo) | Q2% (5.7)
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That is, B, and v, are distributed independently of the other parameters,
according to a multivariate-¢ distribution with expectation equal to 6,
covariance matrix equal to (oM '/ (Lo~2) (if £,>2), and £, degrees of
freedom, and the other parameters have the same noninformative prior as
in (5.1).

For Representation 11, we define the prior as

p(By, v, 0, I, 8, @) p(By, yy)(07) "0 22 @t E e (5.8)

where p(B,, v,) is the multivariate-1 density of (5.7); again, the prior on
the other parameters is the same noninformative one as in (5.2).
For Representation III, the prior is

B
2 " 8 s
p(By, vy, m, 7, I, 02))f] Y l:no]’ Go, Lo [(77) o /2
0

SR (59)

That is, B,, y, and 5 have a joint multivariate-¢ distribution, but one can
easily remain noninformative on n; the prior on the other parameters is
the same as in (5.3). We assume that the marginal density of 8,, vy, from
(5.9) is exactly the multivariate-t density that appears in (5.7), denoted

p(B., v1) in the sequel.
5.2. Posterior densities

In this subsection we present two theorems that define different classes of
posterior densities of the parameters 8,, vy, and II,. We concentrate on
posterior densities for the case of the noninformative prior densities of
Subsection 5.1 and for the models of Section 4. The posterior results for
the informative prior densities of Subsection 5.1 and the models of Section
4 are similar to the results for the noninformative prior densities. That is,
the same classes of posterior densities can be derived, only the parameter
values of these posteriors differ from the noninformative case. Due to space
considerations we have omitted the posterior results for the informative
prior densities.

In order to make the sequence of integration steps in the derivation of
the posterior densities of 8,, v, and I, more transparent, two summaries
of these steps are shown in Figures 6 and 7. Figure 6 gives the steps according
to the specification of Representation 1. Figure 7 gives the steps after the
reparametrizations that define Representations II and III.
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p(By, v, M, 2% D) (equation (5.1) X equation (4.4a))
1
inverted Wishart step on 2%
1
p(By, v, M ID)
1

expand determinant (v, V)'(u, V)| as:

! 1
Geju )| VIM,, Vi [ViVil(us My )

! !

complete squares on 7, complete squares on 3, v,
1 1

p(I,|8,,y,, D)< matrix- p(B., v, |1, D)< multivariate-r

! 1

matrix-{ step on 71, multivariate-f step on 3,, v,
\ \

P(Bh YI‘D)OC“—I) pO]y-I

p(I1,| D) (2-1) poly-matrix-f
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and Van Dijk (1988) and the decomposition p(8,,v,,1,|D)=
pI1{|B1, ¥1, D)pm(B1, ¥i| D) is similar to the derivation of Dréze and
Richard (1983). We note that the poly-matrix-t class of densities that we
derive in this paper was already mentioned as a possible class of densities
by Dickey (1968). Due to space considerations we omit the detailed steps
of the derivations.

A second approach to derive the posterior densities of 8,, v, and II, is
to reparametrize the basic Representation I as done in Subsection 5.2
into the Representations II and III and to use the noninformative prior
densities corresponding to these model representations. We summarize the
different steps in Figure 7. An explicit proof is given in Appendix B and
Appendix C.

The results of Figure 7 are summarized in the following two theorems.

parameter set (B,, vy, IT,, %)
i

REPARAMETRIZATION

{Zellner, Bauwens and Van Dijk, 1988)

Figure 6. Scheme of integration steps for the posterior densities of 8,, v,, 1,.

