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1. Introduction 

Should firms target short-term objectives or long-term 

performance? The question of the optimal horizon of 

corporate policies has received considerable attention in 

recent years, with much of the discussion focusing on 

whether short-termism destroys value. The worry often 
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expressed in this literature is that short-termism—induced, 

for example, by stock market pressure—may lead firms to 

invest too little (see Asker et al., 2015; Bernstein, 2015; 

Gutierrez and Philippon, 2017 , for empirical evidence). 

Another line of argument recognizes, however, that while 

firms must invest in their future if they are to have one, 

they must also produce earnings today to pay for doing so. 

In line with this view, Giannetti and Yu (2018) find that 

firms with more short-term institutional investors suffer 

smaller drops in investment and have better long-term 

performance than similar firms following shocks that 

change an industry’s economic environment. 

While empirical evidence relating short- or long- 

termism to firm performance is accumulating at a fast 

pace, financial theory has made little headway in devel- 

oping models that characterize the optimal horizon of 

corporate policies or the relation between firm charac- 

teristics and this horizon. In this paper, we attempt to 

provide an answer to these questions through the lens of 

agency theory. To do so, we develop a dynamic agency 
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2 Throughout, we refer to the manager’s exposure to earnings shocks 

as short-term incentives and the exposure to growth as long-term incen- 

tives. However, we stress that long-term incentives are understood as in- 

centives for a task that concerns the long term, rather than incentive pay 

contingent on outcomes that realize in the distant future. 
model in which the agent controls both current earnings

and firm growth (i.e., future earnings) through unobserv-

able investment. In this multitasking model, the principal

optimally balances the costs and benefits of incentivizing

the manager over the short or long term. As shown in the

paper, this can lead to optimal short- or long-termism,

depending on the severity of agency conflicts and firm

characteristics. Additionally, we show that the same firm

can find it optimal at times to be short-termist (i.e., favor

current earnings) and at other times to be long-termist

(i.e., favor growth). Our findings are generally consistent

with the views expressed in The Economist 1 that “long-

termism and short-termism both have their virtues and

vices—and these depend on context.”

We start our analysis by formulating a dynamic agency

model in which an investor (the principal) hires a man-

ager (the agent) to operate a firm. In this model, agency

problems arise because the manager can take hidden

actions that affect both earnings and firm growth. As in

He (2009) and Bolton et al. (2019) , earnings are propor-

tional to firm size, which is stochastic and governed by

a (controlled) geometric Brownian motion (i.e., subject to

permanent growth shocks). In contrast with these models,

earnings are also subject to moral hazard and short-term

shocks that do not necessarily affect (or correlate with)

long-term prospects (i.e., shocks to firm size). The agent

controls the drifts of the earnings and firm size processes

through unobservable investment. Notably, the agent can

stimulate current earnings via short-term investment and

firm growth via long-term investment. 

Investment is costly and the manager can divert part

of the funds allocated to investment, which requires the

compensation contract to provide sufficient incentives to

the agent. Under the optimal contract, the manager is thus

punished (rewarded) if either cash flow or firm growth

is worse (better) than expected. Because the manager has

limited liability, penalties accumulate until the termination

of the contract, which occurs once the manager’s stake in

the firm falls to zero. Since termination generates dead-

weight costs, maintaining incentive compatibility is costly.

Based on these trade-offs, the paper derives an incentive

compatible contract that maximizes the value that the

principal derives from owning the firm. It then analytically

demonstrates that the optimal contract can generate short-

or long-termism in corporate policies, defined as short- or

long-term investment levels above first-best levels. 

Our theory of short- and long-termism differs from

existing contributions in two important respects. First,

while most dynamic agency models focus either on short-

or long-term agency conflicts, we consider a multitask-

ing framework with both long- and short-term agency

conflicts. We show that agency conflicts over different

horizons interact, which can generate short- and long-

termism in corporate policies. Second, unlike most models

on short-termism, we do not assume that focusing either

on the short or the long term is optimal. In our model,

the optimal corporate horizon is determined endogenously
1 See “The tyranny of the long-term,” The Economist, November 22, 

2014. 
and reflects both agency conflicts and firm characteristics.

These unique features allow us to generate a rich set of

testable predictions about firms’ optimal investment rates

and the horizon of corporate policies. 

A first result of the paper is to show that short- or

long-termism can only arise when the firm is exposed

to a dual moral hazard problem. To understand why this

condition is necessary, first consider long-termism. In our

model, positive growth shocks lead to a permanent in-

crease in earnings (and risk) and to a greater misalignment

between shareholders’ interests and management’s incen-

tives by diluting the manager’s stake in the firm. To offset

these adverse dilution effects and reduce agency costs,

the manager’s promised wealth must increase sufficiently

in response to positive growth shocks. When the firm is

exposed to both long- and short-term moral hazard, the

contract optimally grants the manager a larger stake in the

firm, which increases potential dilution effects. The prin-

cipal then counteracts these dilution effects by tying the

agent’s compensation more to long-term performance (i.e.,

long-term shocks), which leads to higher-powered long-

term incentives. 2 The incentive compatibility condition

with respect to long-term investment, which associates

higher-powered incentives to higher levels of investments,

in turn implies that the firm must also increase long-term

investment, possibly beyond first-best levels. Our analysis

demonstrates that long-termism is more likely to arise

when cash flows are more volatile or when the investment

technology is less efficient. 

A second result of the paper is to show that short-

termism can only arise if the firm is exposed to a dual

moral hazard problem and there are direct externalities

between short- and long-term investment. Notably, we

show that a necessary condition for short-termism is that

shocks to firm size and shocks to cash flows are corre-

lated. When this correlation is negative—an assumption

supported in the data (see, e.g., Gryglewicz et al., 2019 )—

we additionally sho w that short-termism occurs when the

agent’s stake in the firm is low and the risk of termination

and agency costs are high. Indeed, in such instances, the

benefits of long-term growth are limited. By contrast,

stimulating short-term investment increases earnings

and reduces the risk of termination and agency costs.

Interestingly, a recent study by Barton et al. (2017) finds

using a data set of 615 large- and mid-cap US publicly

listed companies from 2001 to 2015 that “the long-term

focused companies surpassed their short-term focused

peers on several important financial measures.” While our

model does indeed predict that firm performance should

be positively related to the corporate horizon, it in fact

suggests the reverse causality. 3 
3 Interestingly, this causality issue is already discussed in The 

Economist, Schumpeter’s article “Corporate short-termism is a frustrat- 

ingly slippery idea,” who writes: “Do short-term firms become weak or 

do weak firms rationally adopt strategies that might be judged short 

term?” Similarly, Barton et al. (2017) write in their own study “one 
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4 While Hoffmann and Pfeil (2018) find that overinvestment is more 

likely for firms with a superior investment technology, our model implies 

that overinvestment rather arises when the investment technology is in- 

efficient. In Hoffmann and Pfeil (2018) firm size remains constant over 
Third, we show that while Tobin’s q unambiguously in- 

creases with financial slack (and in particular after positive 

cash flow realizations), long-term investment in general 

does not. This happens because long-term incentives are 

provided to implement optimal long-term investment and 

to insure the agent against dilution of her stake. Thus, 

long-term investment need not fully reflect the fundamen- 

tal value of capital within the firm, as given by Tobin’s q . 

Incentives are provided in the optimal contract by 

making the agent’s compensation contingent on firm per- 

formance via exposure to the firm’s stock price and earn- 

ings. In previous dynamic contracting models, the optimal 

contract generates just enough incentives to the agent 

(i.e., incentive compatibility constraints are tight) because 

incentive provision comes with the threat of termination 

and is therefore costly to implement. A distinctive feature 

of our model is that the optimal contract introduces expo- 

sure to permanent shocks that is not needed to incentivize 

investment. In particular, the agent is provided minimal 

long-run incentives when the firm is close to financial 

distress and higher-powered long-run incentives after 

positive past performance when sufficient slack has been 

accumulated. In this region, incentives have option-like 

features and increase after positive performance. 

To understand this result, note that when the man- 

ager’s stake is large, and therefore subject to substantial 

dilution risk upon unexpected firm growth, it becomes 

optimal to mitigate these adverse dilution effect through 

high-powered incentive pay. This generates the distinct 

prediction that extra pay-for-performance is introduced 

when the manager’s stake in the firm and dilution risk 

are large enough. We show indeed that in such instances 

the principal can eliminate dilution risk by fully expos- 

ing the manager’s wealth to permanent shocks while 

maintaining incentive compatibility. When this is the 

case, long-run incentives are effectively costless and the 

manager is exposed to permanent, growth shocks beyond 

the level needed to incentivize long-term investment. 

In other words, positive permanent shocks lead to ad- 

ditional pay-for-performance, and negative permanent 

shocks eventually eliminate this extra sensitivity to per- 

formance implied by the optimal contract. Our model 

therefore provides a rationale for the asymmetry of pay- 

for-performance observed in the data (see, e.g., Garvey and 

Milbourn, 2006; Francis et al., 2013 ). 

Our paper relates to the growing literature on short- 

termism. Influential contributions in this literature include 

Stein (1989) , Bolton et al. (2006) , and Aghion and Stein 

(2008) in which stock market pressure leads managers 

to boost short-term earnings at the expense of long-term 

value. In related work, Thakor (2018) builds a model in 

which short-termism is efficient, as it limits managerial 

rent extraction and leads to a better allocation of man- 

agers to projects. Narayanan (1985) develops a model in 

which short-term projects privately benefit managers by 

enhancing reputation and increasing wages. Von Thadden 

(1995) studies a dynamic model of financial contracting in 
caveat: we’ve uncovered a correlation between managing for the long 

term and better financial performance; we haven’t shown that such man- 

agement caused that superior performance.”
which the fear of early project termination by outsiders 

leads to short-term biases of investment. Marinovic and 

Varas (2019) and Varas (2017) develop dynamic contract- 

ing models in which the manager can undertake inefficient 

actions to boost short-run performance at the expense of 

the long run. Likewise, Zhu (2018) develops a model of 

persistent moral hazard in which the agent can choose 

between a short- and long-term action and characterizes 

the contract that implements the long-term action. In con- 

trast with these models, we do not assume that focusing 

either on the short or the long term is optimal, and there 

is no intrinsic conflict between short- and long-termism 

in our setup. Hoffmann and Pfeil (2018) build a model in 

which the agent privately observe cash flows that he can 

divert and/or invest to increase the likelihood of adoption 

of future technologies. 4 Their model does not address the 

issue of short- versus long-termism in corporate policies. 

