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We develop a model in which a start-up firm issues tokens to finance a digital platform, 

which creates agency conflicts between platform developers and outsiders. We show that 

token financing is preferred to equity financing unless the platform expects strong cash 

flows, has large financing needs, or faces severe agency conflicts. Tokens are characterized 

by their utility features, facilitating transactions, and security features, granting cash flow 

rights. While security features trigger endogenous network effects and spur platform adop- 

tion, they also dilute developers’ equity stake and incentives so that the optimal level of 

security features decreases with agency conflicts and financing needs. 
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1. Introduction 

Initial coin offerings (ICOs) have become an important

source of financing for firms that develop digital platforms

( Howell et al., 2020 ). By the end of 2018, over 5500 firms

had attempted to raise funds using an ICO, raising over 30

billion dollars ( Lyandres et al., 2020 ) and with at least 20

ICOs taking in more than 100 million dollars ( Howell et al.,

2020 ). In an ICO, a firm raises funds by issuing crypto-
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graphically secured tokens. Because these tokens serve as 

the means of payment on a platform or offer access to the 

firm’s services, they possess utility features and are there- 

fore often called utility tokens. Despite the popularity of 

ICOs and the considerable growth of the academic litera- 

ture on this new form of financing, a number of key ques- 

tions remain open. Chief among these is whether an ICO 

should be preferred to alternative ways of financing, such 

as financing with equity or with tokens other than utility 

tokens. 

Tokens indeed come in many different forms. Many to- 

kens only possess utility features and do not have any se- 

curity features, such as cash flow or dividend rights. This is 

the case, for example, for the tokens issued in the ICOs of 

Filecoin or Golem. Symmetrically, several tokens—such as 

the LDC Crypto token or the BCAP token—do not possess 

utility features and resemble traditional securities, except 

that they are recorded and exchanged on a blockchain. To- 

kens with security features are classified by the so-called 

https://doi.org/10.1016/j.jfineco.2021.05.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jfec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfineco.2021.05.004&domain=pdf
https://doi.org/10.13039/100016055
mailto:gryglewicz@ese.eur.nl
mailto:mayer@ese.eur.nl
mailto:erwan.morellec@epfl.ch
https://doi.org/10.1016/j.jfineco.2021.05.004


S. Gryglewicz, S. Mayer and E. Morellec Journal of Financial Economics 142 (2021) 1038–1067 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Howey test as securities. 1 These tokens are called security

tokens and are sold in security token offerings (STOs). Re-

markably, many tokens exhibit both utility and security

features. For instance, multiple crypto-exchanges—such as

Binance, BitMax, or KuCoin—feature tokens that are used to

trade on the exchange and additionally allow token holders

to earn income related to the overall transaction volume. 2

Digital banking platforms—such as Nexo or Bankera—have

issued tokens of a similar type. Likewise, cryptocurrencies

with proof-of-stake consensus algorithms—such as NEO,

Cardano, or Ethereum after its Casper protocol—both facil-

itate transactions and generate income to token holders. 3 

This paper develops a unifying model that nests these

different types of tokens and studies the optimal token

design in the presence of frictions that generally prevail

in firms developing digital platforms, such as the need to

raise outside funds to finance platform development and

the ensuing agency conflicts between insiders (platform

developers) and outsiders. Specifically, we develop a model

in which a start-up firm, owned by penniless developers,

builds a platform that facilitates peer-to-peer transactions

among users. As in Cong, Li and Wang (2020b, 2021) , the

platform features network effects that imply complemen-

tarities in users’ endogenous adoption and transaction de-

cisions. In addition, the platform generates cash flows that

increase in the level of platform adoption (i.e., the platform

transaction volume) and arise, for example, from transac-

tion fees, advertisement proceeds, and/or from using trans-

action data. 

Entities conducting token offerings tend to have un-

proven business models and are most often in the preprod-

uct stage ( Howell et al., 2020 ). To capture these key fea-

tures, we consider that the platform is initially not fully

developed and the start-up firm has financing needs in

that developers lack the funds to finance platform devel-

opment. To raise the necessary funds, the start-up can

issue equity and/or tokens that may serve as the trans-

action medium on the platform and thus may exhibit

utility features. These tokens may also exhibit security fea-

tures, in that they may pay dividends in relation to plat-

form cash flows. In addition to financing needs, platform

development is subject to moral hazard. Specifically, plat-

form success depends on developers’ hidden effort, which

comes at a cost to developers. 

In the model, developers’ revenues stem from selling

tokens to platform users and from the ownership of the

start-up equity, which is a claim on the cash flows that

the platform generates. Users’ motive to hold tokens and
1 According to the Howey test, an investment contract is a security if 

the following four conditions hold: 1) it is an investment of money, 2) 

in a common enterprise, 3) with an expectation of profit, 4) with profit 

generated by a third party. Conditions 1 and 2 are typically satisfied for 

any type of token offering. Conditions 3 and 4 are satisfied, for example, 

if the token distributes dividends. 
2 While Binance distributes profits to token holders through buybacks 

(i.e., token burning), KuCoin and BitMax explicitly pay dividends to token 

holders. In addition, transacting with the native exchange token offers fee 

discounts. 
3 Token holders are rewarded for staking (i.e., holding) tokens. 

Ethereum will switch to a proof-of-stake consensus algorithm after the 

so-called Casper protocol ( Buterin and Griffith, 2017 ) is implemented. 
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the pricing of tokens reflect both the token utility and se- 

curity features, with an equilibrium token price that in- 

creases with the level of platform adoption. Token secu- 

rity features affect users’ platform adoption decisions and 

therefore the value of the platform and of its native to- 

kens. Because they grant cash flow rights to token hold- 

ers, security features also reduce the value of developers’ 

equity in the start-up firm and undermine their incen- 

tives, which are determined by their equity ownership and 

by the tokens they retain. Crucially, equity and token in- 

centives differ not only in their strength but also in their 

relation with the token design. This paper solves for the 

optimal token design in this environment characterized by 

financing needs and moral hazard and derives the follow- 

ing main findings. 

First, considering the financing problem of a platform 

that uses tokens as a transaction medium, we demonstrate 

that issuing tokens to finance the start-up generally max- 

imizes both developers’ payoff and the value of the plat- 

form. We also show that while token security features 

trigger endogenous network effects and spur platform 

adoption, their provision is affected by moral hazard and 

financing needs. Specifically, granting cash flow rights to 

token holders improves the return to holding tokens and 

therefore boosts the platform transaction volume. This, in 

turn, raises the platform’s cash flows, which implies even 

more transactions and dividends. However, token security 

features dilute developers’ equity ownership in the start- 

up firm. Because the incentives generated by each dollar 

of equity ownership are stronger than the incentives from 

a dollar of token ownership, token security features under- 

mine incentives. As a result, the optimal level of cash flow 

rights granted to token holders decreases in the extent of 

moral hazard. Since the underprovision of security features 

reduces platform adoption and value, moral hazard inten- 

sifies financing constraints. Symmetrically, larger financing 

needs imply that developers retain fewer tokens, thereby 

exacerbating the moral hazard problem. Financing needs 

and moral hazard thus reinforce each other, leading to low 

levels of token security features and token retention. We 

also show that moral hazard is more severe when network 

effects are low or the platform development phase is long, 

which induces low levels of security features and token re- 

tention. 

Second, we analyze when it is optimal to issue a 

utility token without security features. That is, we analyze 

when developers prefer an ICO over an STO. An ICO is 

the optimal funding model if the platform value derives 

from facilitating transactions rather than from generating 

cash flows. An ICO is also preferable to an STO if financing 

needs, agency frictions, or the platform development phase 

are large. Thus, while the ICO funding model is often criti- 

cized on the basis that many firms have not yet delivered 

on their product, our analysis suggests to the contrary that 

projects with a long development phase are particularly 

suitable for conducting an ICO. Moreover, our model 

implies that start-ups with innovative business models, 

which are particularly prone to moral hazard, optimally 

raise funds via ICOs, consistent with Fahlenbrach and 

Frattaroli (2020) or Howell, Niessner and Yermack 

(2020) . 
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Third, we examine when it is optimal to use fiat money

as the platform transaction medium and to issue equity to

finance platform development. Ceteris paribus, the ability

to transact with fiat money reduces the cost of transacting

for users and increases both the transaction volume and

platform earnings. Intuitively, users are more willing to

transact with fiat money as they do not bear crypto-related

transaction costs. However, issuing tokens without util-

ity features (or security tokens that resemble conventional

equity) may constrain developers’ ability to raise funds

and harm platform success, notably when platform value

mostly comes from facilitating transactions among users.

Financing platform development with equity is therefore

only optimal if platform cash flows are expected to be

large or if network effects are strong. For firms with-

out very high cash flows (or very strong network ef-

fects), the platform is generally optimally financed with to-

kens, unless moral hazard is severe or financing needs are

large. 

Fourth, we study the asset pricing implications of to-

ken utility and security features. We show that while

token security features spur platform adoption, they also

amplify token price volatility. The reason is that security

features generate endogenous network effects that increase

the sensitivity of platform adoption to productivity shocks.

This boosts the token price volatility because the token de-

rives its value from the level of platform adoption. The ef-

fects of security features on the token price volatility are

larger when the token possesses more utility features or

when network effects are stronger. Thus, according to our

model, the combination of token utility and security fea-

tures should cause particularly volatile token prices. 

Finally, we study various extensions of the model, in

particular the relation between optimal platform financ-

ing and adverse selection. We demonstrate that adverse

selection has ambiguous effects on the provision of token

security features, depending on whether a separating or

pooling equilibrium prevails. In a separating equilibrium,

in which different types of platforms are financed with dif-

ferent types of tokens and ICOs and STOs coexist, adverse

selection increases the provision of token security features

by high-quality platforms, implying a positive relation be-

tween the provision of security features and the ex post

value of platforms or the likelihood of platform success. In

a pooling equilibrium in which all platforms are financed

with the same tokens, adverse selection decreases the pro-

vision of token security features. 

Our work is related to the literature on blockchain

economics, tokenomics, and cryptocurrencies. Notable

contributions include Athey et al. (2016) , Abadi and

Brunnermeier (2019) , Makarov and Schoar (2020) ,

Liu and Tsyvinski (2020) , Cong and He (2019) ,

Cao, Cong and Yang (2019) , Huberman, Leshno and

Moallemi (2020) , Biais et al. (2019) , Cong, He and

Li (2020a) , Prat and Walter (2019) , Saleh (2020) ,

Pagnotta (2020) , Easley, O’Hara and Basu (2019) , and

Hinzen, John and Saleh (2020) . A review of this rapidly

evolving research area is provided by Chen, Cong and

Xiao (2019) . 

A large subset of this literature focuses on ICOs,

with many empirical papers studying determinants
1040 
of ICO success or showing post-ICO patterns. Impor- 

tant contributions include Howell, Niessner and Yer- 

mack (2020) , Fahlenbrach and Frattaroli (2020) , and 

Lyandres, Palazzo and Rabetti (2020) . Many firms is- 

suing tokens develop a decentralized platform that 

promises network effects. Much of the theoretical 

literature on ICOs highlights the coordination ben- 

efits inherent to utility tokens; see, for example, 

Li and Mann (2020) , Sockin and Xiong (2020) , and 

Catalini and Gans (2018) . Further theories on ICOs in- 

clude Chod and Lyandres (2021) , Chod, Trichakis and 

Yang (2019) , Goldstein, Gupta and Sverchkov (2020) , 

Holden and Malani (2019) , Lee and Parlour (2019) , 

Lyandres (2020) , Malinova and Park (2017) , and 

Mayer (2020) . In contrast to these papers, our model 

is not limited to utility tokens but encompasses a richer 

class of tokens. In addition, we study the effects of financ- 

ing needs and moral hazard on token design, while most 

research to date takes the token and platform design as 

exogenously given. Li and Mann (2021) provide a review 

of the early literature on ICOs. 

Our paper also advances the literature on the eco- 

nomics of platforms. Early contributions in this litera- 

ture, such as Rochet and Tirole (2003) , do not con- 

sider tokens. More recently, important progress has 

been made on platform finance with tokens. Notably, 

Cong, Li and Wang (2021) analyze the pricing implications 

of users’ intertemporal adoption decisions. Cong, Li and 

Wang (2020b) connect tokenomics to corporate finance, 

with a focus on optimal token-supply policy to finance 

investment in platform quality. While we employ simi- 

lar modeling of users’ platform adoption decisions, our 

paper differs from Cong, Li and Wang (2020b, 2021) in 

several important dimensions. First, Cong, Li and Wang 

(2020b, 2021) do not consider tokens with dividend 

rights and security features. Second, while Cong, Li and 

Wang (2020b) features conflicts of interest between users 

and developers, they abstract from moral hazard and plat- 

form financing needs, which are the key frictions we 

model in this paper. 

Finally, our paper also relates to the literature on the 

optimal design of securities. Seminal contributions include 

Townsend (1979) , Gale and Hellwig (1985) , and Bolton and 

Scharfstein (1990) , or, in dynamic settings, DeMarzo and 

Sannikov (2006) and DeMarzo and Fishman (2007) . Our 

focus is on the design of tokens and the comparison of 

tokens with equity financing. A distinguishing feature of 

our framework is that platform financing (i.e., the design of 

tokens) affects endogenous platform adoption, cash flows, 

and firm value, even if there are no frictions. By contrast, 

in standard models of security design, such a link between 

firm value and financing requires frictions (such as adverse 

selection, moral hazard, or taxes). 

Section 2 presents the model. Section 3 solves for the 

optimal token design when the platform uses tokens as 

transaction medium. Section 4 analyzes the model impli- 

cations. Section 5 derives conditions under which equity 

financing with fiat money as transaction medium is opti- 

mal. Section 6 examines the asset pricing implications of 

token utility and security features. Section 7 investigates 

the robustness of our findings to various model exten- 
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sions. Section 8 summarizes our main testable predictions.

Section 9 concludes. All proofs are in the Appendix. 

2. Baseline model 

Time is continuous and defined over [0 , ∞ ) . There are

two types of agents: developers and a unit mass of plat-

form users indexed by i ∈ [0 , 1] . All individuals are risk

neutral and discount future payoffs at rate r > 0 . Devel-

opers run a start-up firm that launches a digital platform

but lack the capital to develop it. They obtain funds at

time zero by issuing tokens, which serve as the transac-

tion medium on the platform. They are in fixed unit supply

and possess equilibrium price P t . In addition, they are per-

fectly divisible, reflecting the fact that crypto tokens can

generally be traded in fractional amounts. We conjecture

and verify that token-based financing always dominates

equity financing when tokens serve as transaction medium.

In particular, developers (optimally) do not issue outside

equity and always own 100% of the start-up’s equity. 

Platform transactions The platform allows users to con-

duct peer-to-peer transactions. As in Cong, Li and Wang

(2020b, 2021) , any user i has transaction needs and derives

a utility flow 

A t N 

χ
t 

x 
η
it 

η
(1)

from a transaction of x it dollars on the platform where

η ∈ (0 , 1) . 4 The coefficient A t is the platform productiv-

ity, which characterizes the usefulness of the platform. The

specification in (1) captures network effects in that any

user’s utility from transacting increases in the volume of

platform transactions N t . That is, the higher the transaction

volume, the easier it is to find a transaction counterparty

and the more valuable it becomes to join the platform.

The parameter χ ∈ [0 , 1 − η) characterizes the strength of

these network effects. 

Transacting on the platform is costly. First, any user has

to hold x it dollars in tokens (or x it /P t tokens) for v dt units

of time to transact. 5 Holding tokens is therefore costly

because it implies a foregone opportunity to invest and

earn interest for v dt units of time. The parameter v > 0

captures potential delays in settlements, in acquiring to-

kens, or in finding an appropriate counter-party. 6 Second,

in addition to these holdings costs, users incur direct costs

φx it dt for a transaction of size x it on the platform, where

φ > 0 . This direct cost captures, for instance, transaction

fees charged by miners or crypto exchanges or a physical

cost of platform operation that is charged to users. This di-

rect cost may also be related to the effort and attention re-
4 This utility flow can be micro-founded by a random search and 

matching protocol; see Cong, Li and Wang (2020b, 2021) . 
5 Appendix D provides a micro-foundation for this holding period. 

Cong, Li and Wang (2020b, 2021) assume that v = 1 . When v = 0 , security 

tokens have no transaction value and resemble conventional equity. 
6 Because, in practice, blockchain protocol and settlement latency 

( Easley et al., 2019; Hautsch et al., 2019 ) limit the influence that devel- 

opers have on v , we treat it as an exogenous parameter. For example, 

transactions on the Bitcoin blockchain cannot occur instantaneously since 

a new block has to be created for the transaction settlement, which takes, 

on average, ten minutes. 
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quired for transacting on the platform, as in Cong, Li and 

Wang (2021) . 

Cash flows . Once developed, the platform generates cash 

flows 

dD t = μ(A t ) N t dt, (2) 

where μ(A t ) with 

∂μ(A ) 
∂A 

≥ 0 is the platform cash flow rate. 

In practice, platforms may generate cash flows with adver- 

tisement proceeds, transaction fees, and/or by selling/using 

user data. Naturally, cash flows increase with the transac- 

tion volume N t and platform productivity A t , as a more 

useful platform implies a higher user activity on both the 

extensive and intensive margins, which in turn raises the 

profits that platform operators extract, for example, by set- 

ting (per-transaction) fees or selling user data. For analyt- 

ical tractability, we assume that cash flows are linear in 

the transaction volume N t and there is no direct link be- 

tween μ(A t ) and φ in that ∂μ(A ) 
∂φ

= 0 . Under this assump- 

tion, the cost φ is a dead-weight loss as in, for example, 

Cong, Li and Wang (2021) . Section 7 incorporates endoge- 

nous transaction fees charged by platform developers to 

users and analyzes their effects on token design and plat- 

form adoption and value. 

Platform development: moral hazard and financing. Firms 

conducting token offerings are young and most often in 

the preproduct stage ( Howell et al., 2020 ). To capture this 

feature, we consider that the platform is developed over 

some time period [0 , τ ) and is launched at time τ once a 

milestone has been reached. The arrival time of the mile- 

stone τ is governed by a Poisson process M t with constant 

intensity � so that over each time interval of length dt

there is a probability �dt that the platform development 

is complete and the expected time to development is 1 
� . 