We start in Figure 6 with the joint posterior of (8, y,, I1,, 2%) for Model
Representation 1, i.e., the product of equations (5.1) and (4.4a). In a similar
way as done in Sections 2 and 3, one can integrate this density with respect
to £2* using the inverted Wishart density function. This yields

p(B;, ')’I:HIID)OCI(MJ Vi)' (u, Vl)li(Tﬁ-u”)/; (5.10)
Note that the determinant in (5.10) is given as
|(u1 Vi)' (u, V1)|

_ ()’l_ Y.8, _Z1')’1),()’| -Y\8,—-Zv) - Ylﬁl_Zl')’l),( Y, —ZII,)
(Y, =ZI1)(y, - Y,\8,.— Z,v)) (YI—ZHI)I(YI_ZHI)

and the projection matrices are defined as
Mulzl_ul(u;ul)—’[u,], MV|:I_V|(V/lvl)~(V;-

The two equivalent ways to expand this determinant correspond to
two ways to decompose the joint density p(8,,v,, | D) into a condi-
tional density and a marginal density. That is, the decomposition
p(Bi, v, | D)=pB., v,|I,, D)p,(IT,| D) is used by Zellner, Bauwens

1 1
Representation 11 Representation 111
! !
(Bi.vi. 0% and (I, 8, @) (B, v, m 7)) and (11,, 2))
1 !
pB,, v, | DIpI,, 8, By, v, D) pBy, vy, m 72T, D)p(MT,, 0, D)
1 ! \ 1
inverted gamma-2 inverted Wishart inverted gamma-2 inverted Wishart
step on o step on @ step on 72 step on {2,
i ! 1 !
P(By, v [ DY BB v, D) p(By, vy, |, D)p(IT,| D)
1 \

conditional matrix-r~
step on (/1,, 8), given (B, 7))

1

p(B,, v\| D) (1-1) poly-1
Dréze and Richard (1983)

conditional multivariate-t
step on (B,, v, 1), given IT,

l
p(I1,| D)oc(2-1) poly-matrix-r

Figure 7. Reparametrizations and scheme of integration steps for posterior densities of 8,

Yis
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Theorem 3. Given the class of noninformative prior densities of Theorem 2
and given Model Representation I, the marginal posterior density of the
structural parameters (B,, v,) is a (1-1) poly-t density, and the conditional
posterior density of Il, given a value of (B, v,), is a matrix-t density.

The posterior of (B,, v,) is defined, through its kernel,

(B, ‘y“D)OC[(YI - Y\8)'Mz(y,— YlB[)](T+a“""‘_k)/2
X [(y‘ - Y8 _Zlyl)l(yl - Y8, _ZI'Y!)]_(TJrUO»m')/Z.

(5.11)
The density of II, is defined as
p(H1|B|, ¥, D)
= UL, YIM, Y, Z'M, Z, T+ ag— k), (5.12)
where I1,=(Z'M, Z)"'Z'M, Y, and
M,=M,-M,Z(ZM,Z)"'Z'M,, M, =Ir—u(uu)u).

A proof of Theorem 3 is given in Appendices B and C. We note that
p(B., v:| D) has the same functional form as given in Section 3, equation
(3.15); compare equations (3.11)-(3.14). We remark that this method of
derivation is, essentially, one followed by Dréze and Richard (1983).

Note that if one conditions p(IT,|B,, ¥,, D) on the limited information
maximum likelihood estimator (LIML) of B,, v,, then it can be shown that
I1,, the conditional posterior expectation of II, is equal to the LIML
estimator of IT,.

The second theorem on posterior densities for 8,, v, and H, is based on

Model Representation IT1. It is stated as follows.

Theorem 4. Given the class of noninformative prior densities of Theorem 2

and given Model Representation 111, the conditional posterior density of the

structural parameters (B,, v,), given a value of I, , is a multivariate-t density,

and the marginal posterior density of I, is a (2-1) poly-matrix-t density.
The density of (B,, v,) is defined as