Our modeling of cash flows with permanent and transi- 

tory shocks is similar to that in Décamps et al. (2017) and 

Hackbarth et al. (2018) . The model of Décamps et al. 

(2017) does not feature agency conflicts. The model of 

Hackbarth et al. (2018) shows that debt financing may 

render short-termism optimal for shareholders. Their 

dynamic agency model differs from ours in that it con- 

siders different managerial preferences and focuses on 

the agency-induced cost of debt (overhang). Consequently, 

the mechanism generating short-termism is distinct from 

ours. Notably, short-termism only arises because debt 

overhang reduces the benefits of long-term investment to 

shareholders that, in the presence of a resource constraint, 

leaves more resources for short-term investment. Unlike 

our model, their model does not feature long-termism or 

asymmetric pay-for-performance. 

Our paper is more generally related to the growing 

literature on dynamic contracting. Most contributions in 

this literature study agency conflicts over the short run, 

using a stationary environment characterized by identi- 

cally and independently distributed cash flow shocks; see, 

for example, DeMarzo and Sannikov (2006) , Biais et al. 

(20 07) , Sannikov (20 08) , Zhu (2012) , Miao and Rivera

(2016) , Malenko (2019) , and Szydlowski (2019) . Likewise, 

Biais et al. (2010) and DeMarzo et al. (2012) study dynamic 

contracting models with time-varying firm size in which 

cash flow shocks are short lived. In these models, the 

manager can affect current, but not directly future, firm 

performance. In contrast, He (2009) and He (2011) focus 

on agency conflicts over the long run by considering a 

framework in which the manager can affect firm growth. 5 

In these last two models, instantaneous earnings are not 

subject to short-term moral hazard. Our model combines 

both strands of the literature in a unified framework in 

which the optimal horizon of corporate policies arises 
time, thereby ruling out potential dilution of the managerial stake, so the 

mechanism leading to overinvestment differs from ours. 
5 In a similar setting, Gryglewicz and Hartman-Glaser (2019) show that 

agency conflicts over the long run can lead to the early exercise of real 

options. 
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7 In general, the correlation coefficient ρ between short-term and per- 

manent cash flow shocks can be positive or negative. Considering, for ex- 

ample, the automobile industry, there is a general tendency for buyers of 

moving away from diesel cars toward electric cars. In the case of Volk- 

swagen, this negative permanent demand shock on diesel cars has been 

compounded by the diesel gate, implying a positive correlation between 

short- and long-run cash flow shocks. In the case of Tesla Motors, the 

positive long-run demand shock on electric cars has been dampened by 

negative shocks on the supply chain (notably for Model 3), implying a 

negative correlation between short-run and long-run cash flow shocks. 

Additional examples of a negative correlation include decisions to invest 

in research and development or to sell assets. When the firm sells as- 

sets today, it experiences a positive cash flow shock. However, it also de- 

creases permanently future cash flows. Examples of positive correlation 

include price changes due to the exhaustion of the existing supply of a 

commodity or improving technology for the production and discovery of 

a commodity. Using the same type of cash flow model as adopted in this 

paper, Gryglewicz et al. (2019) estimate that for Compustat firms between 

1975 and 2014, the correlation between short-term and permanent cash 

flow shocks is, on average, negative. 
8 The assumption of quadratic investment cost is made merely for ana- 

lytical parsimony in that all our results in Sections 2–5 hold true for any 

other cost function that is strictly convex in s , � . This includes cost func- 

tions where short- and long-run investment are substitutes or comple- 
endogenously. Our framework is also related to Ai and Li

(2015) and Bolton et al. (2019) , who study optimal invest-

ment under limited commitment. These models do not

feature moral hazard. Ai and Li (2015) demonstrate that

shareholders’ limited commitment can lead to overinvest-

ment in a model in which firms are subject to permanent

shocks. In contrast, we assume full commitment of share-

holders (the principal) and identify agency frictions as a

potential driver of overinvestment. 

Section 2 presents the model and its solution.

Section 3 analyzes the implications of the model for

optimal investment. Section 4 derives predictions on

the horizon of corporate policies. Section 5 shows how

the optimal contract can be implemented by exposing

the manager to the firm’s stock price and earnings.

Section 6 focuses on asymmetric pay-for-performance.

Section 7 shows the robustness of our results to alterna-

tive model specifications. Section 8 concludes. 

2. The model 

2.1. Assumptions 

Throughout the paper, time is continuous and uncer-

tainty is modeled by a probability space (�, F , F , P) with

the filtration F = { F t : t ≥ 0 } , satisfying the usual condi-

tions. We consider a principal-agent model in which the

risk-neutral owner of a firm (the principal) hires a risk-

neutral manager (the agent) to operate the firm’s assets.

In the model, firm performance depends on investment,

which can be targeted toward the short- or long-run and

entails a monetary cost. Agency problems arise because

investment decisions are delegated to the manager, who

can divert part of the resources allocated to investment. 

The firm employs capital to produce output, whose

price is normalized to one. At any time t ≥ 0, earnings

are proportional to the capital stock K t (i.e., the firm

employs an “AK ” technology) and subject to permanent

(long-term) and transitory (short-term) shocks. Permanent

shocks change the long-term prospects of the firm and

influence cash flows permanently by affecting firm size.

Following He (2009) , DeMarzo et al. (2012) , and Bolton

et al. (2011) , we consider that the firm’s capital stock (firm

size) { K} = { K t } t≥0 evolves according to the controlled

geometric Brownian motion process 6 : 

d K t = ( � t μ − δ) K t d t + σK K t dZ K t , (1)

where μ > 0 is a constant, δ > 0 is the rate of de-

preciation, σ K > 0 is a constant volatility parameter,

{ Z K } = { Z K t } t≥0 is a standard Brownian motion, and � t is

the firm’s long-term investment choice. For the problem

to be well defined, we consider that � t ∈ [0, � max ] with

� max < 

r+ δ
μ where r ≥ 0 is the constant discount rate of the

firm owner. In addition to these permanent shocks, cash
6 This specification for capital accumulation and revenue in which cap- 

ital dynamics are governed by a controlled geometric Brownian motion 

has been used productively in asset pricing (e.g., Cox et al., 1985; Kogan, 

2004 ), corporate finance (e.g., Abel and Eberly, 2011; Bolton et al., 2019 ), 

or macroeconomics (e.g., Gertler and Kiyotaki, 2010; Brunnermeier and 

Sannikov, 2014 ). 
flows are subject to short-term shocks that do not neces-

sarily affect long-term prospects. Specifically, cash flows

dX t are proportional to K t but uncertain and governed by 

d X t = K t d A t = K t 

(
s t αd t + σX dZ X t 

)
, (2)

where α and σ X are strictly positive constants, s t ∈ [0,

s max ] is the firm’s short-term investment choice, and

{ Z X } = { Z X t } t≥0 is a standard Brownian motion. In the

following, { Z X } is allowed to be correlated with { Z K } with

correlation coefficient ρ in that 7 

E [ dZ K t dZ X t ] = ρdt, with ρ ∈ (−1 , 1) . (3)

Investment entails costs I(K t , s t , � t ) . We assume that

the investment cost is homogeneous of degree one in cap-

ital K t , as in DeMarzo et al. (2012) and Bolton et al. (2011) .

That is, we have that I(K t , s t , � t ) ≡ K t C(s t , � t ) , where C is

increasing and convex in its arguments. Unless otherwise

mentioned, we consider quadratic costs of investment 

C(s t , � t ) = 

1 

2 

(
λs s 

2 
t α + λ� � 

2 
t μ

)
, (4)

where s max , � max are large enough to ensure that invest-

ment is interior at all times . 8 

The manager is protected by limited liability, does

not accept negative payments from the principal dC t , and

cannot be asked to cover the investment cost I(K t , s t , � t ) =
K t C(s t , � t ) out of her own pocket. More specifically, the

principal has to allocate funds to the manager before

she can carry out the investment decisions s t , � t . As a

result, over [ t , t + dt ] the agent is paid dC t + K t C(s t , � t ) dt

and wage payments net of investment cost dC t must be

positive (i.e., dC t ≥ 0). At any time t , the manager has full

discretion over investment s , � and can divert from the
ments, which occurs when ∂ 2 C(s,� ) 
∂ s∂ � 

� = 0 . We purposefully refrain from such 

a specification because interactions between short- and long-run invest- 

ment arise endogenously in our model and we attribute these interactions 

entirely to the presence of moral hazard over different time horizons. The 

upper bounds on the investment levels can be related to the maximum 

time the manager can spend on the job. The upper bound on long-term 

investment (i.e., � max < 

r+ δ
μ ) also naturally arises in our model as a neces- 

sary condition to obtain finite firm values. 
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funds K t C(s t , � t ) she is handed over from the principal. In 

particular, the manager can change recommended short- 

run (respectively long-run) investment s t (respectively � t ) 

by any amount ε s (respectively ε � ) and keep the difference 

between actual investment cost and allocated funds, i.e., 

K t 

[
C(s t , � t ) − C(s t − ε s , � t − ε � ) 

]
for herself. Because { X } and { K } are subject to Brownian 

shocks—as long as σ X > 0 and σ K > 0—there is moral 

hazard over short- and long-term investment decision. 

For simplicity, we assume that diversion does not entail 

efficiency losses. 

In the baseline version of our model, we assume the 

agent has sufficient private funds so that she can, in 

principle, also boost firm investment (i.e., implement 

investment ˆ s t > s t or ˆ � t > � t ). While this assumption does 

not drive our main results, it offers several advantages. 