Platform development is subject to moral hazard and 

financing needs. Moral hazard arises because platform 

success depends on developers’ hidden effort a t ∈ { 0 , 1 } , 
which comes against a flow cost κa t to developers, with 

κ ≥ 0 . 7 Specifically, in case the milestone is reached over 

the time interval [ t , t + dt ) , the platform is successful only 

if developers exert effort over [ t , t + dt ) . Formally, we have 

that A s = 0 for s < τ and 

A s = A L + (A H − A L ) 1 { a τ =1 } 
for s ≥ τ , where developers have to choose effort a t be- 

fore the random event dM t ∈ { 0 , 1 } realizes over [ t , t + dt ) .

This modeling of productivity shocks is also employed 

in, for example, Board and Meyer-ter Vehn (2013) and 

Hoffmann and Pfeil (2021) . It follows that moral hazard is 

severe when the cost of effort κ or the expected time to 

development 1 / � is large. Define μ j = μ(A j ) for j ∈ { H, L } . 
Fig. 1 shows the timing of events over a time interval 

[ t , t + dt ) . For simplicity, platform productivity is constant 

after time τ . We study the implications of productivity 

shocks arising after time τ in Section 6 and show that this 

assumption has no bearing on our key findings. 

In addition to moral hazard, the start-up firm faces fi- 

nancing needs in that platform development requires in- 
7 Section 7 shows that this setup is isomorphic to a model with cash 

diversion. We thank the referee for encouraging us to generalize the 

model in this direction. 
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Fig. 1. Heuristic Timing over [ t , t + dt ) . With probability �dt , platform 

development is complete. Platform success depends on developers’ hid- 

den effort a t ∈ { 0 , 1 } . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vesting I > 0 and developers do not have the capital to

cover these needs. At inception, developers thus sell 1 − β0

tokens to the market and raise (1 − β0 ) P 0 dollars. Funds

raised by issuing tokens must be sufficient to cover the fi-

nancing needs of the firm, leading to the constraint: 

(1 − β0 ) P 0 ≥ I. (3)

Funds raised at time zero are optimally invested in plat-

form development or are paid out as dividends. 

Developers have incentives to exert effort because they

hold tokens and own the firm’s equity. While providing

the funds to finance platform development, token issuance

also leads to a potential dilution of developers’ stake in the

firm, triggering moral hazard. Notably, developers initially

retain β0 ∈ [0 , 1] tokens that are only optimally sold when

the milestone is reached at time τ . 8 That is, developers sell

1 − β0 tokens at time zero and β0 tokens at time τ . We

emphasize that we do not restrict developers to this par-

ticular token trading behavior. Because the only productiv-

ity shock realizes at time τ and developers and users dis-

count at the same rate r, there is simply no reason to trade

at any other time t �∈ { 0 , τ } . We therefore denote the devel-

opers’ token holdings βt over [0 , τ ) by β . 

Security features . Besides having utility features by serv-

ing as the platform transaction medium, tokens may also

have security features in that they may pay a fraction α ∈
[0 , 1] of total cash flows dD t to token holders, with the bal-

ance (1 − α) dD t being paid out as a dividend to the start-

up equity holders. Therefore, even though developers own

100% of the start-up’s equity, a token with α > 0 dilutes

their cash flow rights and the value of their equity owner-

ship in the start-up. 

In summary, token utility features are represented by

the convenience yield in (1) . Token security features are

captured by the token dividends αdD t . In practice, the

Howey test would classify any token with cash flow rights

as security, so we refer to tokens with α > 0 as security to-

kens. Conversely, when α = 0 , the token is a utility token

and does not possess security features. That is, our model

encompasses ICOs as a special case in which α = 0 . There
8 Section 7 introduces speculators in the model and convex effort costs 

and shows that, in this alternative setup, developers may continuously 

trade between inception and the milestone. It also shows that this ex- 

tension has no other bearings on our results. We thank the referee for 

encouraging us to generalize the model in this direction. 
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is an ongoing debate on whether utility tokens are securi- 

ties. In classifying tokens as securities, our paper follows 

recent practices. In particular, tokens without cash flow 

rights (i.e., with α = 0 ) are typically not classified as se- 

curities and are therefore referred to as utility tokens. 

Users’ adoption decisions. Before the platform is de- 

veloped at time τ , tokens do not offer transaction ben- 

efits. Consequently, tokens are fairly priced by ordinary 

risk-neutral investors/users, implying that expected capital 

gains, E [ dP t ] , and dividends, E [ α dD t ] , alone offer investors 

the required return, rP t dt: 

E [ d P t + α d D t ] = rP t dt for t < τ. (4) 

After time τ , the platform is developed and holding 

x it /P t tokens over a time period of length v dt generates 

additional transaction benefits and costs: 

dR it := A t N 

χ
t 

x 
η
it 

η
dt ︸ ︷︷ ︸ 

Convenience yield 

− x it φ dt ︸ ︷︷ ︸ 
Transaction cost 

+ v x it 
(

dP t 

P t ︸︷︷︸ 
Capital gains 

+ 

α dD t 

P t ︸ ︷︷ ︸ 
Dividend yield 

− r dt ︸︷︷︸ 
Funding cost 

)
. (5) 

Eq. (5) shows that by holding tokens and transacting on 

the platform, users realize both a convenience yield and 

capital gains. A transaction of size x it comes at an effec- 

tive cost (v r + φ) x it that consists of the (funding) costs of 

holding tokens and the direct transaction costs. 

The optimal transaction volume x it for user i maximizes 

the expected utility flow at each point in time: 

max 
x it ≥0 

E [ dR it ] . 

This yields an optimal transaction volume given by 

x 
1 −η
it 

= 

A t P t N 

χ
t dt 

φP t dt + v 
(
rP t dt − E [ dP t + α dD t ] 

) . (6) 

All users i ∈ [0 , 1] face the same trade-off when determin- 

ing their optimal transaction volume. We thus have N t = ∫ 1 
0 x it di = x it so that the transaction volume at time t ≥ τ

satisfies 

N t = 

(
A t 

v r − v E [ dP t + αdD t ] / (P t dt) + φ

) 1 
1 −ξ

, (7) 

where we define for convenience ξ := χ + η as the trans- 

formed network effects parameter. A higher value of N t 

means that each user is more active on the platform. As 

a result, the transaction volume N t captures the degree of 

platform adoption at time t . 

Developers’ problem Developers choose effort a t , their 

token holdings βt , and the cash flow rights α attached to 

tokens. When tokens possess cash flow rights, developers 

receive 1 − α + βt α dollars for each dollar of cash flows 

produced by the firm. Developers can sell their initial al- 

location of tokens at the prevailing market price. Accord- 

ingly, their optimization problem can be written as 

V 0 = max 
α, { βt } , { a t } 

E 

[ ∫ ∞ 

0 

e −rt (−P t dβt + (1 − α + αβt ) dD t − κa t dt) 
] 

− I, 

(8) 

subject to the financing constraint (3) . 
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9 The token velocity problem is widely discussed among crypto 

practicioners (see, e.g., https://www.coindesk.com/blockchain-token- 

velocity-problem ). 
3. Equilibrium and model solution 

We study a Markov perfect equilibrium. 

Definition 1 . In a Markov perfect equilibrium, the following

conditions must be satisfied: 

1. All individuals act optimally: users maximize 

w i := max 
{ x it } 

E 

[ ∫ ∞ 

0 

, e −rt dR it 

] 
, (9)

and developers solve (8) . 

2. The token market clears before the milestone in that

(4) is satisfied for all t < τ . 

3. The token market clears after the milestone in that 

v 
P t 

(∫ 1 

0 

x it di 

)
= 

v N t 

P t 
≤ 1 − βt (10)

for all t ≥ τ . If and only if the inequality (10) is strict,

(4) holds for t ≥ τ . 

The left-hand side in the market clearing condition

(10) represents the token demand for transaction reasons.

The right-hand side represents the token supply. The to-

ken demand for transaction reasons is the product of the

transaction volume N t /P t measured in units of tokens and

the duration of the token holding period v . Intuitively, if

v is large, users from previous transaction periods need to

hold tokens in the current period, thereby increasing de-

mand. ( Appendix D discusses market clearing in more de-

tail.) Lastly, if the token demand for transaction reasons

is below the token supply, tokens must be held solely for

their dividend rights, and their price is determined by (4) . 

In the following, we solve the model before and after

the milestone separately for any choice of α ∈ [0 , 1] and

β ∈ [0 , 1] . Based on the model solution, we then determine

the optimal level of security features α and the optimal

level of token retention β . 

3.1. Model solution after the milestone 

We solve the model for any outcome j ∈ { H, L } . Since

all uncertainty is resolved after time τ , it follows that all

quantities remain constant at levels X j = X t for all t ≥ τ for

X ∈ { P, N} in that dP t = 0 for all t ≥ τ . We incorporate un-

certainty after time τ in Section 6 , where we discuss the

asset pricing implications of token utility and security fea-

tures. 

Because of their utility benefits, tokens are more valu-

able for users than for developers after time τ . In addition,

there is no moral hazard problem once the platform has

been launched. As a result, there is no value for developers

in retaining tokens after time τ . Thus, developers sell all

retained tokens at time τ so that βt = 0 for all t ≥ τ . This

implies that the value of developers’ stake in the start-up

firm at time τ is equal to the value 
(1 −α) μ j N j 

r of the start-

up’s equity, where the price and transaction levels remain

constant at levels P j and N j , respectively. 

Next, we derive the token price. Users may hold tokens

for transaction purposes and/or because of their dividends.

If dividends αμN j exceed the funding cost rP j , users hold
1043 
tokens purely for investment motives and the token price 

is given by the present value of its dividend rights: 

P j = 

αμ j N j 

r 
. 

In this case, the token is priced according to its security 

features. Otherwise, the token is held for transaction pur- 

poses and priced according to its utility features. In this 

case, N j /P j tokens are held over a period of length v dt and 

the effective token demand over a short period of time 

[ t , t + dt ) is then given by v N τ /P τ . Token supply for t ≥ τ
is given by 1 − βt = 1 . Market clearing therefore implies 

that 

P j = v N j . 

Combining the two cases, we obtain that the user base 

in Eq. (7) simplifies to 

N t = N j (α) = N j = 

(
A j 

max { 0 , v r − αμ j } + φ

) 1 
1 −ξ

, (11) 

and the token price is given by 

P t = P j = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

v 
(

A j 
v r−αμ j + φ

) 1 
1 −ξ

if v r > αμ j 

αμ j 

r 

(
A j 
φ

) 1 
1 −ξ

if v r ≤ αμ j . 

(12) 

Eqs. (11) and (12) reveal that utility features determine the 

token price if and only if the opportunity cost v r of hold- 

ing tokens exceed the token dividend yield αμ j . Thus, in 

our framework, v and α determine the users’ underlying 

motive to hold tokens. When v is relatively large com- 

pared to α, users hold tokens over an extended time pe- 

riod mainly for transaction purposes and therefore because 

of their utility features. By contrast, if v is low compared to 

α—for instance, when fiat money can be used as transac- 

tion medium on the platform and v = 0 —tokens are only 

held for their cash flow rights and their price increases 

with α. 

Last, the token price and platform adoption are closely 

related to the token velocity, defined as the ratio of the 

platform’s real transaction value over the token market 

capitalization. In our model, it is given by 

v elocity := 

N t 

P t 
= min 

{ 
1 

v 
, 

r 

αμ(A t ) 

} 
. 

This equation shows that if the token is priced according 

to its utility features, token velocity equals the inverse of 

the holding period v . Remarkably, security features α > 0 

bound the token velocity from above and so can be useful 

to address problems associated with high token velocity. 9 

3.2. Model solution before the milestone 

3.2.1. Incentive compatibility 

Consider first developers’ incentives to maximize the 

platform’s transaction value through their effort choice a t . 

https://www.coindesk.com/blockchain-token-velocity-problem
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10 Note that there are other degenerate equilibria in which no user 

adopts the platform and the platform and tokens are worthlesss. 

Throughout the paper, we do not direct our attention to these degenerate, 

less interesting equilibria. 
Suppose developers exert effort so that a t = 1 . With prob-

ability �dt , the milestone arrives over the next time in-

terval and future platform productivity equals A H so that

developers’ payoff at time τ equals 

βP H + 

(1 − α) μH N H 

r 
, 

which is the sum of the value of the tokens they retain and

the present value of future cash flows. By contrast, if devel-

opers shirk and choose a t = 0 , future platform productivity

becomes A L and their payoff at time τ equals 

βP L + 

(1 − α) μL N L 

r 
. 

Hence, developers exert effort at any time t < τ (i.e.,

a t = 1 ) if and only if 

IC(α) := �

(
βP H + 

(1 −α) μH N H 

r 

)
−κ︸ ︷︷ ︸ 

Payoff under a t =1 

−�

(
βP L + 

(1 − α) μL N L 

r 

)
︸ ︷︷ ︸ 

Payoff under a t =0 

≥ 0

(13)

Developers’ incentives to exert effort are driven by the to-

kens they retain and their equity stake in the start-up firm.

Token-based incentives are captured by the retention level

β . Equity incentives are captured by the fraction of the

platform cash flows 1 − α accruing to the start-up’s own-

ers. 

3.2.2. Developers’ problem and initial token issuance 

Consider next the platform development phase [0 , τ ) .

Unless otherwise mentioned, we assume that platform de-

velopment costs I are not prohibitively large and full effort

is optimal. In addition, we set μL = 0 for analytical con-

venience, so that the platform produces cash flows if and

only if developers exert effort. These assumptions are gath-

ered in the following: 

Assumption 1 . Exerting effort is efficient in that the project

produces cash flows and has positive net present value

(NPV) if and only if a t = 1 for all t < τ . Formally, (A.1),

(A.2) , and (A.3) in Appendix A have to be met. 

When Assumption 1 is satisfied and developers ex-

ert effort, we have P t = P H after the milestone has been

reached. The fair price of the token for risk-neutral users

over [0 , τ ) is then given by 

P t = P 0 = 

�P H 
r + �

. (14)

Notably, absent further constraints, developers and users

value tokens equally before time τ as they both apply the

same discount rate. However, because a higher retention

level β relaxes condition (13) , developers issue the mini-

mal amount of tokens needed to finance platform devel-

opment. We thus have for β = β0 : 

(1 − β) P 0 = I ⇐⇒ β = 1 − I 

P 0 
. (15)

Developers optimally do not sell tokens over (0 , τ ) as

there are simply no gains from trade so that βt = β for

t ∈ [0 , τ ) . 
1044 
Upon reaching the milestone, developers sell all re- 

tained tokens β at price P H and further enjoy the perpet- 

ual dividend stream (1 − α) N H μH . Hence, their continua- 

tion value over (0 , τ ) conditional on full effort is 

 (α) = 

1 

r + �

[
�

(
βP H + 

(1 − α) μH N H 

r 

)
− κ

]
(16) 

with β = 1 − I 
P 0 

. We can rewrite the value function as 

 (α) = 

�S(α) − κ

r + �
− I, (17) 

where 

S(α) = P H + 

(1 − α) μH N H 

r 
. (18) 

Eq. (17) is the NPV of the project to developers, which 

is given by the value of the platform net of the invest- 

ment cost. In this equation, S(α) is the sum of the value 

of all tokens in circulation and the value of the start-up 

equity after τ . Therefore, S(α) captures the monetary plat- 

form value after time τ , that is, the overall surplus in dol- 

lar terms. In Eq. (18) , P H is the value of all tokens (i.e., the 

token market capitalization) while (1 − α) μH N H is the div- 

idend flow. 

At time zero, developers design the token and choose 

the optimal level of dividend rights α to maximize the 

value they extract from the platform. That is, developers 

solve 

max 
α∈ [0 , 1] 

V (α) s.t. (13) and (3) . (19) 

Using Eq. (17) , we thus have that developers maximize 

S(α) subject to the incentive constraint (13) and the fi- 

nancing constraint (3) . We conclude the section by estab- 

lishing the existence of an equilibrium with positive adop- 

tion. 10 

Proposition 1 (Equilibrium existence). There exists a Markov 

perfect equilibrium with positive, maximal adoption after the 

milestone in that N t = N H , ∀ t ≥ τ . In this equilibrium 

1. Developers’ value function is given by (17) for t < τ and 

equals zero for t ≥ τ . 

2. Developers sell tokens only at times 0 and τ , and the re- 

tention level is given by (15) and βt = 0 , ∀ t ≥ τ . The op- 

timal level of security features α is characterized by (8) . 

3. The token price is characterized by (12) for t ≥ τ and by 

(14) for t < τ . 

4. Analysis 

4.1. The frictionless benchmark 

We start by studying the model without moral hazard. 

In this frictionless benchmark, the incentive compatibility 

constraint (13) becomes irrelevant, and developers choose 

α to maximize the platform value S(α) . This holds true 
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even if I > 0 . The following proposition demonstrates that

absent agency conflicts and transaction costs (i.e., for low

φ), full dividend rights α = 1 are optimal when token are

priced according to utility features (i.e., when v r ≥ μH ). It

also shows that an increase in transaction costs generally

reduces the optimal amount of security features. 

Proposition 2 (Frictionless benchmark). Define ˆ α =
min 

{ 
1 , v r 

μH 

} 
. When there is no moral hazard ( κ = 0 ),

developers maximize S(α) and choose α = ᾱ with

ᾱ = arg max α S(α) , satisfying 

ᾱ = 

⎧ ⎨ 

⎩ 

x ∈ [ ̂  α, 1] if max { v r − μH , 0 } ≥ (1 −ξ ) φ−μ
ξ

0 if v r ≤ (1 −ξ ) φ−μH 

ξ
v r 
μH 

+ 

1 
ξ

− φ(1 −ξ ) 
ξμH 

otherwise . 

When ᾱ ≥ ˆ α, it holds that S ′ (α) ≥ 0 for α ∈ [0 , ˆ α) . 

Because developers and users discount at the same rate

r, they also value dividends—ceteris paribus—the same.

However, dividends paid to users rather than to develop-

ers increase the returns to holding tokens and spur trans-

action volume and adoption. This in turn boosts cash flows

and, as a result, dividends to token holders and adoption.