p(By. v I, D)
=7RBL, Y16y, (IMyp) TIX M X, T+ ag—m, —ky),
(5.13)
where X =(Y, Z,) and
6,=(X'MyX)"'X'Myy,, My,=I—V(V|V) 'V,
Vi=Y,~ZII,,  My=M,-M,X(X'M,X)"'X'M, .
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The density of 11, is defined through its kernel as
pUT,|D)ec| Y\ M Y, + (IT,—I1,) Z' My Z (IT, — IT,)| " o= =172
<| YN Y, + (I, ~IT§) Z M Z(IT, - IT5)| = 7o/
x| Y\M,Y,+ (I, —I1,)Z' Z(IT, - II,)| T V2 (5.14)
where | = m,+ k, and
My =My —-MZ(Z'MxZ)'Z'My, II,=(Z'MyZ)"'Z'MyY,,
M%i =M% -MAXZ(ZMAZ)'Z’M%, [Oi=(Z'M%Z)'Z’M%Y,,

M* = My~ My, (yiMxy) ' yiMy, I,=(Z'2)'2'Y,. [

A proof of Theorem 4 is omitted and left to the interested reader. It
follows the similar steps as taken in Appendix B and C.

We end this section with two remarks.

First, one may extend Theorems 3 and 4 to the case where one has a
conditional normal-inverted gamma-2 prior on the structural parameters
and a locally uniform prior on the reduced form parameters. Similarly,
one may use a multivariate-t prior on the structural parameters and be
locally uniform on reduced form parameters. Details are omitted for space
considerations.

Second, we have not stated explicitly the conditions that are sufficient
for the existence of the integrals defined in the posterior distributions. These
conditions are similar to the ones discussed in Section 3 and will be
investigated explicitly in future work.

6. Remarks on Bayesian inference on exogeneity and overidentification

The posterior densities of B,, v, and II, of Section 5 can be used for a
diagnostic analysis of overidentifying restrictions and exogeneity restric-
tions. Of course, another approach is to specify prior odds and derive
posterior odds for the restrictions mentioned above. However, some simple
checks are the following.

The (1-1) poly-t density of (8,, v,) (see (3.15) and Theorems 3 and 4)
has as numerator the posterior density of the equation parameters of the
standard linear model. Therefore, the variation in the denominator is an
indication of the plausibility of exogeneity of the variables Y,. If this
function is constant, one may conclude that the variables Y, are exogenous.
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A parametric analysis of exogeneity can be conducted in each of the
three model representations. In Representation 111 one may investigate the
posterior density of the parameter 7. Algorithmic procedures for this pur-
pose are given in Zellner, Bauwens and Van Dijk (1988). In Model Rep-
resentation 11 one may analyze the posterior density of the parameter &
(see Lubrano, Pierce and Richard, 1986). In Model Representation I, one
may investigate the posterior density of w,. In small samples, different
results may emerge for the different representations. This is a topic for
further research.

The validity of the overidentifying restrictions may be verified by compar-
ing the (2-1) poly-matrix-¢ of II, and the unrestricted matrix-¢ of I1,.

One may also add variables to the structural equation and check how
“close” the posterior density of its parameter is concentrated around zero.

Clearly, this is only a tentative list. More research in this area needs to
be done. The use of a predictive approach is a worthwhile topic of research
in this context.

7. Conclusions

We have reviewed Bayesian limited information analysis of the simultaneous
equations model. Our results can be summarized as follows.

The marginal likelihood function of an underidentified SEM is not
constant, but is explosive in some directions of the parameter space while
it is more regular in other directions. Locally uniform priors are, therefore,
not a suitable class of prior densities and there is a need for informative
prior information.

Dreze’s result that the parameters of a single structural equation have a
(1-1) poly-t density holds under the condition that the prior degrees of
freedom parameter has a particular value. It is of interest that in the
incomplete simultaneous equations model one can derive the class of (1-1)
poly-t densities for several different values of the degrees of freedom
parameter.

One can show that the marginal posterior density of the implied reduced
form parameters in the incomplete SEM is a so-called (2-1) poly-matrix-f
density.

It appears that the different representations of the incomplete simul-
taneous equations model have each particular properties that are useful for
the analysis of exogeneity and overidentification.