First, it considerably simplifies the analysis. Second, and 

most importantly, it allows us to connect more easily 

to the existing models of He, 2009 and DeMarzo et al. 

(2012) and to clearly demonstrate how the combination 

of short- and long-run moral hazard induces short- and 

long-termism. We analyze the case of limited private 

wealth in Section 5 and show that our results on short- 

and long-termism hold in this alternative setting. 

As in DeMarzo and Sannikov (2006) , Biais et al. (2007) , 

and DeMarzo et al. (2012) , the agent is more impatient 

than the principal and has a discount rate γ > r . As a 

result, the principal cannot indefinitely postpone payments 

to the agent. The agent possesses an outside option nor- 

malized to zero and maximizes the present value of her 

expected payoffs. 9 Because the agent is protected by lim- 

ited liability, her continuation value can never fall below 

her outside option, in which case she would profit from 

leaving the firm. Her employment starts at time t = 0 and 

is terminated at an endogenous stopping time τ , at which 

point the firm is liquidated. At the time of liquidation, 

the principal recovers a fraction R > 0 of assets, valued 

at RK τ . Liquidation is inefficient and generates deadweight 

losses. 10 

Before proceeding, note that when σK = 0 , we obtain 

the environment of the dynamic agency model of DeMarzo 

et al. (2012) or the financing frictions model of Bolton et al. 

(2011) . Since there is no noise to hide the long-term in- 

vestment choice, the long-term agency conflict is irrelevant 

in that case. By contrast, when σX = 0 , we obtain the cash 

flow environment used in the dynamic capital structure 

( Leland, 1994; Strebulaev, 2007 ) and real options literature 

( Carlson et al., 2006; Morellec and Schürhoff, 2011 ) as well 

as in the dynamic agency models of He (2009, 2011) . Since 
9 As in Albuquerque and Hopenhayn (2004) and Rampini and 

Viswanathan (2013) , we could assume that the manager can appropriate 

a fraction of firm value so that the manager has reservation value θK t , 

where θ ≥ 0 is a constant parameter. The entire analysis can be con- 

ducted by replacing 0 with θ . 
10 We could equally assume that the firm replaces the manager instead 

of liquidating when w falls to zero. The model results would remain un- 

changed as long as finding a new manager (i.e., replacement) is costly 

for the firm. For instance, one could assume some replacement cost kK τ , 

which could be microfounded by a costly labor market search. 

 

there is no noise to hide the short-term investment choice, 

the short-term agency conflict is irrelevant in that case. 

2.2. The contracting problem 

To maximize firm value, the investor chooses short- and 

long-term investment { s }, { � } and offers a full-commitment 

contract to the agent at time t = 0 , which specifies wage 

payments { C }, recommended investment { s }, { � }, and a

termination time τ . Because the agent cannot be paid any 

negative amount net of investment cost, the process { C } is 

nondecreasing in that dC t ≥ 0 for all t ≥ 0. Moreover, the 

contract cannot request the agent to finance investment so 

that she is handed over the investment cost I(K t , s t , � t ) at

time t from the principal. We let � ≡ ({ C }, { s }, { � }, τ ) rep-

resent the contract, where all elements are progressively 

measurable with respect to F . With the agent’s actual 

investment choice { ̂ s } , { ̂  � } , we call a contract incentive 

compatible if s t = ˆ s t and � t = 

ˆ � t for all t ≥ 0 and focus 

throughout the paper on incentive compatible contracts, 

where we denote the set of these contracts by IC . Since we 

only consider contracts of the set IC , we will not formally 

distinguish between recommended and actual investment. 

For an incentive compatible contract �, let us de- 

fine the agent’s expected payoff at time t ≥ 0 (i.e., her 

continuation value) as 

W t = W t (�) ≡ E t 

[∫ τ

t 

e −γ (u −t) dC u 

]
. 

W t = W t (�) equals the promised value the agent gets 

if she follows the recommended path from time t ≥ 0 

onwards. W 0 = W 0 (�) is the agent’s expected payoff at 

inception. 

The principal receives the firm cash flows net of in- 

vestment cost and pays the compensation to the manager. 

As a result, given the contract �, the principal’s expected 

payoff can be written as 

ˆ P (W, K) ≡ E 

[∫ τ

0 

e −rt (dX t − K t C(s t , � t ) d t − d C t ) 

+ e −rτ RK τ

∣∣∣W 0 = W, K 0 = K 

]
. (5) 

The objective of the principal is to maximize the present 

value of the firm cash flows plus termination value net 

of the agent’s compensation, where we make the usual 

assumption that the principal possesses full bargaining 

power. Denote the set of incentive compatible contracts by 

IC . The investor’s optimization problem reads 

P (W, K) ≡ max 
�∈ IC 

ˆ P (W, K) s.t. W t ≥ 0 and dC t ≥ 0 

for all t ≥ 0 . (6) 

With slight abuse of notation, we denote by � ≡ ({ C }, { s },

{ � }, τ ) the solution to this optimization problem. 

2.3. First-best short- and long-term investment 

We start by deriving the value of the firm and the 

optimal investment levels absent agency conflicts (i.e., 

when there is no noise to hide the agent’s action in that 
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σX = σK = 0 ). Throughout the paper, we refer to this case

as the first-best ( FB ) outcome. 

Given the stationarity of the firm’s optimization prob-

lem, the choice of s and � is time invariant absent agency

conflicts, and the first-best firm value reads 

P F B (K) = max 
(s,� ) ∈ [0 ,s max ] ×[0 ,� max ] 

K 

r + δ − μ� 

×
[ 
αs − 1 

2 

(
λs αs 2 + λ� μ� 2 

)] 
≡ K p F B , 

where the short- and long-term investment choice { s FB ,

� FB } maximize firm value. We denote the scaled firm value

absent moral hazard by p FB . Simple algebraic derivations

lead to the following result: 

Proposition 1 (First-best firm value and investment

choices). Assume the bounds i max for i ∈ { s , � } are such that

the first-best solution is interior. Then the following holds: 

(i) First-best short-term investment satisfies: s F B = 

1 
λs 

. 

(ii) First-best long-term investment satisfies: � F B =
1 
μ

[
r + δ −

√ 

(r + δ) 2 − μα
λs λ� 

]
= 

p F B 

λ� 
. 

2.4. Model solution 

We now solve the model with agency conflicts over the

short and long term (i.e., assuming σ K > 0 and σ X > 0).

Recall that the contract specifies the firm’s investment

policy { s }, { � }, payments to the agent C , and a termination

date τ all as functions of the firm’s profit history. Given

an incentive compatible contract and the history up to

time t , the discounted expected value of the agent’s future

compensation is given by W t . As in DeMarzo and Sannikov

(2006) or DeMarzo et al. (2012) , we can use the martin-

gale representation theorem to show that the continuation

payoff of the agent solves 

dW t = γW t d t − d C t + βs 
t (d X t − αs t K t dt) 

+ β� 
t (dK t − (μ� t − δ) K t dt) . (7)

This equation shows that the agent’s continuation value

must grow at rate γ to compensate for her time prefer-

ence. In addition, compensation must be sufficiently sen-

sitive to firm performance, as captured by the processes

βs 
t = d W t /d X t and β� 

t = d W t /d K t , to maintain incentive

compatibility. To understand why such a compensation

scheme may align incentives, suppose that the agent

decides to deviate from the recommended choice and

chooses investment ˆ s t = s t − ε during an instant [ t , t + dt ] .

By doing so, she keeps the amount of investment cost

saved 

K t 

(
C(s t , � t ) − C(s t − ε, ˆ � t ) 

)
dt 

� K t C s (s t , � t ) εdt = K t αλs s t εdt. 

At the same time, however, she lowers mean cash flow

by K t αεdt so that her overall compensation is reduced

by αK t βs 
t εdt . Therefore, the agent does not deviate from

the prescribed short-run investment if βs 
t = λs s t . Similarly,

the agent does not deviate from the prescribed long-run

investment if β� 
t = λ� � t . Both incentive compatibility

constraints require that the agent has enough skin in
the game, as reflected by sufficient exposure to firm

performance. 

The investor’s value function in an optimal contract,

given by P ( W, K ), is the highest expected payoff the in-

vestor may obtain given K and W . While there are two

state variables in our model, the scale invariance of the

firm’s environment allows us to write P (W, K) = K p(w )

and reduce the problem to a single state variable: w ≡ W 

K ,

the scaled promised payments to the agent as in He

(2009) and DeMarzo et al. (2012) . 

To characterize the optimal compensation policy and

its effects on the investor’s (scaled) value function p ( w ),

note that it is always possible to compensate the agent

with cash so that it costs at most $1 to increase w by $1

and p ′ (w ) ≥ −1 . In addition, as shown by Eq. (7) , deferring

compensation increases the growth rate of W (and of w )

and thus lowers the risk of liquidation but is costly due

to the agent’s impatience, γ > r . As a result, the optimal

contract sets dc ≡ dC 
K to zero for low values of w and

only stipulates payments to the manager once the firm

has accumulated sufficient slack. That is, there exists a

threshold w with 

p ′ ( w ) = −1 and dc = max { 0 , w − w } , (8)

where the optimal payout boundary is determined by the

super-contact condition: 

p ′′ ( w ) = 0 . (9)

When w falls to zero, the contract is terminated and the

firm is liquidated so that 

p(0) = R. (10)

When w ∈ [0 , w ] , the agent’s compensation is deferred

and dc = 0 . The Hamilton–Jacobi–Bellman equation for the

principal’s problem is then given by (see Appendix A.2 ): 

(r + δ) p(w ) 

= max 
s,�,βs ,β� 

{
αs −C(s, � ) + p ′ (w ) w (γ + δ − μ� ) + μ�p(w ) 

+ 

p ′′ (w ) 

2 

[
(βs σX ) 

2 + σ 2 
K (β

� − w ) 2 

+ 2 ρσX σK β
s (β� − w ) 

]}
, (11)

subject to the incentive compatibility constraints on βs

and β� . 