That is, security features induce endogenous network ef-

fects via the cash flow channel. Therefore, absent frictions

it is optimal to allocate full cash flow rights to users when

tokens are priced according to utility features and the cost

of transacting on the platform is small and does not rep-

resent an impediment to platform development. Unlike α,

the parameter v has ambiguous effects on platform adop-

tion and token prices. An increase in v raises the cost of

transacting for users, hampering platform adoption in that
∂N H 
∂v < 0 . At the same time, an increase in v may boost the

token price due to the market clearing condition P H = v N H ,

which holds when tokens are priced according to utility

features (i.e., when v r ≥ μH ). 

Throughout, we focus on environments in which the

cost of transacting φ is low and the token is priced accord-

ing to its utility features. That is, unless otherwise men-

tioned, we assume that 

Assumption 2 . Parameters satisfy 

1. v r > μH and 

2. v r > 

(1 −ξ )(φ−μH ) 
ξ

. 

The first condition ensures that the token is priced ac-

cording to its utility features (i.e., P H = v N H ). The second

condition implies that ᾱ = 1 (see Proposition 2 ). As we

show below, all frictions drive the level of security features

below ᾱ = 1 , so this choice can be viewed as a normaliza-

tion. 

4.2. Moral hazard and financing needs 

As shown by (19) , developers maximize S(α) subject

to the incentive constraint (13) and the financing con-

straint (3) . Since ᾱ = 1 , S ′ (α) ≥ 0 for all α ∈ [0 , 1] (see

Proposition 2 with ᾱ = ˆ α = 1 ), and (3) is optimally tight

as in (15) , developers choose the maximal value α that
1045 
satisfies the incentive constraint (13) . Therefore, the opti- 

mal level of security features α in the tokens issued by the 

start-up firm is given by 

max 
α∈ [0 , 1] 

α s.t. IC(α) ≥ 0 . 

We can now examine how the optimal level of secu- 

rity features α and the token retention level β depend on 

moral hazard and financing needs. In the absence of fi- 

nancing needs, that is, when I = 0 , developers retain all to- 

kens and can therefore capture all the monetary proceeds 

that the platform generates. As a result, even if κ > 0 , 

there are no agency conflicts in that developers maximize 

S(α) and choose α = ᾱ = 1 . Conversely, financing needs 

I > 0 lead to a lower token retention level β < 1 and give 

rise to agency conflicts between developers (insiders) and 

users (outsiders). These agency conflicts affect the optimal 

design of tokens and therefore platform value, which in 

turn determines the severity of the financing frictions. In 

the following, we analyze how moral hazard and financing 

needs jointly shape the design of tokens and the provision 

of incentives. 

When α < 1 and β > 0 , developers have both equity- 

based incentives and token-based incentives. Equity-based 

incentives primarily relate to platform cash flows. Token- 

based incentives primarily relate to platform adoption. Be- 

cause a higher platform adoption also leads to higher 

cash flows, equity-based incentives de facto generate pay- 

off sensitivity to both platform adoption and cash flows. 

More formally, observe that for any given α, the value of 

developers’ equity before time τ satisfies 

E(A ) = 

�

r + �

(1 − α) N(A ) μ(A ) 

r 
, 

where the second term on the right-hand side of this 

equation represents the value of equity at time τ . Here, 

N(A ) is the level of platform adoption as a function of A 

and μ(A ) N(A ) is the platform’s cash flow (also written as 

function of A ). This implies that the incentives (i.e., the 

sensitivity with respect to productivity A ) generated by a 

dollar of equity ownership are equal to 

d E/d A 

E 
= 

d μ/d A 

μ︸ ︷︷ ︸ 
Cash flow 

sensitivity 

+ 

d N/d A 

N ︸ ︷︷ ︸ 
Sensitivity 

to platform 

adoption 

, (20) 

whereas the incentives from a dollar token ownership—

owing to P = v N—are equal to 

d P/d A 

P 
= 

d N/d A 

N 

. (21) 

Eqs. (20) and (21) show that, as long as cash flows 

increase with platform productivity, equity incentives are 

stronger than token-based incentives. Because of their 

greater strength, equity incentives are particularly impor- 

tant in firms characterized by severe moral hazard. There- 

fore, incentives optimally become more equity based and 

less token based if the cost of effort (i.e., κ), the ex- 

pected time to platform development (i.e., 1 / �), or financ- 

ing needs (i.e., I) increase. That is, financing and agency 

frictions or a long platform development phase lead to 
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Fig. 2. The effects of financing needs I, moral hazard κ , expected time to platform development 1 / �, and network effects ξ on token design and platform 

adoption. 

 

 

 

 

 

 

 

 

 

 

an underprovision of token security features. The provi-

sion of equity incentives reduces the token price P H and

thus requires developers to sell more tokens at inception

to cover financing costs I, thereby reducing the token re-

tention level β . 

Fig. 2 illustrates these findings by plotting the optimal

level of token security features α and developers’ reten-

tion level β as functions of financing needs I, the expected

time to platform development 1 / �, and agency frictions

κ . Input parameter values for this figure are described in

Appendix A . They follow from prior contributions in the
1046 
literature and imply an optimal retention level of β = 39% 

in our base case environment, in line with the average re- 

tention level reported in Fahlenbrach and Frattaroli (2020) . 

The right panels of Fig. 2 demonstrate the effects of agency 

and financing frictions on platform adoption when the to- 

ken is optimally designed; as discussed above, a decrease 

in security features leads to a decrease in platform adop- 

tion. 

Remarkably, network effects ξ relax the incentive con- 

dition (13) . The intuition is that strong network effects 

make developers revenues more contingent on platform 
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adoption, thereby aligning users and developers incentives.

In addition, stronger network effects make it more valuable

to grant dividend rights to token holders as security fea-

tures lead to higher cash flows to token holders and boost

adoption, which triggers even higher cash flows and adop-

tion. These endogenous network effects arising from the

cash flow channel are amplified by the exogenous network

effects ξ . As a result, stronger network effects imply more

token-based incentives, that is, a higher retention level β ,

and less equity incentives 1 − α to developers as illustrated

by Fig. 2 . 

Finally, we also demonstrate that it is strictly subopti-

mal for developers to raise funds by issuing equity next

to (transaction) tokens. This is for two reasons. First, be-

cause equity incentives are stronger than token incentives,

selling equity to outside investors exacerbates moral haz-

ard, which is costly when either κ, 1 / �, or I is sufficiently

large. Second, while the high cash flow rights α attached to

tokens spur platform adoption, they also reduce the start-

up firm’s equity value and preclude a financing via equity.

These two mechanisms make it optimal to bundle trans-

action benefits and cash flow rights in (i.e., attach utility

and security features to) one security rather than offering

two securities that deliver dividends and transaction bene-

fits separately. 

The following proposition gathers our analytical results.

Proposition 3 (Optimal token financing). The following

holds: 

1. Optimal token security features are given by α = ᾱ if ei-

ther κ , 1 / �, or I is sufficiently small. 

2. The optimal level of security features satisfies dα
dI 

≤
0 , dα

d(1 / �) 
≤ 0 , and dα

dκ
≤ 0 , where the inequalities are

strict only if the incentive condition (13) is tight. 

3. The optimal token retention level satisfies dβ
dI 

<

0 , dβ
d(1 / �) 

> 0 , and dβ
dκ

≤ 0 , where the latter inequal-

ity is strict only if the incentive condition (13) is tight. 

4. If A H > v r + φ, then ∂ IC(α) 
∂ξ

> 0 for any α ∈ [0 , 1] , dα
dξ

≥ 0 ,

and dβ
dξ

> 0 . The former inequality is strictly only if the

incentive condition (13) is tight. 

5. Raising funds by issuing equity next to tokens is strictly

suboptimal. 

4.3. ICO versus STO: when to include token security features?

In our framework, the token does not exhibit secu-

rity features when α = 0 . In this case, the token derives

its value only from its transaction benefits. Such tokens

are generally referred to as utility tokens and issued in

a lightly regulated way by means of an ICO (see Howell

et al., 2020; Fahlenbrach and Frattaroli, 2020 ). The follow-

ing proposition establishes that whether an ICO is pre-

ferred to an STO depends on platform characteristics. 

Proposition 4 (ICOs versus STOs). An ICO (i.e., α = 0 ) is op-

timal if μH ≤ (1 − ξ ) φ − ξv r. An STO (i.e., α > 0 ) is optimal

if 

1. μH > (1 − ξ ) φ − ξv r and 
2. either κ , 1 / �, or I is sufficiently small. 

1047 
The comparison between an ICO and STO can be con- 

ducted for a fixed platform value since the statements in 

Proposition 4 do not explicitly involve A H . The inequal- 

ity conditions in Proposition 4 imply that when the plat- 

form is expected to generate low (or even negative) cash 

flows (i.e., for low μH ), the ICO financing model is opti- 

mal. In this case, the platform essentially derives its value 

from facilitating transactions among users. By contrast, the 

platform’s ability to generate cash flows adds value to STOs 

even though the issuance of a security token dilutes devel- 

opers’ cash flow rights. The economic mechanism behind 

this result is that granting cash flow rights to users spurs 

platform adoption, which is particularly valuable for large 

μH . Proposition 4 also implies that stronger network ef- 

fects (i.e., high ξ ) favor STOs. This is because cash flow 

rights embedded in security tokens magnify network ef- 

fects and spur platform adoption even more. 

Proposition 4 also demonstrates that financing and 

agency frictions make STOs less attractive. This is because 

an increase in frictions renders equity incentives more 

valuable, thereby reducing the value of security tokens rel- 

ative to utility tokens. Likewise, projects with long ex- 

pected times to development are subject to more severe 

moral hazard and therefore are more suitable for ICO fi- 

nancing. Interestingly, several empirical studies (see, e.g., 

Howell et al., 2020; Fahlenbrach and Frattaroli, 2020 ) re- 

port that many ICO financed projects have not yet deliv- 

ered their promised product. While this fact is often in- 

terpreted as evidence for the failure of the ICO financing 

model, our analysis suggests the opposite in that projects 

with longer expected times to completion especially bene- 

fit from ICO financing. 

Fig. 3 illustrates these results. Our baseline parameter 

values are such that STOs dominate ICOs. Under severe fi- 

nancing and agency frictions, it may become optimal to is- 

sue a pure utility token via an ICO to avoid diluting devel- 

opers’ equity stake. 

5. Equity versus tokens: when to include token utility 

features? 

We have worked so far under the assumption that to- 

kens serve as the platform transaction medium. Instead, 

platform developers can decide to use fiat money as a 

transaction medium. Doing so removes utility features 

from tokens. It also eliminates the token holding period 

v dt , thereby reducing users’ effective transaction costs. 

When v = 0 , the adoption level and token price satisfy 

N H = 

(
A H 

φ

) 1 
1 −ξ

and P H = 

αμH N H 

r 
, 

which shows using fiat money as a transaction medium 

potentially spurs adoption and that this effect is stronger 

when platform network effects are stronger. 

Without token utility features, the token price is the 

present value of the dividend stream to token holders and 

the token essentially represents an equity claim. This im- 

plies that token and equity incentives are equivalent so 

that the choice of α becomes irrelevant. The overall sur- 
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11 Blockchain-based tokens may offer some transaction benefits over fiat 

money. These could be related to security, privacy, or reliability. Remark- 

ably, in our model, tokens can become optimal even under the assump- 

tion that cash carries strictly lower transaction costs. 
plus is then given by 

S(α) = P H + 

(1 − α) μH N H 

r 
= 

μH N H 

r 
, 

which is just the platform expected dividend stream and is

independent of the choice of α. In the analysis below, we

examine when equity financing (in combination with fiat

money as a transaction medium) dominates token financ-

ing (in combination with tokens as a transaction medium).

In general, platform developers can choose between at-

taching utility features to tokens, that is, setting v ∗ = v , or

omitting them, that is, setting v ∗ = 0 , where the parameter

v is given and exogenously fixed, for example, due to tech-

nological constraints. As a result, developers’ optimization

problem reads 

 0 = max 
α, v ∗∈{ 0 , v } , { βt } , { a t } 

E 

[ ∫ ∞ 

0 

e −rt (−P t dβt 

+ (1 − α + αβt ) dD t − κa t dt) 
] 

− I. (22)

Proposition 5 derives conditions under which equity fi-

nancing is optimal. 

Proposition 5 (Optimality of equity financing). Issuing eq-

uity to finance platform development and using fiat money

instead of tokens as platform transaction medium is optimal

if and only if 

μH 

v r 
≥
(

φ

v r − μH + φ

) 1 
1 −ξ

(23)

and always leads to a higher level of adoption. Otherwise, a

token-based platform is optimal. Condition (23) is satisfied if

v or ξ are sufficiently large or if μH ∈ [ φ(1 − ξ ) , v r) is suffi-

ciently large. A token-based platform is optimal if 

1. Condition (23) is not satisfied and 

2. either κ , 1 / �, or I is sufficiently small. 

Proposition 5 shows that token financing is optimal if

network effects or platform cash flows are not very high.

In these instances, the issuance of a token that serves as

a platform transaction medium allows developers to raise

more funds, which mitigates financing frictions and con-

tributes to platform success. Conversely, a token without

utility features is optimal only if the platform cash flows
1048 
are high. In this case, the start-up uses fiat money as 

a transaction medium and is financed with equity. If, in 

addition, network effects are strong, reducing transaction 

costs by allowing users to transact with fiat money boosts 

adoption. As expected, using fiat money as a transaction 

medium also becomes optimal if the cost v of transacting 

with tokens is large. 11 

Issuing equity to finance platform development and us- 

ing fiat money as a transaction medium rather than to- 

kens with utility features can be optimal for firms with 

lower cash flows if financing needs are large and agency 

frictions are severe. To understand this finding, note that 

a fiat-based platform implies that developers’ value fully 

stems from their equity ownership in the start-up firm. 

Hence, developers’ incentives are equity based and there- 

fore stronger, which is particularly valuable if financing 

needs are large and moral hazard is severe. In line with 

this reasoning, equity financing (or a token without utility 

features) is preferred for large values of κ , 1 / �, or I. 

Fig. 4 illustrates these findings by plotting the optimal 

financing choice of the platform for different levels of cash 

flows and frictions. In both panels, the platform has nega- 

tive NPV for combinations of parameter values below the 

solid black line, so it cannot be financed. In both panels eq- 

uity financing is always preferred when cash flows are very 

high (area above the dashed red line). For firms without 

high cash flows, the platform is generally financed with to- 

kens unless frictions (moral hazard κ or financing needs I) 

are very high, in which case it is financed with equity (top 

right corner). As frictions decrease, financing with tokens 

becomes optimal. Financing with tokens can even be opti- 

mal for platforms that do not generate cash flows (or very 

low cash flows) if the value of the transactions conducted 

by users is sufficiently large (bottom left corner). 

Finally, according to Proposition 3 , it is not optimal to 

raise funds by issuing equity next to tokens when the 

latter are used as a transaction medium. According to 

Proposition 5 , it can be optimal to issue equity instead 

of tokens to finance platform development and use fiat 
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money as a platform transaction medium. As a result, fi-

nancing with a mix of equity and tokens is not optimal, in

that the start-up firm optimally finances platform develop-

ment by issuing either tokens or equity. 

6. Productivity shocks and token price volatility 

We now allow for uncertainty after the milestone by

introducing persistent productivity shocks that are not

affected by developers’ actions. Importantly, the introduc-

tion of productivity shocks after time τ does not qualita-

tively affect developers’ decisions before time τ , in that the

results derived above continue to hold (see Appendix C.2 ).

Our focus in this section is therefore on the asset pricing

implications of token utility and security features rather

than on developers’ problem. 

We introduce productivity shocks by assuming that for

t ≥ τ and Ā ∈ { A L , A H } , platform productivity is given by 

A t = Ā + ε t , with ε t ∈ { ε B , ε G } and Ā + ε B ≥ 0 and ε G ≥ ε B . 

Productivity shocks are as follows. If ε = ε G , the platform

is subject to a negative productivity shock dA = ε B − ε G
over dt with probability ρdt . Likewise, if ε = ε B , the plat-

form experiences a positive shock dA = ε G − ε B with prob-

ability ρdt . Consequently, the volatility of the productivity

shocks, that is, fundamental volatility, is given by ε G − ε B .
Fig. 5 depicts the structure of productivity shocks over

[ t , t + dt ) . We emphasize that productivity shocks, unlike

Ā , are purely random and are not affected by developers’

actions. 

In general, there are many benefits to having a stable

transaction medium ( Doepke and Schneider, 2017 ). For in-

stance, price fluctuations expose transacting users to risks

during the transaction settlement period and lead to a

drop in users’ transaction activities. Excessive price volatil-

ity is thus likely to hamper platform adoption. This implies

that platform projects should aim for a relatively stable to-

ken price and so should try to limit price fluctuations and

therefore volatility. 
1049 
6.1. Solution 

We characterize the equilibrium token pricing after 

time τ for a given A t = Ā . Formally, we have to derive 

the state-dependent adoption levels N G and N B and token 

prices P G and P B . With productivity shocks, the platform 

produces state-contingent cash flows dD i = μ( ̄A + ε i ) N i dt

for i = G, B , with μ′ (·) ≥ 0 . Using the same steps as above 

shows that adoption satisfies at time t ≥ τ : 

N t = N i = 

(
Ā +ε i 

φ + v max { 0 , r − E [ dP i + αdD i ] / [ P i dt] } 
) 1 

1 −ξ

, 

for i = G, B. (24)

Let us next solve for the token price. Assume first that 

utility features price the token in both states i = G, B so 

that P i = v N i . This is the case when E [ d P i + αd D i ] < rP i dt

in both states i = G, B , that is, when the expected returns 

to holding tokens are lower than r. Using Eq. (24) and 

E d P = ρ(P − P ) d t , E d P = ρ(P − P ) d t as well as dD =
G B G B G B i 
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μ( ̄A + ε i ) N i dt , we can solve for 

P t = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

P G = v 
(

Ā + ε G 
φ+ v r−αμ( ̄A + ε G ) −v ρ(P B /P G −1) 

) 1 
1 −ξ

, if ε t = ε G , 

P B = v 
(

Ā + ε B 
φ+ v r−αμ( ̄A + ε B ) −v ρ(P G /P B −1) 

) 1 
1 −ξ

, if ε t = ε B . 