Clearly, the results are to be used in empirical studies. In applied work
there is a need for diagnostic analysis on the plausibility of the prior
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assumptions. If one is interested in posterior results on the nuisance par-
ameters such as the covariance matrix of the disturbances, one needs a
decomposition of the inverted Wishart density along the lines discussed by

Dréze (1976).

Appendix A

In this appendix we give some details on the Figures 2 to 5. First, we discuss
the full information case; Figures 2 to 4. From {2.15b) and (2.15¢) one can
write the joint posterior density of (B, 1) as

p(B, | D)oc|B'OB+ (I +IIBYZ'Z([ +IIB)| """~V B'B| "2,
(A1)

For Figures 2-4 we interpret B and I as scalars and take the data matrices
0, Z'ZandITas=1,2'Z=1, I1=0.10. Further, m=1 and k=1. Then

(A.1) becomes
p(B, 1"| D)CX:[B2+(1"+0'1B)2]~(7'+11~21/2(B2) T/Z- (A2)

Clearly, if h=0or h =1, the right-hand side of (A.2) tends to infinity when
B tends to infinity. If h>2 then (A.2) tends to infinity when B tends to
zero. If h =2, then one has the concentrated likelihood function that is only
undefined when B=0 and I" =0. Note that in the case of h=2, the least
upperbound for (A.2) in the point (0,0) is equal to one. One can rewrite
(A2) as

F+OlB (T+h=2)/2 B N ,
p(B,F|D)OC[1+(T> } |B|"'(B?) 2 (A3)

Apart from the last factor, (A.3) is proportional to a conditional univariate
¢ density of I" given a value of B. A kernel of this conditional density is
shown in Figure 2 for values of B in the interval [—4, 4].

In the limited information case, Figure 5, we start with equation (3.7)
and mterpret B, and 7, as scalars. Further m=1, k=1, 0 =1, Z'Z=1,
and IT =0.1. Then one has ~

p(By, 3, D)c (BT B+ (F,+0.18,)°1 TV (A.4)

Clearly, this is the same function as (A.2) with h =3. If one replaces B, by
B, and 7, by y,, and if we impose on the right-hand side of (A.4) that
B2=(1+B1), then one has a kernel of a (1-1) poly-1 density as shown in
Figure 5.
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Appendix B
Proof of Theorem 3.

- Model Representation I is given in Table 2 and repeated here for
convenience with some new notation,

yi=(Y, Zl)<€l>+ul::/\/e+“l, (B.1)
1,
Y, =(Z ul)<8,)+E:= WA + E. (B.2)

Given the assumptions stated in Section 4, the likelihood function of this
representation can be written as the product of (4.5b) and (4.5¢),

LB, 7170'2, 11, 8, <P|D)=f§(y1| YiBi+2Zy, G-ZIT)

Xfan" (Y| ZIT +us', d@ I). (B.3)
- The prior density is given by (5.2) together with (5.4), ie.,
P(Br, yi, 07 011, 8y, @)oc(g?) T\t 22 | ~tagtzem 2, (B.4)

- Multiply L(-) with p(:); use the definition of t;2 MN density function;
and complete the squares on 4. Then one obtains

p(Bi, v, I, 8, ®|D)
o)W [ YoBy+ Zyyy, o Ly )| )T e
xexp{—3tr @[ YIMuY, + (4 - Ay W W(4-A)]), (B.5)
where
My =1 —W(WW)"'"W and 4 =(W W) 'W'y, . (B.6)