Due to the scale invariance (i.e., P (W, K 0 ) = p(w ) K 0 )

the investor’s maximization problem at t = 0 can now be

rewritten as 

max 
w 0 ∈ [0 , w ] 

p(w 0 ) K 0 , 

with unique solution w 0 = w 

∗ satisfying 

p ′ (w 

∗) = 0 . (12)

As a consequence, the principal initially promises the agent

utility w 

∗K 0 and expects a payoff P (K 0 w 

∗, K 0 ) = p(w 

∗) K 0 .

For convenience, we normalize K 0 to unity in the following

and refer to p ( w 

∗) as expected payoff instead of scaled

expected payoff. The following proposition summarizes
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our results about the optimal contract. Its proof is deferred 

to Appendix A.2 . 

Proposition 2 (Firm value and optimal compensation un- 

der agency). Let � ≡ ({ C }, { s }, { � }, τ ) denote the optimal 

contract solving problem (6) . The following holds true: 

1. There exist F -progressive processes { β� } and { βs } such 

that the agent’s continuation utility W t evolves according 

to (7) . The optimal contract is incentive compatible in 

that βs = λs s and β� = λ� �, where { s }, { � } are the firm’s 

optimal investment decisions. 

2. Firm value is proportional to firm size in that P (W, K) = 

K p(w ) . The scaled firm value p ( w ) is the unique solution 

to Eq. (11) subject to (8) , (9) , and (10) on [0 , w ] . For w >

w , the scaled value function satisfies p(w ) = p( w ) − (w −
w ) . Scaled cash payments dc = 

dC 
K reflect w back to w . 

3. The function p ( w ) is strictly concave on [0 , w ) . 

Before proceeding, note that w serves as a proxy for 

the firm’s financial slack in our model so that states where 

w is close to zero—and the firm close to liquidation—

correspond to financial distress. Since the firm has to 

undergo inefficient liquidation after a series of adverse 

shocks drive w down to zero, the principal becomes effec- 

tively risk averse with respect to the volatility of w so that 

the value function is strictly concave (i.e., p ′′ ( w ) < 0 for 

w < w ). Put differently, the concavity of p implies that the 

principal would like to minimize the volatility of w while 

maintaining incentive compatibility. 

Note also that overall value, P (W, K) + W, is split be- 

tween the principal and the manager, where the manager 

obtains a fraction, 

S(w ) = 

W 

P (W, K) + W 

= 

w 

p( w ) + w 

, 

of overall value. Because of S ′ (w ) > 0 for all w ∈ (0 , w ) ,

the scaled continuation value w corresponds (monotoni- 

cally) to the fraction of overall firm value that goes to the 

manager. 11 Therefore, we also refer to w as the agent’s or 

manager’s stake in the firm. When the manager’s stake w 

falls down to zero, she has no more incentives to stay and 

accordingly leaves the firm. In this case, deadweight losses 

are incurred due to contract termination. 

3. Short- versus long-run incentives 

This section examines the implications of agency con- 

flicts for long- and short-term investment choices. For clar- 

ity of exposition, we assume that the correlation between 

short- and long-run shocks ρ is zero and the parame- 

ters are such that investment levels s and � are interior. 

Section 4.2 analyzes the effects of nonzero correlation. 

3.1. Short-term investment and incentives 

Optimal short-term investment s = s (w ) is obtained by 

taking the first-order condition in Eq. (11) after using the 
11 In fact, S ′ (w ) ∝ p(w ) − p ′ (w ) w, which is always positive since 
∂ 

∂w 
(p(w ) − wp ′ (w )) = −wp ′′ (w ) > 0 due to concavity of the value func- 

tion. Since S ′ (0) = R ≥ 0 , it follows that S ′ (w ) > 0 for all w ∈ (0 , w ] . 
incentive compatibility condition βs = λs s . This yields the 

following result: 

Proposition 3 (Optimal short-term investment). Optimal 

short-term investment is given by 

s (w ) = 

Direct benefit 
of investment ︷︸︸︷ 

α

λs α︸︷︷︸ 
Direct cost 

of investment 

−p ′′ (w )(λs σX ) 
2 ︸ ︷︷ ︸ 

Agency cost 
of investment 

. (13) 

Short-term investment is strictly lower than under first-best 

except at the boundary in that s ( w ) < s SB for w < w and

s ( w ) = s F B . If γ − r and σ K are sufficiently small, then s ( w )

increases in w (i.e., ∂s (w ) 
∂w 

> 0 ). 

An important implication of Proposition 3 is that 

agency conflicts lead to underinvestment for the short run 

(i.e., s ( w ) < s FB when ρ = 0 ). Upon increasing the invest-

ment rate s , the firm does not only incur direct, monetary 

cost of investment but also agency costs because higher 

s requires higher incentives βs . Consequently, the agent’s 

stake becomes more volatile, which raises the risk of costly 

liquidation and therefore leads to endogeneous agency 

costs or incentive costs of investment. These agency costs 

decrease in the level of financial slack w and vanish at the 

payout boundary w where p ′′ ( w ) = 0 , at which point the 

firm’s short-run investment reaches first best, s ( w ) = s F B . 

3.2. Long-term incentives and investment 

Next, we characterize the firm’s optimal long-term 

investment � and the agent’s long-term incentives β� . 

Using the HJB Eq. (11) and the incentive compatibility 

condition β� = λ� �, we get the following result: 

Proposition 4 (Optimal long-term investment). Optimal 

long-term investment is given by 

� (w ) = 

Direct benefit 
of investment ︷ ︸︸ ︷ 

μ(p(w ) − p ′ (w ) w ) 

Reducing dilution risk ︷ ︸︸ ︷ 
−p ′′ ( w ) wλ� σ

2 
K 

λ� μ︸︷︷︸ 
Direct cost 

of investment 

−p ′′ ( w )( λ� σK ) 
2 ︸ ︷︷ ︸ 

Agency cost 
of investment 

. (14) 

The firm always underinvests for the long-term close to the 

boundary in that there exists ε > 0 such that � ( w ) < � FB for

w ∈ [ w − ε, w ] . 

To get some intuition for the results in Proposition 4 , 

let us consider the costs and benefits from marginally 

increasing long-term investment � : 

∂ p(w ) 

∂� 
∝ μ(p(w ) − p ′ (w ) w ) ︸ ︷︷ ︸ 

Direct benefit 

−λ� μ� ︸ ︷︷ ︸ 
Direct 
cost 

+ p ′′ (w ) � (λ� σK ) 
2 ︸ ︷︷ ︸ 

Agency cost 

−p ′′ (w ) wλ� σ
2 
K ︸ ︷︷ ︸ 

Reducing dilution 
risk 

. (15) 

Consider first the costs of raising long-term investment. 

The above expression shows that, in addition to the direct 

cost of investment, the firm incurs an agency cost. This 
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agency cost arises because increasing long-run investment

requires higher long-run incentives β� and therefore

makes w more volatile. The agency cost of investment

depends on the principal’s effective risk aversion −p ′′ (w )

and decreases optimal investment � ( w ). 

Consider next the benefits of raising long-term in-

vestment. The first difference between optimal short-

and long-term investment is that the direct benefit

of long-term investment is time varying and given by

p(w ) − p ′ (w ) w . This value represents Tobin’s marginal q

in our model, as it equals the marginal value of capital

P K ( W, K ). Note that long-term investment expenditures

today lead to a higher average cash flow rate in the future.

However, due to the possibility of firm liquidation owing

to the moral hazard problem, the firm cannot perpetually

enjoy this increase in the cash flow rate, so the benefit of

long-term investment p(w ) − p ′ (w ) w is strictly lower than

p FB . Ceteris paribus, this lowers the firm’s investment rate

� ( w ). Remarkably, in contrast to the case of short-term

investment, long-term investment is below the first-best

level for high w close to w . The reason is that while

the agent becomes a residual claimant on cash flows

at w , she is not a residual claimant on the benefits of

long-term growth at the first-best level because of the

agency-induced firm liquidation in the future. It holds,

however, that long-term investment is more profitable

when the firm has more financial slack and the distance

to liquidation is far (i.e., p(w ) − wp ′ (w ) increases in w ). 

A second difference is that investment in � ( w ) offers an

additional benefit compared to investment in s ( w ): it mit-

igates the dilution of the agent’s stake w . Since p ′′ ( w ) ≤ 0,

this effect unambiguously increases long-term investment.

To understand the source of this effect, first note that by

Ito’s lemma, the dynamics of the agent’s stake are given

by 12 

dw = (γ + δ − μ� ) wdt + βs σX dZ X + (β� − w ) σK dZ K , 

(16)

so the instantaneous variance of dw satisfies 

�(w ) ≡ V (dw ) 

dt 
= (βs σX ) 

2 + (β� − w ) 2 σ 2 
K . (17)

From Eq. (16) , we see that a positive permanent shock

dZ K > 0 has two opposing effects on the manager’s incen-

tives. First, the agent is rewarded for strong performance

via the sensitivity β� and is promised higher future pay-

ments W . This increases w = 

W 

K (via its numerator) by

β� σ K dZ K , which equals λ� � ( w ) σ K dZ K . Second, firm size K

grows more than expected, thereby reducing the agent’s

stake w = 

W 

K (via its denominator) by −wσK dZ K . We refer

to the reduction of the agent’s stake upon a positive shock

dZ K > 0 as dilution and the volatility generated by this

effect (i.e., −wσK ), as dilution risk. Altogether, we have

that dw/dZ K = (β� − w ) σK . Because performance-based

compensation and dilution move w in opposite directions,
12 As discussed in Appendix A.2 , the dynamics in Eq. (16) are under 

an auxiliary measure ˜ P rather than under the physical measure P . The 

choice of the probability measure does not matter since w has the same 

volatility under both measures and volatility is the only quantity we 

study in in the following discussion. 

 

 

 

 

long-run incentives β� mitigate the dilution effect that,

ceteris paribus, lowers risk (see Eq. (17) ) and is thus ben-

eficial. This makes contracting for long-term investment

cheaper and increases � ( w ). 