(25)

Assume next that token security features pin down the to-

ken price in both states G, B . In this case, E [ d P i + αd D i ] =
rP i dt for i = G, B and we can use N i = 

(
Ā + ε i 
φ

) 1 
1 −ξ

and dD i =
μ( ̄A + ε i ) N i dt for i = G, B to solve for the token price as 

P t = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

P G = 

1 
r+ ρ

(
αμ( ̄A + ε G ) 

(
Ā + ε G 

φ

) 1 
1 −ξ + ρP B 

)
, if ε t = ε G , 

P B = 

1 
r+ ρ

(
αμ( ̄A + ε B ) 

(
Ā + ε B 

φ

) 1 
1 −ξ + ρP G 

)
, if ε t = ε B . 

(26)

In general, the token prices P G and P B are not avail-

able in closed form unless one considers the limit case

max A | μ′ (A ) | → 0 and ξ → 0 ; see Proposition 6 below. 12

For parsimony, we do not discuss the case in which the

token is priced according to its utility features in one state

and its security features in another state. 

6.2. Token price volatility: the role of utility and security 

features 

Our objective is to characterize the effects of utility and

security features on token price volatility. In the following,

we analyze token price volatility both in absolute terms,

that is, σ := P G − P B , and scaled by the average (steady-

state) token price P = 

P H + P L 
2 , that is, σ̄ := 

σ
P 

. 13 

First, consider that token utility features pin down the

token price in that the token derives its price from the

level of adoption and N t = v P t . For max A | μ′ (A ) | → 0 and

ξ → 0 , we have that 

σ  

v (ε G − ε B ) 

v (r + 2 ρ) − αμH + φ
, 

σ̄  

2 ( ε G − ε B ) ( v r − αμH + φ) 

( 2 A H + ε G + ε B ) (v (r + 2 ρ) − αμH + φ) 
. 

Naturally, volatility increases with fundamental volatility

ε G − ε B . More interestingly, security features α amplify

rather than curb the volatility. The reason is that higher

security features imply stronger endogenous network ef-

fects. These network effects increase the sensitivity of plat-

form adoption to productivity shocks. This boosts the to-

ken price volatility because the token derives its value

from the level of platform adoption. Due to the endoge-

nous network effects, volatility σ and scaled volatility σ̄
12 While ξ → 0 precludes network effects arising from specification (1) , 

our model still features endogenous network effects in that a higher 

adoption level N t leads to higher cash flows and dividends, which in turn 

increases N t . 
13 Note that by our specification of productivity shocks, the system 

spends, on average, equal time in both states so that the expected long- 

run price is just the equal-weighted average of P G and P B . 
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are increasing and convex in α. In sum, network effects in- 

duced by token security features spur adoption at the cost 

of an increased price volatility. While closed-form expres- 

sions for the token price volatility are only available for 

max A | μ′ (A ) | → 0 and ξ → 0 , Fig. 6 numerically shows that 

the above findings also hold for our baseline environment 

for which μ′ (·) > 0 and ξ > 0 . 

Second, consider that the token is priced according to 

its security features in both states G and B , which is the 

case when v is sufficiently small. In this case, using (26) , 

one can calculate that 

σ = 

α

r + 2 ρ

( 

μ( ̄A + ε G ) 

(
Ā + ε G 

φ

) 1 
1 −ξ

− μ( ̄A + ε L ) 

(
Ā + ε L 

φ

) 1 
1 −ξ

) 

, 

σ̄ = 

2 r 

r + 2 ρ

⎛ 

⎜ ⎜ ⎝ 

μ( ̄A + ε G ) 
(

Ā + ε G 
φ

) 1 
1 −ξ − μ( ̄A + ε L ) 

(
Ā + ε L 

φ

) 1 
1 −ξ

μ( ̄A + ε G ) 
(

Ā + ε G 
φ

) 1 
1 −ξ + μ( ̄A + ε L ) 

(
Ā + ε L 

φ

) 1 
1 −ξ

⎞ 

⎟ ⎟ ⎠ 

. 

That is, when the token is priced according to its secu- 

rity features, token price volatility σ is linear in α and 

is therefore less sensitive to the provision of security fea- 

tures, while scaled volatility σ̄ is independent of α. This 

holds also true for ξ > 0 and μ′ (A ) > 0 . The reason for this 

lower sensitivity is that dividends do not generate network 

effects if the token is priced according to its security fea- 

tures. Overall, our results highlight that the combination of 

token utility and security features leads to especially high 

token price volatility. 

The following proposition summarizes our analytical re- 

sults. 

Proposition 6 (Token price volatility). The following holds: 

1. Consider the limiting case, max A | μ′ (A ) | → 0 and ξ → 0 . 

If the token is priced according to its utility features in 

both states G and B , then σ and σ̄ are increasing and 

convex in α. 

2. If the token is priced according to its security features in 

both states G and B , then σ is linearly increasing in α and 

σ̄ is independent of α. 

7. Model extensions 

7.1. Cash diversion 

Appendix E modifies our baseline model by consider- 

ing that developers can secretly divert cash and receive 

per dollar diverted λ ∈ [0 , 1] dollars (in this extension ef- 

fort choice is thus replaced by diversion). As in the base- 

line model, platform cash flows are observable after time 

τ , and there is no moral hazard problem once the mile- 

stone is reached. We show in this appendix that the incen- 

tive compatibility constraint ensuring that developers do 

not divert funds is similar to that of the baseline model. 

For λ ≡ κ(r+�) 
I , this model variant is in fact isomorphic to 

the baseline model. 

7.2. Adverse selection 

Appendix F extends our baseline model to incorpo- 

rate adverse selection. We consider in this appendix that 
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14 When κ or 1 / � is large, exerting effort is no longer efficient and the 
there exist two types of firms (platforms): a good plat-

form, as described in the baseline version of the model,

and a bad platform whose productivity after the milestone

equals A t = A L with μt = μL with certainty. Both platforms

require an initial investment of I. The platform is good

with exogenous probability π ∈ [0 , 1] . Developers are pri-

vately informed about platform quality. Token investors

only know the probability π that a platform is good. We

demonstrate that because the bad type firm has negative

NPV in the baseline model (under Assumption 1 ), there

does not exist a separating equilibrium in our baseline en-

vironment where Assumption 1 is satisfied. The reason is

that in a separating equilibrium, the bad type firm would

not receive financing and thus would realize zero payoff,

while mimicking the good type yields positive payoff. 

Appendix F then studies the (unique) pooling equilib-

rium and shows that introducing adverse selection has no

qualitative bearing on the model predictions regarding the

effects of financing needs ( I), cost of effort ( κ), or expected

time to platform development ( 1 / �) on the optimal level

of retention ( β) and token security features ( α). The main

effect of adverse selection is to quantitatively reduce the

level of security features attached to tokens (of a good type

platform). Indeed, in a pooling equilibrium, developers of

a good type firm have to sell more tokens to cover ini-

tial financing needs due to the decrease in the token price

relative to the perfect information case, leading to lower

token retention β and to greater moral hazard. To main-

tain incentive compatibility, developers must in turn pos-

sess more equity incentives, which requires granting lower

cash flow rights to token holders. 

To make the analysis complete, Appendix F relaxes

Assumption 1 by considering environments in which bad

type platforms have positive NPV. In this case, there

may exist a separating equilibrium, in which token se-

curity features signal platform quality. Indeed, according

to Proposition 2 , attaching security features to tokens is

only optimal if platform productivity and cash flows are

sufficiently large. Thus, attaching security features to to-

kens is optimal for good type firms yet costly for bad type

firms, facilitating a separating equilibrium. Such a separat-

ing equilibrium exists when financing needs ( I) are suffi-

ciently low, network effects ( ξ ) are large, transaction fric-

tions ( v ) are high, or the platform cash flow rate is high.
1051 
By contrast, sufficiently high costs of effort κ or a suffi- 

ciently long time to project completion 1 / � preclude the 

existence of the separating equilibrium. 14 That is, token se- 

curity features signal good platform quality, but their abil- 

ity to do so crucially depends on platform characteristics 

and the severity of moral hazard. 

Moreover, in a separating equilibrium, adverse selection 

may boost the provision of token security features while 

increasing initial token retention by developers. The rea- 

son is that a good type firm signals platform quality by at- 

taching more security features to tokens, thereby increas- 

ing the token price at time zero. Consequently, the devel- 

opers of a good type firm sell fewer tokens to cover initial 

financing needs I. 

In summary, the model implies that adverse selection 

has an ambiguous effects on the provision of token secu- 

rity features, depending on whether a separating or pool- 

ing equilibrium prevails. In a separating equilibrium, in 

which different types of platforms are financed with dif- 

ferent types of tokens and ICOs and STOs coexist, adverse 

selection increases the provision of token security features. 

In a pooling equilibrium in which all platforms are fi- 

nanced with the same tokens, adverse selection decreases 

the provision of token security features. 

7.3. Endogenous transaction fees 

Appendix G extends the model by allowing developers 

to charge an endogenous fee f > 0 to users for transact- 

ing on the platform. This fee increases users’ direct cost 

of transacting to f + φ and changes platform cash flows 

(μ(A t ) + f ) N t directly via f and indirectly via N t . We con- 

sider two cases depending on developers’ ability to commit 

to a fee structure. In the main case discussed here, devel- 

opers cannot commit. 

Without commitment, the optimal dynamic fee f

maximizes at each point in time the dividends accru- 

ing to developers (1 − α + βα)(μH + f ) N H and therefore 

maximizes platform cash flows (μH + f ) N H . The optimal 

dynamic fee depends on whether the token utility or secu- 

rity features pin down the token price. Moreover, the op- 
good type prefers to mimic the bad type. 
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15 We assume in this appendix that there are no exogenous costs of sell- 

ing tokens and raising funds. Introducing fixed costs of raising funds (sim- 

ilar to those in, e.g., Bolton et al., 2011; Hugonnier et al., 2015 ) would lead 

firms to retain cash and would add an additional state variable to the dy- 

namic optimization problem of platform developers. 
timal fee follows a hump-shaped pattern in α. Thus opti-

mal fees are the lowest when tokens have either minimum

or maximum utility features with α = 0 or α = 1 , respec-

tively. This has a bearing on the optimal level of security

features. As we show, the optimal tokens with endogenous

transaction fees have either low or maximum security fea-

tures, depending on some platform characteristics, but in-

termediate values of α are always suboptimal. In this con-

text, the issuance of a utility token (i.e., α = 0 ) or a token

with heavy cash flow rights can be viewed as a commit-

ment device not to charge high fees in the future, which

is particularly useful in the presence of commitment prob-

lems to future fees. 

Interestingly, the optimal transaction fee f can be nega-

tive. In this case, the start-up firm subsidizes the user base

to accelerate platform adoption. In practice, such subsidies

are commonly employed by large technology firms. For

instance, in 2019 Alibaba implemented a reward scheme

providing subsidies to attract developers to its various

platforms ( Chod et al., 2019 ). Similarly, Uber is planning to

offer financial services, including loans to drivers at favor-

able rates. We show in the appendix that subsidies to the

user base are more likely if the platform is financed with

utility tokens or if network effects ξ are strong. In addi-

tion, subsidies are only optimal if the platform generates

enough revenues μH to finance these subsidies. Finally,

subsidies are more likely if the blockchain technology fa-

cilitates commitment, because with commitment, develop-

ers set fees with more focus on platform adoption instead

of only on instantaneous cash flows. 

7.4. Dynamic trading 

Appendix H extends the model by considering the role

of speculators. Because speculators are financially less con-

strained or more diversified than users and developers,

their presence creates gains from trade, so developers ben-

efit from selling tokens to speculators. As developers can-

not commit their token trading strategy, trading opportu-

nities can potentially undermine developers’ incentives for

platform development. To ensure smooth trading patterns,

we introduce convex costs of effort for developers. 

As in the baseline model, retained tokens β provide in-

centives. However, the presence of gains from trade makes

developers gradually sell their tokens throughout the de-

velopment phase so that β smoothly decreases. As de-

velopers cannot commit to keeping tokens, they sell to-

kens and decrease the token price up to the point that

they become marginally indifferent between buying and

selling them. Consequently, in equilibrium, all gains from

trade are dissipated by the subsequent rise in agency

costs. Appendix H shows how dynamic trading affects the

amount of initial retained tokens β and the rate of security

features α. We also demonstrate that the main predictions

of the baseline model are robust to this extension. 

7.5. Flow costs of platform development 

Appendix I presents a model variant in which platform

development requires operating (monetary) flow costs in-

stead of an initial lump sum cost I at time zero. To raise
1052 
funds to cover these flow costs, developers dynamically 

sell tokens to the market, reducing their token retention 

level and incentives. 15 As a result, the model variant of 

Appendix I features similar forces at work and trade-offs 

as the model variant of Appendix H . 

8. Predictions 

Our paper provides several new empirical predictions 

related to platform financing and token design. In the fol- 

lowing, we summarize our main predictions. 

Prediction 1: Using fiat money as the platform transac- 

tion medium and equity financing is only optimal for plat- 

forms that expect high cash flows or strong network effects. 

For firms without high cash flows and strong network effects 

(i.e., for which transaction benefits are more important as a 

source of platform value), using tokens as transaction medium 

and token financing is optimal unless moral hazard is severe 

or financing needs are large. 

This first prediction follows from Proposition 5 and re- 

lates to the optimal form of financing. According to this 

prediction, only platforms where expected cash flows are 

large (as a fraction of total platform value) should finance 

platform development with equity issues. Two additional 

key determinants of optimal financing are moral hazard, 

which is positively related to the expected time to plat- 

form completion, and the cost of developing the platform. 

Prediction 2: For firms relying on token financing, ICOs 

are expected to be more prevalent for platforms whose value 

comes mostly from facilitating transactions among users, 

while STOs are expected to be more prevalent for platforms 

whose value comes mostly from generating cash flows. 

This second prediction follows from Proposition 4 and 

shows that when using token financing the relative im- 

portance of cash flows versus transaction benefits is a key 

driver of token design. 

Prediction 3: For firms relying on token financing, token 

security features and developers’ retention levels should de- 

crease with the severity of moral hazard and the level of fi- 

nancing needs. 

The third prediction follows from Proposition 3 and un- 

derlines the importance of frictions in token design. No- 

tably, because the incentives generated by each dollar of 

equity ownership are stronger than the incentives from a 

dollar of token ownership (and equity incentives are un- 

dermined by token security features), the level of security 

features in tokens should decrease with financing needs 

and moral hazard. 

Prediction 4: When different types of platforms are fi- 

nanced with different types of tokens and ICOs and STOs co- 

exist, adverse selection increases the provision of token secu- 

rity features and the likelihood of platform success increases 

with token security features. 

The fourth prediction follows the analysis of the effects 

of adverse selection on token design. Our model predicts 
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that in environments characterized by more informational

asymmetries, for example, with less developed white pa-

pers or without code development on open source plat-

forms, token security features should be more prevalent. It

also predicts a positive relation between the ex post value

of platforms or the likelihood of platform success and the

level of token security features. 

Prediction 5: Token price volatility is increasing in secu-

rity features. 

This last prediction follows from Proposition 6 and de-

rives from the fact that security features generate endoge-

nous network effects that increase the sensitivity of plat-

form adoption to productivity shocks, thereby increasing

volatility. 

9. Conclusion 

We study a model in which a start-up firm run by

developers launches a digital platform. To finance plat-

form development, developers issue tokens that serve as

the transaction medium on the platform and thus possess

utility features. Tokens may additionally possess cash flow

rights and thus security features. In the model, platform

development is subject to financing needs and moral haz-

ard. This unified model allows us to identify the costs and

benefits of various token designs used in practice to fi-

nance start-up firms. 

We show that dividend rights granted to token hold-

ers spur platform adoption but dilute developers’ equity

stake and therefore undermine incentives. As a result, an

increase in financing needs or in agency frictions leads to

a decrease in token security features. The model also de-

rives conditions under which different types of financing

modes are optimal. Specifically, an STO or an ICO always

dominates traditional equity financing when tokens serve

as the transaction medium on the platform. By contrast,

whether an STO is preferred to an ICO crucially depends on

platform and start-up characteristics, notably the ability to

generate cash flows in addition to facilitating transactions

among users. 

We also examine when it is optimal to use fiat money

as the platform transaction medium and to issue equity to

finance platform development. We find that financing plat-

form development with equity is only optimal if platform

cash flows are expected to be large or if network effects

are strong. For firms without very high cash flows (or very

strong network effects), the platform is generally optimally

financed with tokens unless moral hazard is severe (due,

e.g., to a long development phase) or financing needs are

large. 

Finally, we derive additional results by studying vari-

ous extensions of the model. For instance, we consider the

relation between optimal platform financing and platform

transaction fees or adverse selection. Notably, we show

that the issuance of a pure utility token can be viewed as

a commitment device not to charge high transaction fees

in the future. In addition, in environments characterized

by informational asymmetries, token security features may

signal good platform quality and thus may help to distin-

guish good token offerings from bad ones. 
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Appendix A. Discussion of parametric assumptions 

A.1. Parameter conditions for the analytical solution 

We give explicit parameter conditions for Assumption 1 , 

which hold throughout unless otherwise mentioned. 

1. We assume that platform development costs I are not 

excessive and developers can raise I dollars by issuing 

tokens, in that 

I < v 
(

�

r + �

)(
A H 

v r + φ

) 1 
1 −ξ

. (A.1) 

Condition (A.1) ensures that (15) admits a positive so- 

lution, β0 > 0 , and thus facilitates financing. 

2. We assume the project has NPV when full effort is ex- 

erted and token security features are chosen optimally, 

in that there exists α ∈ [0 , 1] with 

�

(
P H + 

(1 − α) μH N H 

r 

)
> (r + �) I + κ. (A.2) 

3. We assume that the project has negative NPV when no 

effort is exerted, in that 

�

(
P L + 

(1 − α) μL N L 

r 

)
≤ (r + �) I (A.3) 

for any α ∈ [0 , 1] . 

Note that conditions (A.2) and (A.3) jointly imply 

that �
(

P H + 

(1 −α) μH N H 
r − P L − (1 −α) μL N L 

r 

)
> κ for some α, 

meaning that exerting effort is efficient. Also recall that 

μL = 0 . 