- From the definition of the MN and IW density functions, one recognizes
in the formula above that

p(Aa ®|B|1YI>0-27 D)
:p(A|¢}Bl;ylaoan)p(®|517YIvazaD)> (B7)
where
p(A|®, By, vy, 07, D)= (A4, e (W' W) ™) (B.8)
and

p(P[B,, v, 0%, D)=f1(D| Y| MyY,, T+a,—k). (B.9)
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- Integrating the joint density (B.5) with respect to 4 and @ gives
p(Bi,vis C"zi D) (0'2)_(a(’+27'n"/2f17\4_(% ‘ YiBi+Ziy, C"ZIT)
X[ W W[ Y M YT e (B.10)
The last two factors are the parts of the normalizing constants of the MN
and IW conditional densities above, that depend on 8, and y,. Then, we
make use of
Z'Z Z'u,

, ) =|Z'Z|(uiMzu,). (B.12)
uZ  uu,

W W =

This follows from the usual expansion of determinants. Only u)Mzu,
depends on the parameters; furthermore

WMz, =y, =Y B —Ziy)Mz(y - YiB—Z,y)
=1 =B Y'MY(1 -B1), (B.13)
where Y =(y, Y,) and M,Z, =0. In addition
[YIMWY [ =Y Y\[[ WM, WI[W W[,
where My, =1 —Y,(Y(Y,)"'Y], and
Yy YW
w'Y WWw
The determinant |YY,| does not depend on the parameters, | W' W| has
already been analyzed, and | W'M, W/| does not depend on the parameters

(see Appendix C).

- Collecting the factors depending on the parameters, using the definition
l\,/

of the normal density f( ), and completing squares in 6 = (8 y})
P(Br, i, 07| DY [(1=B) Y MY (1 =gy ] Treommhe

—(T+ag—m +2)/2

=Y YIHWJMY. Wf:IW'WHY{MWY1I~

x (%)

1 A “
Xexp{—ﬁ[yﬁMxymL(0—0)’X’X(0—9)]}
(B.14)

((3= (X'X)"'X'y, and My is the projection matrix of X). From the
definition of the inverted gamma density (i.e., the one-dimensional IW
density), one can then easily integrate out o”; the result is (5.11).

- To derive (5.12), we make use of the MN-IW conditional density of
A, &. Notice that this density is in {act conditional on ¢ and not on ¢; s0
we can drop o from the conditions.
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The first step is to integrate out & from p(4|®, 6, D) by standard proper-
ties of the normal density. This yields:

p(IL|®, 8, D) =fi (|, $®(Z'M, Z)™") (B.15)

(I, is the submatrix of A corresponding to I, and is defined explicitly in
Theorem 3, together with M., ).

The second and last step is to marginalize the latter density with respect
to @. A well known property of the MN-IW density yields the result stated
in (5.12) (see, e.g., Dréze and Richard, 1983, p. 589). O

Appendix C

We show that |[W'M, W/| does not depend on the parameters 8, and v,.
Consider

MY, W= (MY,ZEMY,})I - MY, Y.8, _MY,Zﬁ’l)
= (MY,ZIIMY,(YI —-Zv)),
since M, Y, =0. Hence

iweny, )= | T2 My = Ziy) (0= Ziv)' My Z
Z'My,(y = Ziy)) Z'M\,Z
=|Z'M,.Z|
X[ =Zyy) My (v, = Z, 7))
W =Zy) My Z(Z'MyZ) ' Z' My (y,— Z,y))].

The first factor on the right-hand side depends only on the data. The second
1s equal to

ViMyy =My Z(Z'My Z)7 Z' M, p,
TYVZIMy Zyy =¥ Z\ My Z(Z' M, Z) ' Z' My, Z,y,
—2VZ My +2y 12\ My, Z(Z' M, Z) ' Z' My,
=yiMyy =My Z(Z'MyZ) ' Z' M, y,
TY'Z'MyZy—y'Z My Z(ZM,Z)'Z'M, Zy
—2Y'Z' My, +2y'Z' My Z(Z'M,Z) ' Z' My y,,

Bayesian limited information analysis revisited 423

because Z,y, = Zy upon defining y =(}}). So, the two terms in the second
line cancel, and also the two terms on the last line, while the two terms on
the first line depend only on data, and not on parameters.
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