More generally, our model suggests that the manager’s

compensation should increase with firm size. Indeed, an

increase in firm size (due to a positive permanent shock

dZ K > 0) raises both the firm’s future cash flow rate and

the magnitude of future cash flow shocks. As a result,

the firm becomes not only more profitable but also more

risky (in absolute terms). Both effects call for an increase

in the manager’s continuation value, which better aligns

the manager’s and the principal’s interests and facilitates

contracting for long-term investment. 

It is illustrative to look at this effect from the perspec-

tive of agency costs. As long as β� < w , raising β� lowers

the volatility and instantaneous variance �( w ) of w , and

therefore the risk of liquidation, so that the effective

(marginal) agency cost of long-run investment is pinned

down by the net change in risk, that is, by 

−p ′′ (w ) � (λ� σK ) 
2 ︸ ︷︷ ︸ 

Agency cost (> 0) 

+ p ′′ (w ) wλ� σ
2 
K ︸ ︷︷ ︸ 

Reducing dilution 
risk (< 0) 

= −p ′′ (w ) σ 2 
K λ� (λ� � −w ) ︸ ︷︷ ︸ 

Effective agency cost (≶ 0) 

. 

(18)

As is the case with the agency cost of investment,

the benefits of mitigating dilution risk depend on how

much volatility in w matters for the investor’s value func-

tion (i.e., on principal’s effective risk aversion −p ′′ (w ) ).

Therefore, it is most beneficial to alleviate dilution

via long-run incentives β� when the concavity of the

scaled value function is the largest. The effect disap-

pears at w = w where p ′′ ( w ) = 0 . When w is close to

w , and therefore p ′′ ( w ) � 0 and p ′ (w ) � −1 , the firm

always underinvests because direct benefits of investment

p(w ) − wp ′ (w ) � p(w ) + w < p F B are reduced by the pres-

ence of moral hazard and agency-induced firm liquidation,

which implies � (w ) = (p(w ) + w ) /λ� < p F B /λ� = � F B . 

4. Short- and long-termism in corporate policies 

Because the manager’s ability to divert funds decreases

the benefits of investment, each moral hazard problem

working in isolation leads to underinvestment relative

to the first-best levels. The novel insight of our model

is that a simultaneous moral hazard problem over both

the short and long run can generate overinvestment. We

call overinvestment for the long run (i.e., � > � FB ), long-

termism and overinvestment for short-run (i.e., s > s FB ),

short-termism. Below we analyze and contrast the circum-

stances that lead to long-termism and short-termism. We

find that long-termism can arise irrespective of whether

the different sources of cash flow risk are correlated, while

short-termism requires ρ � = 0 . 

4.1. Long-termism 

Proposition 4 and Eq. (14) reveal that moral hazard

decreases long-run investment via the direct benefit

channel and the agency cost channel. The firm can po-

tentially overinvest to reduce dilution risk. In the next
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13 In fact, the inequality is strict: w < β� = λ� � (w ) . To get some intu- 

ition, note that in case β� = w, the firm becomes riskless. The benefits 

of reducing w by an infinitesimal amount dc > 0 are proportional to 

(γ − r) o(dc) and therefore of order o ( dc ), while the cost—stemming from 

the additional risk of liquidation—are of order o (( dc ) 2 ). Consequently, the 

firm would never set β� = w so that β� = λ� � (w ) > w for all w ∈ [0 , w ] . 

This result is established in He (2009). 
proposition, we show that the last effect can dominate the 

former two effects and present sufficient conditions for 

overinvestment to arise. 

Proposition 5 (Long-termism). The following holds true: 

(i) Long-termism (i.e., � ( w ) > � FB ) arises only if σ X > 0 

and σ K > 0 . 

(ii) Assume σ X > 0 and σ K > 0 . Then, there exist w 

L 

and w 

H with 0 < w 

L < w 

H < w such that � ( w ) > � FB 

for w ∈ ( w 

L , w 

H ), provided that μ and γ − r are 

sufficiently low. 

The firm underinvests (i.e., � ( w ) < � FB ) when w < w 

L 

or w > w 

H (i.e., when w is close to zero or close to w ). 

(iii) Higher volatility σ X > 0 or σ K > 0 favors long- 

termism: if μ is sufficiently low and parameters are 

such that sup { � (w ) : 0 ≤ w ≤ w } = � F B , then there 

exists ε > 0 such that sup { � (w ) : 0 ≤ w ≤ w } > � F B if 

σ X or σ K increases by ε. 

The first part of Proposition 5 states that long-termism 

can only arise when firm cash flows are subject to both 

transitory and permanent shocks (i.e., when σ X > 0 and 

σ K > 0), and the firm is exposed to a simultaneous moral 

hazard problem over both the short and long run. When 

permanent cash flow shocks are removed from the model 

(i.e., σK = 0 ), long-term investment � is observable and 

contractible. In addition, there is no risk of dilution of 

the agent’s stake, as all shocks are purely transitory in 

nature. Under these circumstances, long-term investment 

satisfies 

� (w ) = 

p(w ) − wp ′ (w ) 

λ� 

< 

p F B 

λ� 

= � F B . 

Because short-run agency lowers the direct benefits of 

long-run investment, the firm always underinvests for the 

long term. 

To see why transitory shocks, or equivalently moral 

hazard over the short term, are essential for long-termism, 

we start with the following observation. Since the direct 

benefit of long-term investment under moral hazard is 

below the first-best level, it follows from Eq. (15) that 

a necessary condition for overinvestment in � ( w ) is that 

the dilution effect exceeds the agency cost effect. Using 

Eq. (18) , this is equivalent to requiring that the effective 

(marginal) agency cost is negative. Thus, overinvestment 

in � or long-termism arises only if 

−p ′′ (w )(λ� � − w ) λ� σ
2 
K < 0 ⇐⇒ w > λ� � = β� , 

that is, if the manager’s stake is large relative to her 

long-term incentives. When σX = 0 , the firm faces no 

transitory cash flow risk and therefore optimally grants 

the manager a relatively low stake, which puts a limit on 

potential dilution effects. More specifically, if it were that 

w > β� = λ� �, it follows from Eq. (17) that the firm would 

profit from decreasing w by making infinitesimal payouts 

dc > 0 and thus reducing the risk in w by 

�(w ) − �(w − dc) � (w − λ� � ) dc > 0 . 

This strategy would reduce the risk the manager is 

exposed to and still provide sufficient incentives. Conse- 

quently, σ = 0 implies that w ≤ λ� � for all w , the effective 
X 
agency cost of long-term investment is positive, and the 

firm underinvests in � . 13 

When both σ X and σ K are strictly positive, the above 

argument does not work, as the firm also needs to account 

for short-run risk and incentives. To decrease termination 

risk, it can then be optimal for the firm to delay payments 

to the manager further, even if w � β� and the manager’s 

stake is barely exposed to permanent cash flow risk. This 

can lead to w exceeding β� , that is, to a negative effective 

agency cost and to overinvestment in � . The mechanism 

is as follows. When the agent holds a large stake w , 

the risk of dilution identified above generates additional 

termination risk, which diminishes the risk reduction 

induced by postponing payouts. The principal can mitigate 

these adverse dilution effects by tying the agent’s com- 

pensation more to long-term performance, which leads to 

higher long-run incentives β� . The incentive compatibility 

condition β� = λ� � then implies that the firm must also 

increase long-term investment. 

The second part of Proposition 5 shows that long- 

termism arises when the asset growth rate μ is low 

(i.e., when long-run investment is sufficiently inefficient). 

Proposition 5 therefore offers a potential explanation 

for the puzzling empirical evidence that in recent years 

capital is not allocated to the industries with the best 

growth opportunities (as recently shown by Lee et al., 

2018 ). Additionally, long-termism arises when cash flow 

is sufficiently volatile in either time-horizon (i.e., σ X > 0 

and σ K > 0 are large), and when the agent is sufficiently 

patient (i.e., γ − r > 0 is low). 

The intuition for these findings is as follows. As ex- 

plained above, long-termism requires the dilution effect 

to exceed the agency cost effect, which happens when the 

manager’s stake is large relative to her long-term incen- 

tives, w > β� . When this is the case, the effective agency 

cost is negative. Both higher cash flow risk ( σ X and σ K ) 

and lower cost of delaying payouts ( γ − r) increase the 

value of deferred compensation so that w rises, leading 

to an (average) increase in the manager’s stake within 

the firm. On the other hand, low asset growth rate de- 

creases contracted long-term investment � and accordingly 

long-term incentives β� . 

To generate long-termism, the agency-cost-based mo- 

tives for overinvestment must also exceed the preference 

for underinvestment that arises because of the diminished 

direct benefit of investment. Recall that the marginal direct 

benefit of long-run investment under moral hazard equals 

μ(p(w ) − p ′ (w ) w ) and is below its first-best counterpart, 

while the marginal direct cost λ� μ is at the first-best level. 

Since both the direct benefit and cost are proportional to 

μ, this motive to underinvest is quantitatively low when μ
is low and can then be overcome by the agency-cost-based 

preference for overinvestment. 
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Fig. 1. Numerical example of long-termism. The first two panels depict optimal investment as functions of w . The third panel at the right displays effective 

agency cost A (w ) = −p ′′ (w )(λ� � (w ) − w ) . The parameters are α = 0 . 25 , σK = 0 . 25 , σX = 0 . 2 , ρ = 0 , μ = 0 . 025 , r = 0 . 046 , γ = 0 . 048 , δ = 0 . 125 , λs = λ� = 

1 , and R = 0 . 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Last, we note that while marginal q , p(w ) − wp ′ (w ) ,

unambiguously increases in w , long-term investment in

general does not. This is because the marginal cost of

capital—which includes the direct cost and the effective

agency cost—is time varying. In particular, as explained

above, the effective agency cost can increase in w . Thus

long-term investment and marginal q can move in oppo-

site directions. In general, the investment sensitivity with

respect to marginal q possesses an ambiguous sign. 14 

Fig. 1 presents a quantitative example illustrating

long-termism. The parameters satisfy the conditions set

in Proposition 5 and are as follows. We set the discount

rate parameters to r = 4 . 6% and γ = 4 . 8% and the depre-

ciation rate to δ = 12 . 5% , similar to DeMarzo et al. (2012) .