A.2. Parameters for the numerical analysis 

As in Cong, Li and Wang (2020b) , we set the discount 

rate to r = 0 . 05 , the velocity parameters to v = 1 , and the 

network effects parameter to χ = 0 . 125 . The parameter η
is set to η = 0 . 375 , implying that ξ = 0 . 5 . Interpreting one 

unit of time as one year, we set � = 1 , implying that de- 

velopers retain tokens for about one year (because the av- 

erage time to milestone equals 1 / �). This is consistent 

with the findings of Fahlenbrach and Frattaroli (2020) , who 

report that the weighted-average lock-up period for tokens 

is about one year. We normalize A H = 1 . In fact, the abso- 

lute value of A H is not particularly important; instead, its 

relation with A L matters. The value A L is set to A L = 0 . 55 . 

The function μ(A ) is such that μL = μ(A L ) = 0 and 

μH = μ(A H ) = 0 . 025 , ensuring that μH < v r as stipulated 

by Assumption 1 . We pick φ = 0 . 075 in order to normal- 

ize N H in the frictionless case to N H = 100 . This is conve- 

nient because any value N can be interpreted in percentage 

terms of the adoption level N H in the frictionless bench- 

mark. Notably, φ = 0 . 075 also satisfies Assumption 1 . 

We choose I to match the sample average of token re- 

tention levels for ICOs. Specifically, we set I = 58 , which 

implies in the frictionless benchmark the retention level 

β = 39% , the average token retention level reported for 

ICOs by Fahlenbrach and Frattaroli (2020) . The effort cost 

κ is varied and chosen so as to generate the desired ten- 

sions. We set κ = 33 . 33 , which is 33 . 33% of the token price 
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in the frictionless benchmark. This way we capture the

high degree of agency problems and agency costs prevail-

ing in this market ( Howell et al., 2020; Fahlenbrach and

Frattaroli, 2020 ). 

When we vary κ and I, we make sure that

Assumption 1 is satisfied. This implies κ < 34 . 15 and

I < 59 . 5 . A similar constraint applies to ξ and v . When

we vary v , we employ a lower level of φ = 0 . 0735 to

satisfy Assumption 1 across the whole range of values of

v considered. We emphasize that our results are robust

across various choices of parameter values. 

Appendix B. Proofs for the baseline model 

B.1. Auxiliary results 

We state the following two auxiliary lemmata. 

Lemma 1 . Define ˆ α = min { 1 , v r 
μH 

} . It holds that 

ᾱ = arg max 
α

S(α) 

= 

⎧ ⎨ 

⎩ 

x ∈ [ ̂  α, 1] if max { v r − μH , 0 } ≥ (1 −ξ ) φ−μH

ξ

0 if v r ≤ (1 −ξ ) φ−μH 

ξ
v r 
μH 

+ 

1 
ξ

− φ(1 −ξ ) 
ξμH 

otherwise . 

with S(α) = P H + 

(1 −α) μH N H 
r and N H = 

(
A H 

v r−αμH + φ

) 1 
1 −ξ

.

When ᾱ ≥ ˆ α, S ′ (α) > 0 for α ∈ [0 , ˆ α) . 

Proof . Recall that ˆ α = min { 1 , v r 
μH 

} and N H =(
A H 

max { 0 , v r−αμH } + φ
) 1 

1 −ξ
. First, note that for all α ∈ ( ̂  α, 1] ,

we have by (12) that P H = 

αμH N H 
r , and thus S(α) = 

μH N H 
r 

with N H = 

(
A H 
φ

) 1 
1 −ξ

. Hence, S(α) does not depend on α

for α > ˆ α (i.e., S ′ (α) = 0 for α > ˆ α). 

Second, define ε := 1 / (1 − ξ ) ≥ 1 , and calculate for α <

ˆ α (in which case P H = v N H ): 

S ′ (α) = ε 

(
v + 

(1 − α) μH 

r 

)
N H 

μH 

v r − μH α + φ
− μH 

r 
N H 

∝ ε ( v r + (1 − α) μH ) 
μH 

v r − μH α + φ

− μH ∝ ε v r + ε (1 − α) μH − v r + μH α − φ

= v (ε − 1) r + εμH − α(ε − 1) μH − φ ∝ v r 

+ 

μH 

ξ
− αμH − (1 − ξ ) φ

ξ
. 

It follows that S ′ (α) has at most one root on (0 , ˆ α) . If

α = ᾱ ∈ (0 , ˆ α) , then the optimal α = ᾱ solves the first or-

der condition S ′ ( ̄α) = 0 , so ᾱ = 

v r 
μH 

+ 

1 
ξ

− φ(1 −ξ ) 
ξμH 

. 

Next, if S ′ (0) ≤ 0 , then S ′ (α) < 0 for all α < 0 ; hence

α = ᾱ = 0 is optimal if S ′ (0) ≤ 0 . Observe that 

S ′ (0) ≤ 0 ⇐⇒ 

v r 
μH 

+ 

1 

ξ
− (1 − ξ ) φ

ξμH 

≤ 0 . 

The above inequality condition is equivalent to v r ≤
(1 −ξ ) φ−μH 

ξ
. 
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Last, if S ′ ( ̂  α) ≥ 0 , then S ′ (α) > 0 for all α < ˆ α, so α = 

ᾱ ∈ [ ̂  α, 1] is optimal. Observe that 

S ′ ( ̂  α) ≥ 0 ⇐⇒ v r − ˆ αμH + 

μH 

ξ
− (1 − ξ ) φ

ξ
≥ 0 . (B.1) 

The above inequality can be compactly rewritten as 

max { v r − μH , 0 } ≥ (1 −ξ ) φ−μH 
ξ

. �

Lemma 2 . It holds that 

arg max 
α

S(α) = arg max 
α

(
βP H + 

(1 − α) μH N H 

r 

)
− κ

�
, 

with S(α) = P H + 

(1 −α) μH N H 
r , N H = 

(
A H 

max { 0 , v r−αμH } + φ
) 1 

1 −ξ
, 

and β = β0 satisfying (15) . 

Proof . Because β = β0 satisfies (15) , it holds that β = 1 −
I 

P H 

r+�
� , implying 

βP H + 

(1 − α) μH N H 

r 
− κ

�
= S(α) − κ

�
− r + �

�
I. 

Because κ
� and 

(r+�) I 
� do not depend on α, the claim 

follows. �

B.2. Proof of proposition 1 

Proof . The assertion follows directly from the develop- 

ments in the main text. �

B.3. Proof of proposition 2 

Proof . Lemma 1 derives the expression of ᾱ = 

arg max α∈ [0 , 1] S(α) . When κ = 0 , there is no moral 

hazard problem and the incentive condition (13) (i.e., 

IC(α) ≥ 0 ) is not relevant for the developers’ optimiza- 

tion problem (8) . As a result, the developers solve 

max α

(
βP H + 

(1 −α) μH N H 
r 

)
− κ

� , where β = β0 satisfies (15) . 

By Lemma 2 , the developers choose the level of α to 

maximize S(α) so that α = ᾱ. �

B.4. Proof of Proposition 3 

B.4.1. Claim 1 

Proof . When κ/ � → 0 , the incentive condition IC(α) ≥ 0 is 

always satisfied for any α and is thus not relevant for the 

developers’ optimization problem. As a result, the develop- 

ers solve max α

(
βP H + 

(1 −α) μH N H 
r 

)
− κ

�
, where β = β0 sat- 

isfies (15) . By Lemma 2 , the developers choose the level 

of α to maximize S(α) , so that α = ᾱ. By continuity, it 

holds that α = ᾱ for sufficiently small κ/ �, that is, for suf- 

ficiently small κ or 1 / �. 

Consider the limit case I → 0 , denoted by I = 0 . When 

I = 0 , the incentive condition IC(α) ≥ 0 becomes 

�

(
P H + 

(1 − α) μH N H 

r 
− P L 

)
= �( S(α) − P L ) ≥ κ. 

As by Assumption 2 , α = ᾱ = 1 maximizes S(α) ; it follows 

by means of parameter condition (A.2) (i.e., Assumption 1 ) 
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V

that �S(1) > (r + �) I + κ . At the same time, parame-

ter condition (A.3) implies that P L ≤ (r + �) I for any α ∈
[0 , 1] . As a result, IC(α) > 0 for α = 1 . Because α = ᾱ =
1 is the developers’ optimal choice absent frictions (see

Proposition 2 and Lemma 1 ), it follows that the incentive

condition IC(α) is not relevant for the developers’ opti-

mization problem and is loose in optimum, when I = 0 .

That is, when I = 0 , the developers maximize S(α) over α
and choose α = ᾱ = 1 . By continuity, it follows that α = ᾱ,

provided I > 0 is sufficiently small. �

B.4.2. Claims 2 and 3 

Proof . Take the financing constraint (3) (which binds in op-

timum) or equivalently (15) ; that is, β = 1 − I 
P H 

r+�
� . It fol-

lows that β strictly decreases in I when P H decreases in I.

Note that by the token pricing Eq. (12) , P H does not de-

pend on I directly but only through the optimal choice of

α. Therefore, if β increases in I, then α must strictly in-

crease in I because P H strictly increases in α. 

Take the surplus (i.e., overall platform value) S(α) and

observe that S(α) does not depend on I directly but only

through the optimal choice of α. Also note that an in-

crease in financing frictions/needs, as captured by I, in

optimum cannot cause more efficient provision of token

security features α, that is, cannot increase surplus S(α) .

Because α = ᾱ = 1 is efficient and optimal absent frictions

and when I = 0 and because S ′ (α) > 0 for all α ∈ [0 , 1) ,

this means that α cannot strictly increase in I. That is, α
decreases in I and so does P H , implying that β strictly de-

creases in I. 

Also note that only if the incentive condition IC(α) ≥ 0

is tight, then α strictly decreases in I , as I can affect the

choice of optimal α only via the incentive condition (13) .

Analogously, it follows that β strictly increases in � and

α (strictly) increases in � (only if the incentive condition

IC(α) ≥ 0 is tight). 

Finally, note that κ affects P H and thus β only through

the optimal choice of α. If P H increases in κ , then α must

increase in κ , as P H increases in α. However, it is clear

that an increase in agency frictions, as captured by κ , in

optimum cannot trigger more efficient efficient provision

of token security features α, that is, cannot increase S(α) .

Because α = ᾱ = 1 is efficient and optimal absent agency

frictions (i.e., when κ = 0 ) and because S ′ (α) > 0 for α ∈
[0 , 1) , optimal α must decrease in κ . Thus, d β/d κ ≤ 0 and

d α/d κ ≤ 0 , where the inequalities are strict only if the in-

centive condition IC(α) ≥ 0 is tight. �

B.4.3. Claim 4 

Proof . Note that N H = 

(
A H 

v r+ φ−αμH 

) 1 
1 −ξ ≥

(
A H 

v r+ φ

) 1 
1 −ξ

> 1 ,

where the second inequality uses the parameter assump-

tion A H > v r + φ. In addition, due to N H > 1 , it follows

that N H strictly increases in ξ and so does P H = v N H , thus
∂β
∂ξ

> 0 by means of (15) with β = β0 . Next, note that 

∂N H 

∂ξ
= N H ln (N H ) 

1 

(1 − ξ ) 2 
> N L ln ( N L ) 

1 

( 1 − ξ ) 2 
= 

∂N L 

∂ξ
. 

(B.2)
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Taking IC(α) = �
(
βv + 

(1 −α) μH 
r 

)
N H − κ − �βv N L , it fol- 

lows that 

∂ IC(α) 

∂ξ
= �v 

∂β

∂ξ
(N H − N L ) + �βv 

(
∂N H 

∂ξ
− ∂N L 

∂ξ

)
+ 

�(1 − α) μH 

r 

∂N H 

∂ξ

> �v 
∂β

∂ξ
(N H − N L ) + �βv 

(
∂N H 

∂ξ
− ∂N L 

∂ξ

)
> 0 , 

where the first inequality uses μH > 0 and the second 

inequality uses (B.2) . Because α = ᾱ = 1 is efficient ab- 

sent frictions, because S ′ (α) > 0 for all α ∈ [0 , 1) , and be- 

cause an increase in ξ relaxes incentive compatibility (i.e., 
∂ IC(α) 

∂ξ
> 0 ), it follows that α increases in ξ and β strictly 

increases in ξ . Note that α strictly increases in ξ only if 

the incentive condition IC(α) ≥ 0 is tight in optimum. �

B.4.4. Claim 5 

Proof . We show that developers do not find it optimal to 

issue equity next to tokens and start with some additional 

notation that allows for equity issuance (next to tokens). 

The value of equity derives from the dividends received 

by shareholders. As a result, it is given by the discounted 

stream of expected future dividends 

E j,τ = 

∫ ∞ 

t 

e −r(s −t) μ(A s ) N s (1 − α) ds = 

(1 − α) N j μ j 

r 

after time τ (i.e., for t ≥ τ ) for j = H, L and by 

E j = E t 

[ ∫ ∞ 

t 

e −r(s −t) μ(A s ) N s (1 − α) ds 

] 
= 

�E j,τ

r + �

before time τ (i.e., for t < τ ) for j = H, L . We denote by 

γ the developers’ equity retention level after time zero. In 

our model, there is no reason to issue equity after time 

zero. Further, it suffices to focus on instances in which α < 

1 , as otherwise the equity value trivially equals zero. 

When the start-up firm can issue equity at time 0, the 

financing constraint (which binds in optimum) becomes 

�

r + �

(
(1 − β) P H + 

(1 − γ )(1 − α) N H μH 

r 

)
= I, (B.3) 

as the start-up firm can cover the cost I of developing the 

platform by raising equity and/or by selling tokens. Selling 

equity, like granting dividend rights to token holders, im- 

plies a dilution of the developers’ stake in the firm. With 

equity financing, the incentive constraint becomes 

IC E (α) := �

(
βP H + 

γ (1 − α) μH N H 

r 

)
− κ − �βP L ≥ 0 . 

(B.4) 

We can then derive developers’ (continuation) payoff be- 

fore time τ as 

 E (α) = 

�(v β + γ (1 − α) μH /r) N H − κ

r + �

= 

�S(α) − κ

r + �
− I, (B.5) 
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where the subscript “E” denotes quantities under external

equity financing. Next, using (B.3) , we formulate the devel-

opers’ optimization problem as 

max 
α,β,γ ∈ [0 , 1] 

V E (α) s.t. (B. 3) . 

That is, by (B.5) , developers maximize S(α) subject to

the incentive constraint (B.4) and the financing constraint

(B.3) (which binds in optimum) over α, β, γ ∈ [0 , 1] . Be-

cause equity and tokens are fairly priced, developers can

extract all the surplus from the platform so that V E (α)

does not directly depend on (β, γ ) . Thus, for any α, it

is optimal for developers to choose (β, γ ) to maximize

IC E (α) . Due to (B.5) , for given (β, γ ) , it is optimal for de-

velopers to choose α to maximize S(α) subject to IC E (α) ≥
0 . Because of ᾱ = 1 and S ′ (α) > 0 for all α < 1 , the devel-

opers choose in optimum the maximum level of α that sat-

isfies IC E (α) ≥ 0 . 

Let αNE denote the optimal level of security features

without equity financing (i.e., with γ = 1 and IC(αNE ) ≥ 0 ).

First consider that αNE = 1 . Then the equity value is zero.

Thus, raising funds by means of equity requires that α < 1 .

However, setting α < 1 is suboptimal because α = ᾱ = 1

maximizes S(α) (see Assumption 1 and Lemma 1 ) and

therefore V E (α) . Therefore, let us consider in the follow-

ing that αNE < 1 . By Assumption 1 and Lemma 1 , absent

frictions, the optimal choice of α is equal to ᾱ = 1 . Thus,

αNE < 1 implies that IC(αNE ) = 0 . 

Next, take any α and the financing constraint (1 −
β) P H + 

(1 −γ )(1 −α) N H μH 
r = 

(r+�) I 
� and implicitly differentiate

w.r.t. γ to obtain 

0 = −P H 
dβ

dγ
− (1 − α) N H μH 

r 
�⇒ 

dβ

dγ

= − (1 − α) N H μH 

P H r 
= − (1 − α) μH 

v r 
, 

where we used the pricing relation P H = N H v , implied by

v r > μH (see Assumption 2 ). We look at the incentive con-

dition 

IC E (α) = IC E (α| γ ) 

:= �

(
βv + 

γ (1 − α) μH 

r 

)
N H − κ − �βv N L ≥ 0 

and calculate 

dIC E (α) 

dγ
∝ N H 

(
dβ

dγ
+ 

(1 − α) μH 

v r 

)
− N L 

dβ

dγ
= 

(1 − α) N L 

v r 
μH . 

Thus, d IC E (αNE ) /d γ > 0 . 

Also note that V E (α) does not directly depend on

(β, γ ) . Choosing γ = 1 and β to satisfy the financing con-

straint (3) yields payoff V E (αNE ) , with IC E (αNE | γ = 1) = 0

and IC E (α| γ = 1) < 0 for α ∈ (αNE , 1] . If there existed α >

αNE with IC E (α| γ = 1) ≥ 0 , then it would be optimal to in-

crease token security features up to α as S ′ (α) > 0 for all

α ∈ [0 , 1) (owing to Assumption 2 and Lemma 1 ), contra-

dicting the optimality of αNE . Here, IC E (α| γ = x ) explicitly

denotes the function IC E (·) , when tokens possess cash flow

rights α and developers retain fraction γ of equity. 
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Consider now that the developers choose γ = ˆ γ < 

1 . Owing to d IC E (α) /d γ > 0 for α < 1 , it follows that 

IC E (α| γ = ˆ γ ) < 0 for α ≥ αNE . Thus, developers realize 

payoff bounded by V E (αE ) with some αE < αNE . Because of 

Assumption 2 and Lemma 1 (i.e., S ′ (α) > 0 for α ∈ [0 , 1) ) 

and (B.5) , it holds that V E (αE ) < V E (αNE ) so that setting 

γ < 1 is sub-optimal and raising funds by issuing equity 

next to tokens is suboptimal. �

B.5. Proof of Proposition 4 

Proof . By Proposition 2 , α = 0 maximizes the overall sur- 

plus if and only if v rξ ≤ (1 − ξ ) φ − μH . By Lemma 2 , α = 

0 then also maximizes βP H + 

(1 −α) μH N H 
r , with β = β0 sat- 

isfying (15) . 

Recall that the developers’ incentive constraint reads 

IC(α) = �

(
βP H + 

(1 − α) μH N H 

r 
− βP L 

)
− κ ≥ 0 . 