The volatility parameter of the long-term shock is set to

σK = 20% , in line with Kogan (2004) , while the volatility

parameter of the short-term shock is set to σX = 25% , in

line with DeMarzo et al. (2012) . The drift parameter for

the profitability process is set to α = 25% . The left plot

shows that the firm underinvests in the short run for all

w . The middle plot shows that the firm overinvests in

the long run for intermediate values of w . This is when

the dilution effect, whose magnitude is proportional to

p ′′ (w ) wσ 2 
K 
, is the strongest. The right plot also shows that

long-termism is related to a negative effective agency cost.

Conversely, according to Proposition 5 , long-termism never

arises in financial distress (i.e., when w is close to 0), or

when the firm is expected to make direct payments to the

manager (i.e., when w is close to w ). 

4.2. Correlated cash flow shocks and short-termism 

As shown in Proposition 3 , short-termism cannot occur

in our baseline model with independent shocks (i.e., when

ρ = 0 ). When permanent and transitory cash flow shocks

are correlated, direct externalities between short- and

long-term investment and incentives arise. These external-

ities can lead to corporate short-termism (i.e., to s > s FB ),

as we demonstrate below. 
14 Bolton et al. (2011) also show that investment can be decreasing in 

marginal q when the marginal source of financing is credit line. 

 

 

 

 

To start with, note that when shocks are correlated,

optimal short- and long-term investment are given by 

s (w ) = 

α + 

Externality ︷ ︸︸ ︷ 
p ′′ (w ) ρσX σK λs ( λ� � (w ) − w ) 

λs α − p ′′ (w )(λs σX ) 2 
(19)

and 

� (w )= 

μ
(

p(w ) −p ′ (w ) w 

)
+ 

Externality ︷ ︸︸ ︷ 
p ′′ ( w ) ρσX σK λ� λs s ( w ) −p ′′ ( w ) wλ� σ 2 

K 

λ� μ−p ′′ (w )(λ� σK ) 2 
.

(20)

Compared to Eqs. (13) and (14) , new terms appear

that affect optimal investment levels and incentives. Since

s ( w ) depends on � ( w ) and vice versa, there are direct

externalities between investment levels and incentives.

Intuitively, when the two sources of risk are positively

correlated, exposing the manager’s continuation payoff to

both transitory and permanent shocks creates additional

volatility and is therefore costly. Conversely, when the

correlation is negative, exposure to both shocks par-

tially cancels out, thereby reducing the volatility of the

manager’s continuation payoff w . 

From Eq. (20) , the externality of s ( w ) on � ( w ) is neg-

ative (positive) if ρ > 0 ( ρ < 0). The magnitude of the

externality scales with the curvature of the value function

p ′′ ( w ) (i.e., the principal’s effective risk aversion) and is

therefore relatively weaker once w is sufficiently large and

the risk of termination is sufficiently remote. 

Likewise, Eq. (19) demonstrates that the choice of

long-term investment � ( w ) also feeds back into the choice

of short-term investment s ( w ). However, the externality

effect in the numerator of s ( w ) in Eq. (19) has two separate

components: 

p ′′ (w ) ρσX σK λs 

(
λ� � (w ) − w 

)
= p ′′ (w ) ρσX σK λs λ� � (w ) ︸ ︷︷ ︸ 

Agency cost 

−p ′′ (w ) ρσX σK λs w ︸ ︷︷ ︸ 
Reducing dilution risk 

. (21)

This decomposition shows that when the correlation

between shocks is nonzero, incentives for the short run

are also used to counteract the dilution in the manager’s

stake arising upon positive permanent shocks dZ K > 0. As
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discussed in Section 4.1 , with no correlation, the principal 

counteracts this dilution effect by tying the manager’s 

compensation to permanent shocks and increasing long- 

term incentives. When the two sources of cash flow 

risk are positively (negatively) correlated, it is possible 

to reduce dilution risk also by means of higher (lower) 

short-term incentives. 

Notably, when ρ < 0 and w is low, positive risk ex- 

ternalities of short- and long-term incentives emerge and 

may dominate dilution effects of short-term incentives. In 

this case, short-termism, s ( w ) > s FB , can become optimal. 

Proposition 6 (Short-termism under distress with . ρ < 0 ) The 

following holds true: 

(i) Short-termism arises only if σ X > 0, σ K > 0, and 

ρ � = 0 . Conversely, if either σX = 0 , σK = 0 , or ρ = 0 ,

short-termism cannot arise and s ( w ) ≤ s FB for all w. 

(ii) Assume σ X > 0, σ K > 0, and ρ < 0 . Then, there 

exist w 

L < w 

H with s ( w ) > s FB for w ∈ ( w 

L , w 

H ),

provided σ X is sufficiently small. When, in addi- 

tion, λ� and γ − r are sufficiently small, the set 

{ w ∈ [0 , w ] : s (w ) > s F B } is convex and contains zero

and s ( w ) decreases on this set. 

While long-termism occurs mainly for large values 

of the manager’s stake w with the objective to alleviate 

the excessive dilution risk via long-run incentives β� , 

short-termism is more likely to occur for low values of w 

when the correlation between shocks is negative. When 

the agent’s stake w is small, dilution risk is negligible 

and positive externalities between short- and long-term 

incentives induce more short-term investment. In addition, 

short-termism can arise when cash flow risk σ X is small 

so that short-run agency cost is sufficiently low and does 

not dominate the externality effect. 

Fig. 2 provides an example of short-termism when the 

correlation between long- and short-term shocks is nega- 

tive. Consistently with Proposition 6 , the firm overinvests 

in the short-run when in distress and w is close to zero. 

Fig. 2 further illustrates that both short- and long-termism 

may, but need not happen, within the same firm, depend- 

ing on the level of financial slack as measured by w . In 

distress, the firm overinvests in generating (short-term) 

profits, while after a strong performance, the firm overin- 
vests in (long-term) growth. While the effects of absolute 

short-termism appear to be quantitatively small, the ef- 

fects of relative short-termism 

s (w ) /s F B 

� (w ) /� F B 
, which determines 

whether investment is distorted toward the short-term 

compared to first-best, can be quantitatively large. Absent 

agency fictions, this ratio equals, by construction, one, and 

a value above (below) one indicates an investment distor- 

tion toward the (long) short run. The right-hand side plot 

of Fig. 2 presents the relative short-termism ratio, which, 

for our parameter values, is a nonmonotonic U-shaped 

function of w . The relative short-termism for large w close 

to w arises for all parameters (compare Proposition 3 and 

4 ). The ratio is below one for intermediate w whenever 

substantial absolute long-termism arises. Relative short- 

termism again dominates for low w , and this region exists 

due to negative ρ and relatively low cost of short-term 

investment (low σ X and λ� ; cf. Proposition 6 ). 

Our focus on the case of negative correlation is due to 

the findings in Chang et al. (2014) and Gryglewicz et al. 

(2019) that the correlation coefficient between permanent 

and short-term cash flow shocks ρ is, on average, negative. 

When this is the case, our model predicts that firms with 

a high risk of liquidation (i.e., firms that perform worse 

and have little financial slack) should find it optimal to 

focus on the short term (i.e., current earnings) while firms 

with a low risk of liquidation (i.e., cash-rich firms that 

perform well) should find it optimal to focus on the long 

term (i.e., asset growth). Interestingly, a recent study by 

Barton et al. (2017) find, using a data set of 615 large- 

and mid-cap US publicly listed companies from 2001 to 

2015, “the long-term focused companies surpassed their 

short-term focused peers on several important financial 

measures.” While our model does indeed predict that firm 

performance should be positively related to the corporate 

horizon, it in fact suggests the reverse causality. 

For completeness, we also investigate optimal invest- 

ment when the correlation between cash flow shocks is 

positive. In this case, the firm can overinvest in both short- 

and long-term investment at the same time. This happens 

when the agent’s stake in the firm is large, thereby ex- 

posing the manager to a high risk of dilution. To reduce 

this dilution risk, the principal provides high-powered 

incentives to the manager. Importantly, when correlation 
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is positive, unexpected asset growth dZ K > 0 triggers,

on average, unexpected cash flow ρdZ K , which leads a

reward (β� + ρβs ) dZ K for the agent. 15 Consequently, both

short- and long-run incentives counteract the adverse

dilution in the agent’s stake so that the desire to mitigate

dilution risk translates into high-powered incentives and,

accordingly, to overinvestment for both time horizons. The

next proposition characterizes this outcome. 

Proposition 7 (Short-termism with . ρ > 0 ) Assume σ X > 0,

σ K > 0 and ρ > 0 . Then, there exist w 

L < w 

H with

s ( w ) > s FB for w ∈ ( w 

L , w 

H ), provided σ X > 0 and γ − r is

sufficiently small. When in addition μ is sufficiently small, the

set { w ∈ [0 , w ] : s (w ) > s F B } is convex with inf { w ∈ [0 , w ] :

s (w ) > s F B } > 0 and sup { w ∈ [0 , w ] : s (w ) > s F B } = w . 

5. Incentive contracts contingent on stock prices 

The optimal contract provides short- and long-run

incentives, βs 
t and β� 

t , by conditioning the agent’s com-

pensation on earnings and asset size. In practice, executive

compensation is commonly linked to stock prices (via

stock and option grants) and to accounting results (via

performance-vesting provisions of these grants and via

performance-based bonuses). The use of both stock prices

and accounting measures in designing executive compen-

sation has been increasing over time. Stock and option

grants constitute a majority of CEO compensation ( Edmans

et al., 2017 ). A majority of equity grants have accounting-

based performance-vesting provisions with earnings being

the most common metric ( Bettis et al., 2018 ). We now

show that the optimal contract implied by our model

is broadly consistent with these patterns and can be

implemented by exposing the manager to stock prices and

earnings. 