Because in optimum β = β0 solves (15) and P H strictly in- 

creases in α (see the token pricing Eq. (12) ), it follows that 

β increases in α, while P L does not depend on α = 0 , due 

to μL = 0 (see the token pricing Eq. (12) ). Therefore, βP L 
increases in α and hence is minimized for α = 0 . As α = 0 

maximizes βP H + 

(1 −α) μH N H 
r , it follows that α = 0 maxi- 

mizes IC(α) . As a result, when v rξ ≤ (1 − ξ ) φ − μH , α = 0 

maximizes both overall platform value (surplus) S(α) and 

incentives IC(α) and thus is optimal. 

Next, an STO with α > 0 maximizes the surplus S(α) if 

(see Proposition 2 ) 

ᾱ > 0 ⇐⇒ v rξ > (1 − ξ ) φ − μH . 

By Lemma 2 , α > 0 then also maximizes βP H + 

(1 −α) μH N H 
r , 

with β = β0 satisfying (15) . Then, α > 0 is optimal when 

(in optimum) IC(α) > 0 , and the incentive constraint 

(13) does not affect the developers’ optimization problem 

and so does not constrain the choice of α relative to the 

frictionless benchmark. This is the case if either κ , 1 / �, or 

I is sufficiently small (for details, see proof of Claim 1 in 

Proposition 3 ). �

B.6. Proof of Proposition 5 

Proof . Recall that by Assumption 2 and Lemma 1 , the value 

of a token-based platform is maximized for ᾱ = 1 . In addi- 

tion, we have that v r > μH . The adoption level of a fiat- 

based platform equals N 

F := 

(
A H 
φ

) 1 
1 −ξ

and is, due to v r > 

μH , always larger than the adoption level of a token-based 

platform, N 

T := 

(
A H 

φ+ v r−αμH 

) 1 
1 −ξ

, for any α ∈ [0 , 1] . That is, 

N 

F > N 

T . 

Consider the problem max v ∗∈{ 0 , v } S( ̄α) , where v is an 

exogenous parameter. This maximization problem can 

be solved by comparing the surplus (i.e., overall plat- 

form value) under a fiat-based platform, given by A := 

μH 
r 

(
A H 
φ

) 1 
1 −ξ

, with the surplus under a token-based plat- 

form when α = ᾱ = 1 , given by B := v 
(

A H 
φ+ v r−μH 

) 1 
1 −ξ

. 
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Then, a fiat-based platform yields higher surplus than a

token-based platform if and only if A ≥ B, that is, if and

only if 
μH 
v r ≥

(
φ

φ+ v r−μH 

) 1 
1 −ξ

, which yields (23) . 

Recall that the developers’ incentive constraint reads 

IC(α) = �

(
βP H + 

(1 − α) μH N H 

r 
− βP L 

)
− κ ≥ 0 . 

The arguments presented in the proof of Lemma 2 illus-

trate that maximizing βP H + 

(1 −α) μH N H 
r , with β = β0 sat-

isfying (15) , is equivalent to maximizing the overall plat-

form value (surplus) S(α) . Thus, when (23) holds, then

v ∗ = 0 also maximizes βP H + 

(1 −α) μH N H 
r , with β = β0 sat-

isfying (15) . Owing to μL = 0 and the pricing Eq. (12) , it

follows under a fiat-based platform with v ∗ = 0 that P L = 0 ,

whereas P L ≥ 0 under a token-based platform with v ∗ = v .
That is, setting v ∗ = 0 minimizes the term βP L , while maxi-

mizing βP H + 

(1 −α) μH N H 
r . As a result, when (23) holds, then

v ∗ = 0 maximizes both the overall platform value (surplus)

S(α) and the developers’ incentives IC(α) . Hence a fiat-

based platform is optimal when (23) holds. 

In contrast, when (23) does not hold, a token-based

platform leads to higher surplus S(α) , in that v ∗ maxi-

mizes overall platform value. Hence, when (23) does not

hold, then v ∗ = v also maximizes βP H + 

(1 −α) μH N H 
r , with

β = β0 satisfying (15) . It is therefore optimal to imple-

ment a token-based platform with v ∗ = v if the incentive

condition (13) does not affect the developers’ optimization

problem (i.e., does not constrain the optimal choice of v ∗),

which is the case if either I, κ , or 1 / � is sufficiently low

(for details, see proof of Claim 1 in Proposition 3 ). 

We demonstrate under what conditions (23) is satisfied.

Note that—owing to ξ > 0 —(23) holds in the limit v → ∞
and thus, by continuity, for sufficiently large v . Likewise,

because v r > μH , it follows that the RHS of (23) tends to

zero as ξ → 1 , so that (23) holds for sufficiently large ξ . 

Last, we analyze μH and define f (μH ) : μH �→ 

μH 
v r −(

φ
v r−μH + φ

) 1 
1 −ξ

and note that (23) holds whenever f (μH ) ≥
0 . Observe that for μH = v r, (23) holds in equality and

f (μH ) = 0 . Next, calculate f ′ (v r) = 

1 
v r − 1 

(1 −ξ ) φ
, which is

negative if and only if v r > (1 − ξ ) φ. Thus, if v r > (1 −
ξ ) φ, it follows that f (μH ) > 0 and (23) holds in a left

neighborhood of v r, that is, for μH < v r sufficiently large.

Note that μH ≥ φ(1 − ξ ) implies v r > φ(1 − ξ ) due to v r >
μH . �

Appendix C. Token price volatility 

C.1. Proof of Corollary 6 

Proof . Take Ā ∈ { A L , A H } . First, assume that utility features

pin down the token price in both states, G, B . This results

into the equilibrium pricing system (25) : 

P G = P G (α) 

= v 
(

Ā + ε G 

v r − αμ( ̄A + ε G ) + φ − v ρ(P B /P G − 1) 

) 1 
1 −ξ

P B = P B (α) 
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= v 
(

Ā + ε B 

v r − αμ( ̄A + ε B ) + φ − v ρ(P G /P B − 1) 

) 1 
1 −ξ

. 

Linearize the above system (w.r.t. ξ and μ(·) ) to obtain 

P G = P G (α) = v 
(

Ā + ε G 

v r − αμ( ̄A ) + φ − v ρ(P B /P G − 1) 

)
+ o(ξ ) + o( max 

A 
| μ′ (A ) | ) , 

P B = P B (α) = v 
(

Ā + ε B 

v r − αμ( ̄A ) + φ − v ρ(P G /P B − 1) 

)
+ o(ξ ) + o( max 

A 
| μ′ (A ) | ) . 

Discarding the terms o(ξ ) + o( max A | μ′ (A ) | ) , this becomes 

a system of two linear equations, which can be solved for 

P G  

v 
(
Ā (v (2 ρ + r) − αμ( ̄A ) + φ) ̄A + ε G (v (r + ρ) − αμ( ̄A )) + ε B v ρ

)(
φ − α μ( ̄A ) + v r 

) (
φ − α μ( ̄A ) + v (r + 2 ρ) 

)
and 

P B  

v 
(
Ā (v (2 ρ + r) − αμ( ̄A ) + φ) ̄A + ε B (v (r + ρ) − αμ( ̄A )) + ε G v ρ

)(
φ − α μ( ̄A ) + v r 

) (
φ − α μ( ̄A ) + v (r + 2 ρ) 

) , 

where we omit the remainder terms of order o(ξ ) + 

o( max A | μ′ (A ) | ) . One can then calculate that 

σ  P G − P B = 

v (ε G − ε B ) 

φ + v (r + 2 ρ) − αμ( ̄A ) 
, 

σ̄  

P G − P B 
0 . 5(P G + P B ) 

= 

2 ( ε G − ε B ) 
(
v r − αμ( ̄A ) + φ

)(
2 ̄A + ε G + ε B 

)
(v (r + 2 ρ) − αμ( ̄A ) + φ) 

, 

showing that σ and σ̄ are increasing and convex in α, 

when ξ and max A | μ′ (A ) | are sufficiently small. 

The second claim directly follows from the main text 

and in particular after some calculations, departing from 

expression (26) . �

C.2. The problem before time τ with uncertainty after time τ

Set Ā = A H . At time τ , we have by assumption that 

P (ε τ = ε G ) = P (ε τ = ε B ) = 1 / 2 . The solution to the model

with persistent productivity shocks is then similar to that 

of Section 3 with the expected token price P̄ and expected 

adoption levels N̄ , given by 

P̄ := 

P G + P B 
2 

and N̄ := 

N G + N B 

2 

, 

replacing the token price P H and adoption level N H . 

Appendix D. Micro-foundation for transaction protocol 

and holding period 

D.1. Micro-foundation for convenience yield 

The flow utility from transacting, as stipulated in (1) , 

can be micro-founded by a random search and match- 

ing protocol. For a detailed micro-foundation, we refer to 

Cong, Li and Wang (2021) . 
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D.2. Micro-foundation for token holding period 

In the following, we give several potential ways to

micro-found the holding period v dt . For the exposition, we

consider our framework after the milestone, that is, t > τ ,

and assume that all users hold the tokens merely for trans-

action purposes. That is, the token is priced according to

its utility features (which is the case if v r > αμH ). 

D.2.1. Transaction settlement delays 

There are transaction settlement delays of length v dt .

Consider a transaction initiated at time t . After the trans-

action is initiated, its execution is delayed by v dt units of

time, and so its execution is completed at time t + v dt . No-

tably, over [ t , t + v dt ] , tokens used in the transaction, ini-

tiated at time t , are locked and cannot be used otherwise,

that is, cannot be sold. After the transaction is executed

at time t + v dt , tokens used in the transaction can be sold

again. It follows that any transaction requires users to hold

tokens over a time period of length v dt . 

In our model, the value of any transaction is one dol-

lar, that is, 1 /P t tokens. That is, N t is the number of

dollar transactions initiated over a short period of time

[ t , t + dt ) . Thus, over any time period [ t , t + dt ) , N t initi-

ated transactions—each worth one dollar—require to hold

1 /P t tokens for v dt units of time. 

Transactions are equally spread over time (i.e., over the

time interval [ t , t + dt ) ). This implies that at any time t , to-

kens are only held for transactions initiated over the inter-

val [ t − v dt , t ) (and so are executed over [ t , t + v dt ) ). The

number of transactions initiated over [ t − v dt , t ) equals 

1 

dt 

(∫ t 

t−v dt 

N s ds 

)
= 

1 

dt 

(∫ t 

t−v dt 
( N t + (N s − N t ) ) ds 

)
= 

1 

dt 

(
N t v dt − o((dt) 2 ) 

)
= v N t , 

where the second equality uses that N t − N s  dN t is in-

finitesimal in that ds (N t − N s ) = o((dt) 2 ) . The last inequal-

ity ignores higher order terms in that o((dt) 2 ) = 0 . 

As a result, at any time t , v N t transactions, that have

been initiated yet not executed, require to hold one dollar

in tokens, that is, 1 /P t dollars. Hence, the aggregate token

demand equals v N t /P t , which, by virtue of market clearing,

must equal the token market supply 1 − βt . Therefore, the

token price equals 

P t = 

v N t 

1 − βt 
. 

D.2.2. Deposits 

Alternatively, we could obtain the same results by as-

suming that users hold fraction v of the overall transaction

value in tokens over [ t , t + dt ) . Here, v > 1 implies that

users put a deposit, while v < 1 allows users to transact

with margins. Specifically, a transaction of value x requires

users to hold v x tokens over [ t , t + dt ) . This implies the to-

ken demand v N t /P t and so—by virtue of market clearing—

the token price: 

P t = 

v N t 
. 
1 − βt 
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Appendix E. Cash diversion 

Consider the following formulation of the moral hazard 

problem. Over [ t , t + dt ) , with probability �dt , the mile- 

stone τ arrives. If developers invest upon reaching the 

milestone amount I > 0 , productivity becomes A t = A H for 

t ≥ τ . If they invest less than I or do not invest at all, pro- 

ductivity becomes A t = A L for t ≥ τ . Thus, to develop the 

project and to reach high platform productivity, develop- 

ers must raise amount I at time zero and save/store this 

amount to be able to invest at the milestone. We assume 

stored/saved dollars to not earn interest. As in the baseline 

model, it is optimal not to hold more cash than necessary, 

that is, no more than I dollars. 

Following DeMarzo and Sannikov (2006) , before time τ , 

developers can secretly divert cash and receive per dol- 

lar diverted λ ∈ [0 , 1] dollars. After time τ , platform cash 

flows are observable and there is no moral hazard problem 

anymore. 

Given α and β , we analyze the developers’ incentives 

to divert cash at any time t before time τ . It is clear that 

if cash diversion is optimal, then it is optimal to divert 

all cash I, yielding λI dollars. However, after diversion, the 

project has low productivity after the milestone and the 

price becomes P t = P L = v N L . That is, at time τ , develop- 

ers earn βP L dollars from selling all retained tokens and 

(1 − α) μL N L /r dollars from future cash flows. Otherwise, if 

developers do not divert cash, token price equals P H = v N H 

and they obtain βP H dollars from selling all retained tokens 

and (1 − α) μH N H /r dollars from future cash flows. 

As at any time t < τ the expected time to reaching the 

milestone equals 1 / �, it follows that cash diversion is not 

optimal if and only if 

λI + 

�(βP L + (1 − α) μL N L /r) 

r + �

≤ �(βP H + (1 − α) μH N H /r) 

r + �
. 

Rewriting yields 

�

(
βP H + 

(1 − α) μH N H 

r 

)

− λ(r + �) I − �

(
βP L + 

(1 − α) μL P L 
r 

)
, 

which is similar to the incentive constraint in the baseline 

model, that is, (13) . For λ ≡ κ(r+�) 
I , this model variant in 

fact is isomorphic to the baseline model. 

Appendix F. Adverse selection 

This appendix introduces adverse selection in our 

model by considering that there are two possible types of 

firms (i.e., platforms) operated by developers: a good plat- 

form, as described in the baseline version of the model, 

and a bad platform whose productivity after the mile- 

stone equals A t = A L with μt = μL with certainty. Both 

platforms require an initial investment I. The platform 

is good with exogenous probability π ∈ [0 , 1] . Developers 

are privately informed about platform quality. Token in- 

vestors only know the probability π that a platform is 



S. Gryglewicz, S. Mayer and E. Morellec Journal of Financial Economics 142 (2021) 1038–1067 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 . 
good. Assumption 1 implies that good platforms are prof-

itable and have positive NPV but bad platforms with low

productivity A L are inefficient to finance and have negative

net present value. 

Let us start the analysis by looking for a separating

equilibrium. In a separating equilibrium, the good firm

grants cash flow rights α to token holders and retains to-

kens β , resulting in (state-contingent) adoption and token

prices for j = H, L after time τ , given by 

N j (α) = N j = 

(
A j 

max { 0 , v r − αμ j } + φ

) 1 
1 −ξ

and 

P t = P j = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

v 
(

A j 
v r−αμ j + φ

) 1 
1 −ξ

if v r > αμ j 

αμ j 

r 

(
A j 
φ

) 1 
1 −ξ

if v r ≤ αμ j . 

In contrast, the bad firm chooses cash flow rights αL and

retention βL . As the bad firm (platform) is inefficient (i.e.,

has negative NPV) and so does not receive financing, it fol-

lows that in a separating equilibrium, the payoff of a bad

firm is equal to zero. On the other hand, mimicking the

good firm and setting αL = α and retaining βL = β tokens

yields strictly positive payoff
�βP L 
r+� > 0 . As a result, when-

ever the bad platform has negative NPV, a separating equi-

librium does not exist. Therefore, we study in the following

a pooling equilibrium. 

F.1. Pooling equilibrium 

In a pooling equilibrium, both good and bad firms grant

cash flow rights α to token holders and retain initially β
tokens. After time τ , token price equals P H if the firm is of

good type and developers exert sufficient effort and equals

P L otherwise. As in the baseline model, we assume that

exerting effort is efficient and therefore focus on pooling

equilibria, in which a good firm has productivity A H after

time τ and developers exert effort. 

At time zero, given a fraction π of good firms, the token

price equals 

p := 

�

r + �
(πP H + (1 − π) P L ) . 

Any firm sells at time zero the minimal amount of tokens

needed to cover initial financing needs I, in that the reten-

tion level is given by 

β = 1 − I 

p 
. 

Adverse selection worsens the financing conditions of a

good firm. As a consequence, with adverse selection, devel-

opers (operating a good firm) must sell more tokens 1 − β
at time zero to raise funds I, thereby reducing the reten-

tion level β and developers’ incentives. 

For developers to have sufficient incentives to exert ef-

fort over (0 , τ ) , the incentive condition (13) has to hold,

that is, 

IC(α) := �

(
βP H + 

(1 − α) μH N H 

r 

)
− κ︸ ︷︷ ︸ 

Payoff under a t =1 

− �βP L ︸ ︷︷ ︸ 
Payoff under a t =0 

≥ 0
1059 
Recall that by assumption 1 , μL = 0 . Finally, a good firm’s 

problem boils down to solving 

max 
α[0 , 1] 

�

(
βP H + 

(1 − α) μH N H 

r 

)
− κ s.t. IC(α) ≥ 0 , 

β = 1 − I 

p̄ 
. 

In contrast, a bad firm chooses α and β to mimic a good 

firm, leading to (scaled) payoff �βP L > 0 . Because the bad 

firm’s productivity is low with certainty, there is no moral 

hazard problem for bad type firms. 

Fig. F.1 illustrates the effects of introducing adverse se- 

lection on outcome variables. The top panels show that 

adverse selection reduces the level of security features at- 

tached to tokens of good platforms for two reasons. First, 

due to adverse selection (which implies that p ≤ P H ), de- 

velopers must sell more tokens at time zero to cover their 

initial financing needs, leading to lower initial token reten- 

tion β . To maintain incentive compatibility, developers, in 

turn, must possess more equity incentives, which requires 

them to grant less cash flow rights to token holders. Sec- 

ond, by increasing α and spurring platform adoption, de- 

velopers of a good platform increase the token price P H 
but may reduce the average token price P H π + P L (1 − π) . 

This is because granting cash-flow rights to token hold- 

ers may reduce platform value in case the platform hap- 

pens to be of low quality with A t = A L for t ≥ τ . In fact, 

Proposition 2 highlights that granting cash-flow rights to 

token holders is only optimal if platform productivity is 

sufficiently high. 