We start with writing the dynamics of earnings and

stock prices. The firm’s (instantaneous) earnings net of

investment cost are given by 

dE t = (αs t − C(s t , � t )) K t dt + K t σX dZ X t , 

while the stock price (which, with full equity financing

and the total share supply normalized to one, is equivalent

to firm value) evolves according to 16 

dP t 

P t 
= μP 

t dt + �X 
t dZ X t + �K 

t dZ K t , 

where the expressions for μP 
t , �

X 
t , and �K 

t are given in

the Online Appendix. The principal provides the incentives

to the manager by choosing the manager’s exposures to

earnings and stock price changes, respectively, defined by 

βE 
t = 

dW t 

dE 
and βP 

t = 

dW t 

dP 
. 
t t 

15 To see this, one can decompose dZ X t = ρdZ K t + 

√ 

1 − ρ2 d Z T t , where 

{ Z T } is a standard Brownian motion, independent of { Z X }. Hence, 

E (Z X t | Z K t ) = ρZ K t or in differential form E (dZ X t | dZ K t ) = ρdZ K t . 
16 Note that P t is the per-unit price of equity fully owned by the princi- 

pal. The manager’s value W t , which could consist of restricted stock units 

or stock options, is held on an incentive account and is not traded in the 

market. As such, P t reflects the market price of traded equity. Since P t 
is the investors’ firm valuation net of transfers dc to the manager, future 

dilution by stock vesting or managerial stock option exercise is already 

accounted for. 

 

 

 

 

 

 

The exposures βE 
t and βP 

t are set so as to generate the

required short- and long-run incentives under the opti-

mal contract. The Online Appendix derives the following

expressions for the exposures implied by the optimal

contract 

βP 
t = λ� � t 

(
1 

p(w t ) + p ′ (w t )(λ� � t − w t ) 

)
and 

βE 
t = λs s t 

(
p(w t ) − p ′ (w t ) w t 

p(w t ) + p ′ (w t )(λ� � t − w t ) 

)
. 

An appropriate exposure to the firm’s stock price

(which takes into account the nonlinear relation between

stock price and asset size) provides the right amount

of long-run incentives. It additionally provides some

short-run incentives, as the stock price is also subject to

short-run shocks. The exposure to earnings is set to pro-

vide the required residual exposure to short-run shocks.

This characterization of the optimal contract highlights an

important implication of our model: while stock prices

account for both short- and long-run shocks to firm value,

exposing the manager solely to the firm’s stock price can-

not in general provide a right mix of short- and long-run

incentives. To achieve optimal incentives, the manager also

needs to be exposed to short-run accounting performance

metrics such as earnings. 

Last, we analyze how the manager’s exposure to the

firm’s stock price relative to her exposure to earnings

changes over time. To do so, we analyze the ratio: 

βP 

βE 
= 

λ� � 

λs s 
× 1 

p(w ) − wp ′ (w ) 
. 

This expression shows that the ratio βP / βE largely co-

moves with the ratio of long-term over short-term

investment, � / s . The longer the time horizon of the firm’s

investment policies, the more contingent the manager’s

compensation is on the firm’s stock price. Fig. 3 depicts

a typical pattern of βP / βE and � / s as functions of w . The

manager’s compensation depends the least on the firm’s

stock price after poor past performance and, in particular,

under financial distress. In such instances, long-term

investment is of little value so that managerial incentives

primarily motivate short-term investment and rely on

short-term accounting measures. Additionally, stock price

volatility sharply increases under distress, whereas earn-

ings volatility remains constant over time. This implies

that relatively low βP generates the required long-term

incentives for w close to zero. 

Remarkably, after sufficiently strong past performance,

when w = w , it holds that βP /βE = 1 . As a result, the firm

compensates the manager equally based on stock price

and earnings, regardless of parameter values reflecting

firm fundamentals. Thus, our model implies that time-

varying agency conflicts—which are temporarily resolved

at w —account for the difference between stock-price-based

and earnings-based compensation sensitivities. 

6. Asymmetric pay in executive compensation 

We now turn to analyze the dynamics of incentive

provision and show that the optimal contract induces
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asymmetric pay. We assume throughout the section that 

the correlation ρ between short- and long-run shocks is 

zero. For clarity of exposition, we focus on a specification 

in which the investment cost C is linear: 

C(s, � ) = αλs s + μλ� �. (22) 

As a consequence, investment follows a bang-bang solution 

(i.e., either full or no investment is optimal: s ∈ {0, s max } 

and � ∈ {0, � max }). Equivalently, one could also specify that 

there is a linear adjustment cost to short-run (respectively 

long-run) investment up to some threshold s max (respec- 

tively � max ) and an infinite adjustment cost afterward. The 

Online Appendix shows that the results derived in this 

section also apply when the investment cost is convex. 

Corner levels of investment are the only relevant cases 

in a model with binary effort choice (i.e., s ∈ {0, s max } or 

� ∈ {0, � max }), as in He (2009) , or in a model with effort 

cost functions that are linear in effort levels, as in Biais 

et al. (2007) and DeMarzo et al. (2012) . As a result, consid- 

ering a linear cost function C allows us to directly compare 

our results with those in the models in which moral haz- 

ard is solely over the long or the short run and to clarify 

what outcomes are unique and novel to our model featur- 

ing both types of moral hazard. Finally, we assume that 

full short- and long-run investment is always optimal so 

that s (w ) = s max and � (w ) = � max for all w . Thus with the

linear investment cost, the dynamics of optimal incentives 

are not confounded by changes to investment levels. 

When the investment cost is linear, incentive compat- 

ibility requires 

βs ≥ λs and β� ≥ λ� . 

The objective of the principal when choosing the man- 

ager’s exposure to firm performance is to maximize the 

value derived from the firm, given a promised payment 

w to the manager. To do so, the principal equivalently 

minimizes the agent’s exposure to shocks, while main- 

taining incentive compatibility (see Eq. (11) ). Minimizing 

risk exposure amounts to minimizing the instantaneous 

variance of the scaled promised payments: 

�(w ) = (βs σX ) 
2 + (β� − w ) 2 σ 2 

K subject to βs ≥ λs and 

β� ≥ λ� . 

This leads to the following result: 
Proposition 8 (Asymmetric pay in executive compensa- 

tion). When investment costs are linear and full investment 

is optimal (i.e., s = s max and � = � max ), we have that 

(i) Incentives are given by βs = λs and β� = 

λ� + max { 0 , w − λ� } . 
(ii) β� ( w ) > λ� arises only if σ X > 0 and σ K > 0 . 

(iii) Assume σ X > 0 and σ K > 0 . If γ − r, � max or λ� is suf- 

ficiently low, w > λ� and β� ( w ) > λ� for w ∈ (λ� , w ] . 

The finding that the incentive compatibility constraint 

βs ≥ λs in Proposition 8 binds is standard and intuitive. 

The principal needs to expose the agent to firm perfor- 

mance, but this is costly because this increases the risk 

of inefficient liquidation. Thus, the principal optimally 

exposes the agent to as little short-run risk as possible. 

The finding that the incentive compatibility constraint 

β� ≥ λ� does not necessarily bind stems from the fact 

that the principal optimally wants to expose the man- 

ager’s continuation payoff to long-run, permanent shocks. 

Indeed, and as noted above, a positive permanent shock 

dZ K > 0 has two effects. First, the agent is rewarded for 

good performance and is promised higher future payments 

W , which increases the stake w by β� σ K dZ K . Second, firm 

size K grows more than expected, thereby reducing the 

agent’s stake in the firm by −wσK dZ K . This second effect 

implies that the agent’s stake w is exposed to dilution risk, 

which can be alleviated using long-run incentives β� . 

When w > λ� , the principal can fully eliminate dilution 

risk by setting β� = w while maintaining incentive com- 

patibility. Under these circumstances, long-run incentives 

are effectively costless and the manager is exposed to 

long-run shocks beyond the level needed to incentivize 

long-term investment. By contrast, incentive compatibility 

prevents the principal from eliminating long-run risk when 

w < λ� and β� = λ� . Importantly, when λ� = 0 , there is no 

agency conflict over the long run and the agent is paid for 

productivity shocks without any incentive motive, just as 

in Hoffmann and Pfeil (2010) and DeMarzo et al. (2012) . 

An important implication of Proposition 8 is that, in 

our model with dual moral hazard, the agent receives 

asymmetric performance pay. In particular, the agent is 

provided minimal long-run incentives β� = λ� > w for low 

w and higher-powered long-run incentives β� = w > λ� 

after positive past performance, in which case sufficient 
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slack w has been accumulated. In this region, incentives

have option-like features and increase after positive per-

formance. Our findings are consistent with evidence on the

asymmetry of pay-for-performance in executive compensa-

tion (see, for example, Garvey and Milbourn, 2006; Francis

et al., 2013 ). In contrast with the suggested explanations,

the asymmetry in pay-for-performance is part of an opti-

mal contract and is not due to managerial entrenchment. 17

It should be stressed that the model predicts an asym-

metry in pay sensitivity to long-run shocks but not to

short-run shocks. With the implementation of the optimal

contract using stock prices and earnings (see Section 5 ),

the asymmetric sensitivity applies to stock prices but not

to earnings. 

Remarkably, asymmetric performance pay and strong

long-run incentives β� ≥ λ� can only arise when σ X > 0

and σ K > 0 and there is a moral hazard over both time

horizons, the short and long run. When σX = 0 , the prin-

cipal does not grant the agent a stake w larger than λ� in

that payouts dc > 0 are made before the agent’s stake can

grow sufficiently large. 

To close this section, note that our findings differ

from those in He (2009). First, in his model the incen-

tive condition—which corresponds to β� ≥ λ� in our

paper’s notation—is always tight. This occurs because of

w ≤ w < λ� in that the payout boundary cannot exceed

λ� . Intuitively, if it were to happen that w ≥ λ� , the firm

could profit by paying the agent some small amount dc .

This is because the subsequent increase in liquidation

risk is negligible (i.e., of order o ( dc 2 )), while the cost of

delaying payments—or equivalently the benefits of paying

the agent earlier—are of order o ( dc ). While in our model

risks associated with permanent cash flow shocks dZ K

are also negligible whenever w � λ� , the firm remains

exposed to substantial transitory cash flow shocks. As a

consequence, it can be optimal to accumulate even more

slack and to eliminate permanent cash flow risk if possible

in that w > λ� and β� = w > λ� for w ∈ (λ� , w ] . 