Fig. F.1 demonstrates that even mild adverse selection 

can lead to a substantial reduction in token security fea- 

tures α and developers’ token retention β . In effect, we 

pick the value π = 0 . 98 as the base case because lower 

values of π make it inefficient to finance the platform. 

Fig. F.1 also demonstrates that introducing adverse selec- 

tion has no bearing on the predictions of the model re- 

garding the effects of financing needs ( I), the cost of effort 

( κ), or the expected time to platform development ( 1 / �)) 

on the optimal level of retention ( β) and token security 

features ( α). 

F.2. Alternative model assumptions and separating 

equilibrium 

This section relaxes Assumption 1 by considering that 

the project has positive NPV and may produce cash flows 

with μL > 0 even if developers do not exert effort, in that 

max 
α∈ [0 , 1] 

�

r + �

(
P L + 

(1 − α) μL N L 

r 

)
> I. (F.1) 

As a result, a bad platform with low productivity A L and 

cash flow rate μL has a positive NPV and receives financ- 

ing in frictionless markets. Under this assumption, there 

can be a separating equilibrium. In the following, we as- 

sume that a bad platform has sufficiently low productiv- 

ity and hence sufficiently low cash flows in that μL ≤ (1 −
ξ ) φ − v rξ , where (1 − ξ ) φ − v rξ > 0 so that under per- 

fect information, it is optimal to set cash flow rights to 
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Fig. F.1. Comparison pooling equilibrium and baseline model. 
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α = αL ≡ 0 for a bad type platform. Also recall that due to

v r > μH ≥ μL , it holds that P i = v N i for i = H, L . 

Consider first the problem of a bad type firm. By

Proposition 2 (by replacing μH by μL in the statement of

the proposition), it is optimal to set token security features

of a bad platform to αL = 0 when a bad project receives

financing because of μL ≤ (1 − ξ ) φ − v rξ . Developers’ pay-

off is therefore given by 

 L : = 

�

r + �

(
v + 

μL 

r 

)(
A L 

v r + φ

) 1 
1 −ξ

− I 

= 

�

r + �

(
βL v + 

μL 

r 

)(
A L 

v r + φ

) 1 
1 −ξ

, 

which is positive, by Eq. (F.1) , and where developers’ initial

retention level satisfies 

βL := 1 − (� + r) Iv 
�

(
A L 

v r + φ

) −1 
1 −ξ

. (F.2)

By (F.1) and the optimality of α = αL = 0 , it follows that

βL ∈ [0 , 1] . 

When there are no frictions, developers of a good plat-

form optimally set α = 1 . In the presence of moral haz-

ard, they choose the highest level of α ∈ [0 , 1] that satis-

fies the incentive compatibility constraint IC(α) ≥ 0 (see

Assumption 1 and Proposition 2 ). In addition, developers

retain the maximum amount of tokens subject to their fi-

nancing needs, in that β = 1 − (�+ r) Iv 
�N H 

. 

By Proposition 2 , platforms with low (high) cash flows

optimally feature tokens with low (high) security features.

Because a bad platform produces low cash flows, a high

level of token security features may differentiate a good

platform project from a bad one. In other words, token

security features can serve as a signal for good platform

quality. That is, the benefit of mimicking the high type is

that the low type can sell tokens at a higher price at time

zero and can thus retain more tokens (i.e., mimicking re-

duces the cost of investment). The cost of mimicking the

high type is the increase in token security features, which

reduces platform value (i.e., mimicking reduces the benefit

of investment). 
1060 
In the following, we therefore look for a separating 

equilibrium in which developers of a good platform choose 

α according to 

max α s.t. IC(α) ≥ 0 and β = 1 − (� + r) Iv 
�N H 

, 

and developers of a bad platform choose αL = 0 and βL = 

1 − (�+ r) Iv 
�

(
A L 

v r+ φ

) −1 
1 −ξ

. 

If it exists, this separating equilibrium is also the least 

cost separating equilibrium because in equilibrium, de- 

velopers do not face additional optimization constraints 

(relative to the baseline model) and, in fact, solve (8) . 

We also emphasize that because developers are risk neu- 

tral, token retention is not costly for platform develop- 

ers and hence does not signal platform quality. Chod and 

Lyandres (2021) consider a risk-averse entrepreneur 

launching a platform. In their framework, token retention 

is costly for the entrepreneur, and there exists a separat- 

ing equilibrium in which token retention signals a high 

platform quality. By assuming risk neutrality, we eliminate 

the signaling effect of token retention and highlight that 

token security features signal high platform quality too. 

Our findings can be viewed as complementary to those in 

Chod and Lyandres (2021) . 

In a separating equilibrium, it must hold that the bad 

type does not want to mimic the good type. When the bad 

type mimics the good type, it can sell tokens at time zero 

at a higher price and thus can retain more tokens, that is, 

β > βL . The cost of mimicking the high type is that α in- 

creases, which reduces platform value. If the bad type does 

not mimic the good type, its payoff equals V L . By contrast, 

its payoff upon mimicking the good type reads V mimic 
L 

:= 

�
r+�

(
βv + 

(1 −α) μL 
r 

)
N L . In a separating equilibrium, the fol- 

lowing must hold: 

 L ≥ �

r + �

(
βv + 

(1 − α) μL 

r 

)
N L = V 

mimic 
L . (F.3) 

Moreover, provided that exerting full effort is efficient, the 

good type firm does not have incentives to mimic the 

bad type of firm. Hence, (F.3) is sufficient for the exis- 

tence of the separating equilibrium. The reason is that in 
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Fig. F.2. When does a separating equilibrium exist? Sep = 1 indicates that the prescribed separating equilibrium exists. Parameter values are set as in the 

base case environment except for A L = 0 . 9 and I = 1 to ensure that the bad type platform has positive NPV. 
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the proposed separating equilibrium, the good type solves

(8) and thus does not face additional optimization con-

straints (relative to the baseline model). That is, in the sep-

arating equilibrium, the good type already chooses the re-

tention level β and token security features α that max-

imizes her payoff subject to the incentive compatibility

constraint (13) and the financing constraint (3) . Therefore,

the good type cannot do better by choosing different levels

of β and α. 

Fig. F.1 examines the effects of a firm’s environment on

the existence of a separating equilibrium. To make sure

that the bad type platform has positive NPV, we depart

from our baseline parameter values along two dimensions:

we set A L = 0 . 9 (instead of A L = 0 . 55 ) and I = 1 (instead

of I = 58 ). We also consider that cash flows are given by

μH = μ = 0 . 025 and μL = 0 . Fig. F.1 shows that when fi-

nancing needs are small, the separating equilibrium de-

scribed above exists. Indeed, when financing needs I are

sufficiently low, β and βL are low and so is the benefit of

mimicking. In this case, (F.3) is satisfied, and the separating

equilibrium exists. When κ and 1 / � are sufficiently large,

the development effort is no longer efficient and the good

type prefers to mimic the bad type so that there is no sep-

arating equilibrium. Fig. F.1 also shows that strong network

effects ( ξ ), high platform transaction frictions ( v ), or a high

cash flow rate ( μ) facilitate the existence of the separating

equilibrium, in line with the above discussion. 

In this separating equilibrium and provided that ᾱ = 1

(see Assumption 1 ), adverse selection does not change the

optimal level of token security features α and the optimal

retention level β compared to the base case model. The

reason is that signaling is de facto costless for the good

type: the good type chooses the highest level of α satis-

fying incentive compatibility (13) , which at the same time

makes it (most) costly for the low type to mimic the high

type. The following section relaxes Assumption 1 and con-

siders parameter configurations with ᾱ < 1 so that adverse

selection may boost the provision of token security fea-

tures in a separating equilibrium. 

As a result, adverse selection only affects the provision

of token security features in the pooling equilibrium. Inter-

estingly, adverse selection and moral hazard may interact

and reinforce each other and hence jointly curb the provi-

sion of token security features. Moral hazard requires de-

velopers to possess sufficient equity incentives and leads to

low token security features α. Low token security features

α make it attractive for the low type to mimic the high

type, thereby destabilizing the separating equilibrium and

leading to a pooling equilibrium, which exacerbates moral
1061 
hazard and reduces token security features even further (as 

shown in F.1 ). 

F.3. Costly signaling 

In the previous section, signaling is de facto costless 

for the good type firm, in that the good type firm finds 

it optimal to choose α ∈ [0 , 1] as high as possible, sub- 

ject to incentive compatibility. This is a consequence of 

Assumption 2 that implies absent friction α = ᾱ = 1 is op- 

timal. This section considers parameter configurations such 

that ᾱ < 1 is optimal for the good type firm and αL = 0 is 

optimal for the bad type firm, absent frictions. That is, in- 

put parameter values are such that 

ᾱ = 

v r 
μH 

+ 

1 

ξ
− φ(1 − ξ ) 

ξμH 

∈ (0 , 1) . 

In addition, we consider that v r > μH , so tokens are priced 

according to utility features. 

We look for a separating equilibrium in which the good 

type firm chooses token security features α and token re- 

tention β , while the bad type firm chooses token security 

features αL = 0 and token retention βL (with βL character- 

ized in (F.2) ). In the separating equilibrium, the bad type 

firm must not have incentives to mimic the good type firm 

so that (F.3) must hold. Next, consider the good type firm. 

In equilibrium, the good type firm’s payoff equals 

 H := 

�

r + �

(
βv + 

(1 − α) μH 

r 

)
N H , 

where β = 1 − (�+ r) Iv 
�N H 

and N H is a function α, that is, N H = 

N H (α) . Alternatively, the good type can pick a level of to- 

ken security features α′ � = α, in which case the market per- 

ceives the good type firm as bad type firm. To cover ini- 

tial financing needs I, the good type firm’s retention level 

equals then βL . As a result, upon deviating, the good type 

firm’s payoff equals 

 

De v 
H := max 

α′ ∈ [0 , 1] 

(
�

r + �

(
βL v + 

(1 − α′ ) μH 

r 

)
N H 

)
, 

subject to IC(α′ ) ≥ 0 , where N H is a function of α′ , that is, 

N H = N H (α
′ ) . For the good type not to deviate, it must be 

that 

 H ≥ V 

De v 
H . (F.4) 

In a separating equilibrium, both (F.3) and (F.4) have to be 

satisfied. 
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Fig. F.3. Comparison separating equilibrium and baseline model. We pick the parameters I = 2 > 0 = κ , μH = 0 . 2 > 0 . 1 = μL , and A L = 0 . 9 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Provided there exists at least one separating equilib-

rium, we focus on the least cost separating equilibrium,

which can be found by solving 

max 
α∈ [0 , 1] 

V H s.t. (F . 3) and (F . 4) . 

This amounts to 

min 

α≥ᾱ
α s.t. (F . 3) and (F . 4) . 

In the following, we assume a separating equilibrium exists

and compare the model outcomes in the least cost separat-

ing equilibrium with those of the baseline model. 16 Fig. F.2

illustrates that in the least cost separating equilibrium, the

good type firm chooses higher α (i.e., α = αSig ) than in

the baseline model (i.e., α = αBase ). The reason is that by

attaching high token security features, a good type firm

signals good platform quality. Because a higher level of α
boosts the token price, the good type firm’s level of ini-

tial token retention βSig in the least cost separating equi-

librium is higher than in the baseline model, that is, than

βBase . The intuition is that a good type firm signals both

by token retention and attaching security features to to-

kens. Fig. F.2 demonstrates that these effects are robust to

parameter changes. 

Appendix G. Transaction fees 

Suppose now that developers can dynamically charge a

fee f > 0 to users for transacting on the platform. This fee

increases users’ direct cost of transacting to f + φ and plat-

form cash flows to 

dD t = (μ(A t ) + f ) N t dt, 

so the level of platform adoption becomes 

N H = 

(
A H 

max { 0 , v r − α(μH + f ) } + φ + f 

) 1 
1 −ξ

(G.1)

when the platform charges transaction fees. In the follow-

ing, we consider that developers cannot commit to future

transaction fees. G.3 analyzes the case of full commitment.
16 The question of the existence of a separating equilibrium was already 

discussed in the previous section. 
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For simplicity, we abstract from moral hazard w.r.t. effort 

by taking sufficiently small κ, 1 / � or I. 

Without commitment, the optimal dynamic fee f max- 

imizes at each point in time t ≥ τ the dividends accruing 

to developers 

(1 − α)(μH + f ) N H 

and therefore maximizes platform cash flows (μH + 

f ) N H . 
17 This leads to the following result: 

Proposition 7 . The optimal dynamic fee for platform develop- 

ers satisfies 

f ∗ = min 

{
(1 − ξ )(v r + φ) − (1 − αξ ) μH 

ξ (1 − α) 
, 

v r 
α

− μH 

}
. 

If (1 − ξ )(v r + φ) > μH , the fee increases in α for α ≤ α1 

and decreases in α for α ≥ α1 , where α1 ∈ (0 , 1) is the 

unique solution to 

(1 − ξ )(v r + φ) − (1 − αξ ) μH 

ξ (1 − α) 
= 

v r 
α

− μH . 

The resulting adoption level satisfies 

N 

f 
H 

= 

{ (
A H ξ

v r+ φ−μH 

) 1 
1 −ξ if v r > α( f + μH ) (

A H 
v r/α+ φ−μH 

) 1 
1 −ξ otherwise . 

Proposition 7 shows that the optimal dynamic fee de- 

pends on whether the token utility or security features 

pin down the token price (i.e., whether v r > α( f + μH ) or 

v r ≤ α( f + μH ) , respectively). If (1 − ξ )(v r + φ) > μH , the 

optimal fee follows a hump-shaped pattern in α. The opti- 

mal level of security features with endogenous transaction 

fees is then characterized in the following corollary. 

Corollary 1 . Tokens with α = 0 are optimal if and only if 

(1 − ξ )(φ − μH ) ≥ v r(ξ
ξ

ξ−1 − 1) . (G.2) 

Tokens with α = 1 are optimal if and only if condition (G.2) is 

not satisfied. Platform adoption is higher for α = 1 than for 

α = 0 . 
17 We assume that even if α = 1 , β = 0 developers set fees to maximize 

(μH + f ) N H . 



S. Gryglewicz, S. Mayer and E. Morellec Journal of Financial Economics 142 (2021) 1038–1067 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18 For α = 1 , the expression for f ∗ with some slight abuse of notation 

simply becomes v r 
α − μH . 
If the token is priced according to its utility features,

then the optimal transaction fee satisfies f ∗ < 

v r 
α − μH . In

this case, users effectively incur the transaction fee f ∗(1 −
α) . The reason is that a fraction α of the transaction fees

flows back to users in the form of dividends. Higher α in

turn implies higher dividends, which allows developers to

charge higher fees without endangering adoption. In this

context, the issuance of a utility token (i.e., α = 0 ) can be

viewed as a commitment device not to charge high fees in

the future. 

If the token is priced according to its security features,

then f ∗ = 

v r 
α − μH and developers charge lower transac-

tion fees as token cash flow rights increase, in an attempt

to limit purely return-driven investments and maximize

adoption. Also note that even if α = 1 , the proceeds from

transaction fees do not fully flow back to users but par-

tially accrue to (return-driven) token investors, who do not

transact. In sum, both high and low token security features

serve as a commitment device for low future transaction

fees and thus are particularly useful for platform building

in the presence of commitment problems to future fees. As

a result, either α = 1 or α = 0 is optimal. 

Interestingly, the optimal transaction fee f can be nega-

tive. In this case, the start-up firm subsidizes the user base

to accelerate platform adoption. 

Corollary 2 . Subsidies f < 0 are optimal if μH > S :=
(1 −ξ )(v r+ φ) 

1 −αξ
. If developers can commit to a fee structure { f }

at time zero, subsidies are optimal if μH > S − v r 
1 −ξ (1 −α) 

. 

As shown in Corollary 2 , subsidies to the user base are

more likely if the platform is financed with utility tokens

(i.e., for α = 0 ) or if the network effects are strong. In ad-

dition, subsidies are only optimal if the platform generates

enough revenues μH to finance these subsidies. We also

show that subsidies are more likely if the blockchain tech-

nology facilitates commitment. 

G.1. Proof of Proposition 7 

Proof . Define ε = 1 / (1 − ξ ) . Note that N H =(
A H 

max { 0 , v r−α(μH + f ) } + φ+ f 

) 1 
1 −ξ

and the optimal fee f = f ∗ is

such that f ∗ = arg max f≥0 (μH + f ) N H . 

1. Assume that v r − α(μH + f ) > 0 . Then, the FOC
∂(μH + f ) N H 

∂ f 
= 0 must hold in optimum. That is, 

0 = N H − (μH + f ) 
∂N H 

∂ f 
= N H − εN H (1 − α)(μH + f ) 

v r − αμH + φ + f (1 − α) 

∝ v r − αμH + φ + f (1 − α) − ε(1 − α)(μH + f ) . 

Thus, (1 − α) f = 

(v r+ φ)(1 −ξ ) −μH 
ξ

+ αμH for optimal f =
f ∗. 

Plugging the optimal fee expression into (G.1) yields

the desired expressions for platform adoption, that is,(
Aξ

v r+ φ−μH 

) 1 
1 −ξ

, and platform value (surplus), that is,(
v + 

(1 −ξ )(v r+ φ−μH ) 
ξ r 

)(
A H ξ

φ+ v r−μH 

) 1 
1 −ξ

. Both expressions
1063 
do not depend explicitly on α. It follows that the de- 

velopers’ payoff and overall platform value (surplus) do 

not depend explicitly on α either. 

2. Next, we assume that v r ≤ α(μH + f ) , implying that 

N H = 

(
A H 

φ+ f 

) 1 
1 −ξ

. Then, if v r < α(μH + f ) , the FOC 

∂(μH + f ) N H 
∂ f 

= 0 must hold so that 

0 = N H − ε 
μH + f 

φ + f 
N H ∝ 1 − ε 

μH + f 

φ + f 

�⇒ f = 

φ − εμH 

ε − 1 

= 

(1 − ξ ) φ − μH 

ξ
. 

Otherwise, if v r = α(μH + f ) , then f = 

v r 
α − μH = 

v r−αμH 
α . Altogether, f = f ∗ = max 

{ 
v r−αμH 

α , 
(1 −ξ ) φ−μH 

ξ

} 
. 

Assumption 1 implies that 
(1 −ξ ) φ−μH 

ξ
< 

v r 
α − μH ⇐�

(1 − ξ )(φ − μH ) < v rξ ; hence f = f ∗ = 

v r−αμH 
α . 

In sum, we have shown that 18 

f ∗ = min 

{
(1 − ξ )(v r + φ) − (1 − αξ ) μH 

ξ (1 − α) 
, 

v r 
α

− μH 

}
. 

If (1 − ξ )(v r + φ) > μH , the first expression in the “min”

operator increases in α, while the second expression de- 

creases in α. The first expression in the “min” opera- 

tor tends to ∞ as α → 1 , while the second one is al- 

ways positive (due to v r ≥ μH ) and tends to ∞ as α → 

0 . Hence, there exists a unique cutoff α1 ∈ (0 , 1) solving 
(1 −ξ )(v r+ φ) −(1 −αξ ) μH 

ξ (1 −α) 
= 

v r 
α − μH (in α). Below α1 , the pay- 

off does not explicitly depend on α, as shown before. �

G.2. Proof of Corollary 1 

Proof . First, consider that α is such that f ∗ = 

v r 
α − μH , 

which implies the adoption level N H = 

(
A H 

v r/α−μH + φ

)1 / (1 −ξ ) 

and the price P H = 

α(μH + f ) N H 
r = v N H . This is the case when 

α = 1 . Thus, the overall surplus is 

S(α) = v P H + (1 − α) 
μH + f 

r 
= N H 

(
v + (1 − α) 

v 
α

)
N H . 

Next, for α > 0 

S ′ (α) = − v 
α

N H − (1 − α) v 
α2 

N H + 

(
v + (1 − α) 

v 
α

)
N 

′ 
H (α) 

∝ −v α − (1 − α) v + ε 
(

v + (1 − α) 
v 
α

) v r 
v r/α − μH + φ

∝ −v α + 

εv 2 r 
v r/α − μH + φ

∝ −1 + 

εv r 
v r + α(φ − μH ) 

. 

Hence, S ′ (α) = 0 is solved by εv r = v r + α(φ − μH ) so 

that α = min 

{ 
ξv r 

(1 −ξ )(φ−μH ) 
, 1 

} 
is optimal under these cir- 

cumstances. Assumption 1 then implies that α = 1 , lead- 

ing to adoption N H = 

(
A H 

φ+ v r−μH 

) 1 
1 −ξ

and payoff (surplus) 

v 
(

A H 
φ+ v r−μH 

) 1 
1 −ξ

. Note that for α = 1 , f ∗ = v r − μH . 
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Second, consider α is such that f ∗ = 

(1 −ξ )(v r+ φ) −μH 
ξ (1 −α) 

+
αμH 
1 −α . This is the case when α = 0 . In this case, the payoff

does not depend on α (see previous results) and surplus

(payoff) is given by 

(
v + 

(1 −ξ )(v r+ φ−μH ) 
ξ r 

)(
A H ξ

φ+ v r−μH 

) 1 
1 −ξ

. 

In sum, α ∈ { 0 , 1 } is optimal. Note that α = 0 is opti-

mal for developers if it leads to higher overall platform

value (i.e., surplus) than α = 1 (as developers can extract

all residual payoff). Thus, α = 0 is optimal if (
v + 

(1 − ξ )(v r + φ − μH ) 

ξ r 

)(
A H ξ

φ + v r − μH 

) 1 
1 −ξ

≥ v 
(

A H 

φ + v r − μH 

) 1 
1 −ξ

⇐⇒ 

(
v + 

(1 − ξ )(v r + φ − μH ) 

ξ r 

)
ξ

1 
1 −ξ ≥ v 

⇐⇒ ( (1 − ξ )(φ − μH ) + v r ) ξ
ξ

1 −ξ ≥ v r 

⇐⇒ (1 − ξ )(φ − μH ) ≥ v r(ξ
ξ

ξ−1 − 1) . 

�

G.3. Full commitment to transaction fees 

Blockchain technology facilitates commitment to vari-

ous metrics of platform and token design. For example,

Cong, Li and Wang (2020b) demonstrate that the commit-

ment to predetermined rules of token supply stimulates

platform building. In this section, we analyze the effects

of full commitment to future transaction fees. 

In line with economic intuition, Corollary 3 shows that

developers charge lower transaction fees and adoption is

higher under full commitment. 

Corollary 3 . Assume full commitment and φ > μH . Users in-

cur the transaction fee 

f ∗ = min 

{
(1 − ξ ) φ − ξv r − (1 − αξ ) μH 

ξ (1 − α) 
, 

v r 
α

− μH 

}
. 

If (1 − ξ ) φ − ξv r − μH > 0 , the fee increases in α for α ≤
α2 and decreases in α for α ≥ α2 , where α2 ∈ (0 , 1) is the

unique solution to 

(1 − ξ ) φ − ξv r − (1 − αξ ) μH 

ξ (1 − α) 
= 

v r 
α

− μH . 

This implies the adoption level 

N 

f 
H 

= 

{ (
A H ξ

φ−μH 

) 1 
1 −ξ

, if v r > α( f + μH ) (
A H 

v r/α+ φ−μH 

) 1 
1 −ξ , otherwise . 

Remarkably, we find that the issuance of a utility to-

ken makes developers optimize platform adoption instead

of cash flows under full commitment to transaction fees.

It therefore follows that the ability to commit makes ICOs

relatively more valuable. 
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Corollary 4 . Assume full commitment to fees { f } and φ > μH . 

Then, α = 0 is optimal if and only if 

(1 − ξ )(φ − μH ) ≥ v r 

( (
(φ − μH ) 

(φ − μH + v r) ξ

) 1 
1 −ξ

ξ
ξ

ξ−1 

) 

. 

(G.3) 

Otherwise, α = 1 is optimal. 

G.3.1. Proof of Corollary 3 

Proof . 

1. Assume that v r > (μH + f ) α. Under full commitment, 

developers choose the fee f to maximize (given α) 

S(α) . Note that 

∂S(α) 

∂ f 
∝ ( v r + (μH + f )(1 − α) ) N 

′ 
H ( f ) 

+ (1 − α) N H ( f ) 

∝ 1 − 1 

1 − ξ

( v r + (μH + f )(1 − α) ) 

v r + φ − μH α + (1 − α) f 
. 

In optimum, the FOC 

∂S(α) 
∂ f 

= 0 must hold. We can solve 

for optimal f = f ∗ via (1 − α) f = 

φ(1 −ξ ) −μH −ξv r 
ξ

+ αμH , 

leading to the adoption level N 

∗
H 

= 

(
A H ξ

φ−μH 

) 1 
1 −ξ

. 

2. Next, consider v r ≤ (μH + f ) α. If v r = (μH + f ) α, then 

f = 

v r 
α − μH and N 

∗
H 

= 

(
A H ξ

v r 
α + φ−μH 

) 1 
1 −ξ

. If v r < (μH + 

f ) α, then N H = 

(
A H 

φ+ f 

) 1 
1 −ξ

and P H = 

α(μH + f ) N H 
r . We can 

without loss of generality assume that α = 1 . The FOC 

of maximization is 

∂S(α) 

∂ f 
∝ (μH + f ) N 

′ 
H ( f ) + N H ( f ) 

∝ 1 − 1 

1 − ξ

μH + f 

v r + f 
= 0 . 

We can solve for f = 

(1 −ξ ) φ−μH 
ξ

. 

Overall, if v r ≤ α(μH + f ) , then f = f ∗ = 

max 

{ 
(1 −ξ ) φ−μH 

ξ
, v r α − μH 

} 
. Because of 

(1 −ξ ) φ−μH 
ξ

< 

v r 
α − μH ⇐� (1 − ξ )(φ − μH ) < v rξ , we have that 

f = f ∗ = v r/α − μH . 

In sum, we have shown that f ∗ = 

min 

{ 
(1 −ξ ) φ−ξv r−(1 −αξ ) μH 

ξ (1 −α) 
, v r α − μH 

} 
, as desired. Con- 

sider the equation 

(1 −ξ ) φ−ξv r−(1 −αξ ) μH 
ξ (1 −α) 

= 

v r 
α − μH . If 

(1 − ξ ) φ − ξv r − μH > 0 , the above equation possesses a 

unique solution on α2 ∈ (0 , 1) . �

G.3.2. Proof of Corollary 4 

Proof . As in the proof of Corollary 1 , it suffices to compare 

payoffs under the polar cases α = 0 and α = 1 . Notably, 

α = 0 is optimal if and only if (
v r + 

(1 − ξ )(φ − μH ) − ξv r 
ξ

)(
A H ξ

φ − μH 

) 1 
1 −ξ
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V

≥ v r 
(

A H 

v r + φ − μH 

) 1 
1 −ξ

⇐⇒ 

(1 − ξ )(φ − μH ) 

ξv r 
≥
(

(φ − μH ) 

(φ − μH + v r) ξ

) 1 
1 −ξ

⇐⇒ (1 − ξ )(φ − μH ) 

≥ v r 

( (
(φ − μH ) 

(φ − μH + v r) ξ

) 1 
1 −ξ

ξ
ξ

ξ−1 

) 

. 

�

G.4. Proof of Corollary 2 

Proof . First, absent commitment, the fee levied reads f ∗ =
min 

{ 
(1 −ξ )(v r+ φ) −(1 −αξ ) μH 

ξ (1 −α) 
, v r α − μH 

} 
, which is, due to v r ≥

μH , negative if and only if 
(1 −ξ )(v r+ φ) −(1 −αξ ) μH 

ξ (1 −α) 
< 0 , that

is, if and only if μH > S := 

(1 −ξ )(v r+ φ) 
1 −αξ

. 

Second, with full commitment to a fee structure at time

zero, Proposition 4 implies the optimal fee is given by f ∗ =
min 

{ 
(1 −ξ ) φ−ξv r−(1 −αξ ) μH 

ξ (1 −α) 
, v r α − μH 

} 
, which is smaller than

zero if and only if 
(1 −ξ ) φ−ξv r−μH 

ξ
+ αμH < 0 , that is, if and

only if μH > S − v r 
1 −ξα

. �

Appendix H. Dynamic trading 

The objective of this appendix is to introduce richer

trading dynamics in the model by considering the role of

speculators. Specifically, we consider that there are risk-

neutral speculators with discount rate ρ < r, capturing the

notion that speculators are financially less constrained or

more diversified than users and developers. Developers

cannot commit at time zero to their trading of tokens. 19 In

addition to speculators, we introduce convex costs of effort
κa 2 

2 and assume that with effort a ∈ [0 , ā ] , the project suc-

ceeds at time τ and A t = A H with probability pa and the

project fails at time τ with A t = A L with probability 1 − pa .

The convex cost is needed to generate smooth trading pat-

terns, as will become clear below. We impose that ā ≤ 1

and p ∈ (0 , 1) and assume throughout that optimal effort

is interior. 

We look for a Markov perfect equilibrium with state

variable β , where d βt = ηt d t − βt 1 { t= τ } . That is, develop-

ers optimally sell all retained tokens at time τ because, as

in the baseline model, there is no moral hazard problem

after time τ . After time τ , the token price (adoption level)

is given by P H ( N H ), if A = A H , and is given by P L ( N L ), if

A = A L . Before time τ , the token price is a function of β ,

P (β) and the developers’ value function is also a function
19 Similar results could be obtained by assuming instead that users dis- 

count at rate ρ < r instead of r. However, to facilitate comparison with 

the previous sections, we introduce speculators. In line with this assump- 

tion, Fahlenbrach and Frattaroli (2020) show that tokens are held by both 

speculators and platform users. 
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of β , V (β) ; in addition, the developers trade tokens at en- 

dogenous rate ηt for t < τ . 

Fix α, which is chosen at time zero, and consider the 

developers’ problem in state β . Define the developers’ pay- 

off from reaching the milestone with A = A i : 

T i (β) := βP i + 

(1 − α) μi N i 

r 
. 

This payoff consists of the value of token sales at the 

milestone, βP i , and the present value value of future div- 

idends, 
(1 −α) μi N i 

r . Developers’ value function V (β) before 

time τ solves the following HamiltonJacobiBellman (HJB) 

equation 

(r + �) V (β) = max 
η,a 

{ 
�( paT H (β) + (1 − pa ) T L (β) ) 

− κa 2 

2 

+ η(V 

′ (β) − P (β)) 
} 
, (H.1) 

where the last term in the brackets captures the effects of 

trading. Thus, if effort a is interior (i.e., a < ā ), it is given 

by 

a = 

�p 

κ
(T H (β) − T L (β)) . (H.2) 

That is, incentives are captured by the difference T H (β) −
T L (β) . It is easy to see that T H (β) − T L (β) increases in β so 

that token retention incentivizes effort. 

Using arguments similar to those presented in 

DeMarzo and Uroševi ́c (2006) , one can show that in 

equilibrium, developers are indifferent between buying 

and selling tokens. That is, ∂V (β) 
∂η

= 0 whenever β ∈ (0 , 1) , 

that is, 

P (β) = V 

′ (β) . (H.3) 

The reason is that developers’ token sales exacerbate moral 

hazard and thereby depress platform value and token 

prices. As developers cannot commit to keeping tokens, 

they sell tokens and decrease the token price up to the 

point that they become marginally indifferent between 

buying and selling tokens. As such, in equilibrium, all 

gains from trade are dissipated by the subsequent rise in 

agency costs (this observation is also related to that in 

DeMarzo and He (2020) on the effects of changes in cap- 

ital structure on shareholder wealth in a no-commitment 

equilibrium). 

We can insert (H.2) and (H.3) back into Eq. (H.1) and 

solve for their value function in closed form: 

 (β) = 

�T L (β) + 

1 
2 κ (�p(T H (β) − T L (β))) 2 

r + �
. 

Using (H.3) and differentiating the value function with re- 

spect to β , we obtain 

P (β) = 

�T ′ L (β) + 

(�p) 2 

κ (T H (β) − T L (β))(T ′ H (β) − T ′ L (β)) 

r + �
. 

That is, the token price for t < τ is a function of β , in 

that P t = P (βt ) . Before time τ , speculators are marginal to- 

ken investors. Since they are risk neutral, they simply need 

to be compensated for their time preference ρ , in that 

ρP t d t = E d P t . This can be written as 

ρP (β) = �(paP H + (1 − pa ) P L − P (β)) + P ′ (β) η. 
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Fig. H.1. Model with optimal dynamic trading with κ = 33 . 33 , I = 20 , and p = 0 . 5 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using this equation, we can solve for the trading rate η in

closed form: 

η = 

(ρ + �) P (β) − �(paP H + (1 − pa ) P L ) 

P ′ (β) 
. 

As ρ < r and there are gains for developers from selling

tokens, it follows that η < 0 . That is, developers optimally

sell their token at a rate before the milestone is reached. 

The initial retention level β is set such that (1 −
β) P (β) = I and developers choose α to solve the problem 

max 
α∈ [0 , 1] 

V (β) . 

We solve for the optimal value of α and initial retention

β = β0 . Fig. H.1 presents the model outcomes for different

values of κ , I, and 1 / �. As in the baseline version of the

model, an increase of κ , I, or 1 / � reduces the provision of

security features α as well as the initial retention level β . 

Appendix I. Operating flow costs 

Consider that instead of a cost I at time zero, devel-

opers incur monetary flow costs idt when developing the

project over [ t , t + dt ) . There are no financing frictions and

to cover these monetary flow costs, developers sell re-

tained tokens. Developers can stop financing the platform,

in which case it cannot be completed and future produc-

tivity equals zero. That is, for t < τ , the milestone τ ar-

rives with probability �dt over [ t , t + dt ) only if develop-

ers cover the development costs idt . 

Starting with β0 = 1 retained tokens at time zero, de-

velopers sell the retained tokens at rate η < 0 during plat-

form development [0 , τ ) to cover development costs idt .

In addition, developers sell all retained tokens at the mile-
1066 
stone τ . Formally, 

d βt = ηt d t − βt 1 { t= τ } . 

We look for a Markov perfect equilibrium with state vari- 

able β . Before the milestone is reached (i.e., for t < τ ), the 

developers’ value function V (β) and the token price P (β) 

are functions of β . To solve the model with flow costs, we 

first fix a level of α and solve for V (β) and P (β) . We then 

select the optimal level of α by maximizing developers’ 

payoff at time zero. 

As in the baseline version, there is a moral hazard prob- 

lem, in that developers must exert effort to achieve high 

platform productivity and exerting full effort is optimal in 

equilibrium. As a result, the incentive condition (13) must 

be satisfied: 

IC(α) : = �

(
βP H + 

(1 − α) μH N H 

r 

)
− κ︸ ︷︷ ︸ 

Payoff under a t =1 

− �

(
βP H + 

(1 − α) μL N L 

r 

)
︸ ︷︷ ︸ 

Payoff under a t =0 

≥ 0 . 

Crucially, selling tokens reduces the retention level β , 

thereby undermining developers’ incentives to exert ef- 

fort. Because users and developers both discount at rate r, 

there are no gains from trade so that at any point in time 

t < τ , developers sell the minimal amount of tokens that 

is needed to cover financing i , which maximizes incentives 

and thus is optimal. That is, 

−ηP (β) = i ⇐⇒ η = 

i 

P (β) 
. 
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For a given level of α, the minimum level of retention β
(depending on α) required to maintain incentive compati-

bility satisfies IC(α) = 0 so that 

β = 

κ

�(P H − P L ) 
+ 

(1 − α)(μL N L − μH N H ) 

r(P H − P L ) 
. 

In the following, we assume that i) β ≥ 0 and ii) the

project is inefficient to finance when productivity is low.

The latter assumption implies that platform development

and financing is terminated once β reaches β (and the

project is never started when β ≥ 1 ). 

Conditional on full effort, the developers’ value function

solves the ordinary differential equation (ODE) 

(r + �) V (β) = �

(
βP H + 

(1 − α) μH N H 

r 

)
+ V 

′ (β) η

subject to V ( β) = 0 , while the token price solves the ODE 

(r + �) P (β) = �P H + P ′ (β) η, 

subject to P ( β) = 0 . The trading rate η is given by η =
i/P (β) . The solution to this system of coupled ODEs is not

available in closed form. 

Finally, the optimal level of token security features α is

set to maximize developers’ payoff at time zero V (β0 ) =
 (1) so that developers solve 

max 
α∈ [0 , 1] 

V (1) . 
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