Second, in He (2009) all risk from permanent cash-flow

shocks is eliminated after sufficiently strong past perfor-

mance only in the extreme case of an equally patient

agent and principal. This implies that the firm eventually

becomes riskless and the agent works forever. As a result,

the first-best outcome can be achieved. In contrast, all risk

from permanent cash flow shocks can be eliminated in our

model even under the assumption that the agent is more

impatient than the principal γ > r ; yet the firm remains

exposed to transitory cash flow shocks. As a consequence,

only long-run agency conflicts may be temporarily harm-

less. Indeed, sufficiently adverse cash flow shocks may

lower w , drive it below λ� , and even trigger liquidation,

implying that first best will never be reached. 
17 In our model, the agent is essentially paid more for a positive shock 

than he is punished after a negative shock of the same size. Obviously, 

this statement is mathematically not exact since the agent’s sensitivity 

to shocks dZ K is locally symmetric but carries some meaning for shocks 

over a larger time interval. For a stark intuition, imagine, however, that at 

time t scaled continuation value equals w t = λ� − ε, and let � = 2 ε > 0 . 

A shock Z K 
t+ dt 

− Z K t = � > 0 raises w t+ dt beyond λ� and therefore increases 

the agent’s value by W t+ dt − W t > 2 ελ� . In contrast, a shock Z K 
t+ dt 

− Z K t = 

−� < 0 decreases the agent’s value by 2 ελ� . 

 

 

 

 

 

 

 

 

7. Robustness and extensions 

7.1. Agent’s limited wealth 

The Online Appendix solves the model under the

assumption that the agent has limited wealth and shows

that our findings remain qualitatively unchanged in this

alternative setting. 

7.2. Private investment cost 

In the model, we assume that the principal bears the

investment cost C while the agent can divert funds for her

private consumption. Alternatively, we could also assume

that the effort (investment) cost C is private to the man-

ager. In this alternative setting, incentivizing investment

s , � requires compensating this private cost to the man-

ager by increasing the growth rate of the agent’s scaled

continuation value w . Hence, ignoring all other effects,

increasing s , � makes w drift up and therefore reduces

the likelihood of termination. As a consequence, additional

investment/effort cost C is actually beneficial for the

principal when p ′ ( w ) > 0 or, equivalently, when w is low.

As shown in DeMarzo et al. (2014) and Szydlowski (2019) ,

this beneficial private cost effect may lead to overinvest-

ment. For completeness, we solve our model with private

investment cost in the Appendix and demonstrate that

short- and long-termism can arise in this model as well. 

In the baseline version of our model, the manager

does not finance investment expenditures from her own

pockets, and agency conflicts arise because of a misalloca-

tion or appropriation of funds allocated to investment. We

believe that this setup is more realistic for most real-world

environments. In addition, it allows us to clearly identify

the drivers of short- and long-termism, compared to a

model in which the cost of investment is private (see the

Online Appendix for details). 

8. Conclusion 

We develop a continuous-time agency model in which

the agent controls current earnings via short-term in-

vestment and firm growth via long-term investment. In

this multitasking model, the principal optimally balances

the costs and benefits of incentivizing the manager over

the short or the long term. As shown in the paper, this

can lead to optimal short- or long-termism (i.e., to short-

or long-term investment levels above first best levels),

depending on the severity of agency conflicts and firm

characteristics. The model predicts that the nature of the

risks facing firms is key in determining the corporate hori-

zon. We show, for example, that the correlation between

between shocks to earnings and to firm value leads to

externalities between investment choices, which are nec-

essary to generate short-termism. We additionally predict

that firm performance should be positively related to the

corporate horizon. In particular, firms should become more

short-termist after bad performance. 

Incentives are provided in the optimal contract by mak-

ing the agent’s compensation contingent on firm perfor-

mance via exposure to the firm’s stock price and earnings.
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18 For a matrix-valued random variable Y : � → R 
n ×k , we denote the 

′ k ×n 
Because the firm is subject to long-run, permanent shocks, 

it is optimal to introduce exposure to long-run volatility 

that is not needed to incentivize effort in the contract. 

In our model with multitasking, however, the principal 

needs to incentivize the manager to exert long-run effort. 

This generates the distinct prediction that extra pay-for- 

performance is introduced and the manager’s wealth is 

fully exposed to permanent shocks only when her stake in 

the firm is large enough. Notably, when her stake is low, 

the extra pay-for-performance effect is shut down and 

the incentive compatibility constraint is binding. In other 

words, positive permanent shocks lead to additional pay- 

for-performance, and negative permanent shocks eventu- 

ally eliminate this extra sensitivity to performance implied 

by the optimal contract. Our model therefore provides 

a rationale for the asymmetry of pay-for-performance 

observed in the executive compensation data. 

Our model can be extended in several directions. First, 

we assume a risk-neutral manager who is optimally com- 

pensated by lumpy wages. Incorporating risk aversion 

would imply smooth, but time-varying, wage payments, 

which is arguably more consistent with empirical obser- 

vations. Second, in our model, the outcome of long-term 

investment realizes instantaneously. It would be interest- 

ing to study a setup in which the impact of the manager’s 

long-term investment decisions gradually realizes over 

time, giving rise to more involved incentive structures. 

Appendix 

Without loss in generality, we consider throughout the 

whole appendix that the depreciation rate of capital δ
equals zero. To ensure the problem is well-behaved, we 

impose the following regularity conditions: 

(a) Square integrability of the payout process { C }: 

E 

[ (∫ τ

0 

e −γ s dC s 

)2 
] 

< ∞ . 

(b) The processes { s } and { � } are of bounded variation. 

(c) The sensitivities { βs } and { β� } are almost surely 

bounded so that there exists M > 0 with P(βK 
t < 

M) = 1 for each t ≥ 0 and K ∈ { s , � }. We make this

assumption for purely technical reasons and can 

choose M < ∞ arbitrarily large (enough) such that 

this constraint never binds at the optimum. 

A.1. Proof of Proposition 1 

Proof . The first-best investment levels ( s FB , � FB ) maximize 

ˆ p (s, � ) = 

1 

r + δ − μ� 
[ αs − C(s, � ) ] . 

For the case of quadratic cost, straightforward cal- 

culations lead to the desired expressions for s FB , � FB 

and p F B ≡ ˆ p (s F B , � F B ) , where � FB satisfies the relation 

F B F B F B 
μp = C � (s , � ) . �
A.2. Proof of Proposition 2 

A.2.1. Auxiliary results 

We first show that each investment path ({ s }, { � }) 

induces a probability measure under certain conditions. To 

begin with, fix a probability measure P 

0 such that 

d X t = σX K t d ̃  W 

X 
t and d K t = σK K t d ̃  W 

K 
t 

with correlated standard Brownian motions { ̃  W 

X } , { ̃  W 

K } 
under this measure, both progressive with respect to F . 

The measure P 

0 corresponds to perpetual zero invest- 

ment. Define ˜ W t ≡
(˜ W 

X 
t , ̃

 W 

K 
t 

)′ and let the (unconditional) 

covariance matrix of ˜ W t under P 

0 be 18 

V 

0 
(˜ W t 

)
= E 

0 
(˜ W t ̃

 W 

′ 
t 

)
= 

(
1 ρ
ρ 1 

)
× t ≡ C t. 

In this equation, V 

0 (·) denotes the variance operator with 

respect to the measure P 

0 . Let us employ a Cholesky 

decomposition to write M 

−1 (M 

−1 ) ′ = C or equivalently 

M 

′ M = C 

−1 for an invertible, deterministic matrix M . 

Observe that 

V 

0 
(
M ̃

 W t 

)
= M E 

0 
(˜ W t ̃

 W 

′ 
t 

)
M 

′ 

= MCM 

′ · t = M 

(
M 

′ M 

)−1 M 

′ · t = I · t, 

where I ∈ R 

2 ×2 denotes the identity matrix. Because the 

two components of ˜ W t are jointly normal and uncor- 

related, they are also independent in that the process 

{ ̃  W 

T } ≡ { M ̃

 W } follows a bidimensional standard Brow- 

nian motion. We can now apply Girsanov’s theorem to 

{ ̃  W 

T } , where all components, by definition, are mutually 

independent. 

As a first step, we define 

�t = �t (s, � ) ≡
(
αs t 

σX 

, 
μ� t 

σK 

)
′ and 

˜ �t = 

˜ �t (s, � ) ≡ M �t (s, � ) . 

Further, let 

�′ 
t = �′ 

t (s, � ) ≡ exp 

(∫ t 

0 

˜ �u · d ̃  W 

T 
u −

1 

2 

∫ t 

0 

|| ̃  �u || 2 du 

)
, 

where || ·|| denotes the Euclidean norm in R 

2 and ∫ t 

0 

˜ �u · d ̃  W 

T 
u = 

∫ t 

0 

∑ 

i =1 , 2 ̃

 �u,i d ̃  W 

T 
u,i = 

∑ 

i =1 , 2 

∫ t 

0 

˜ �u,i d ̃  W 

T 
u,i . 

Throughout the paper, we will assume that the processes 

{ s }, { � } are such that the Novikov condition is satisfied in

that 

E 

0 

[
exp 

(
1 

2 

∫ τ

0 

|| ̃  �t || 2 (s, � ) dt 

)]
< ∞ . 

In fact, our regularity conditions imply the Novikov con- 

dition. Then, { �′ } follows a martingale under P 

0 rather 

than just a local martingale. Due to E 

0 �′ 
t = E 

0 �′ 
0 

= 1 , the

process { �′ } is a progressive density process and defines 
transposed random variable by Y : � → R . 
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the probability measure P 

s,� via the Radon-Nikodym

derivative (
dP 

s,� 

dP 

0 

)
| F t = �′ 

t . 

By Girsanov’s theorem, {
Z 

T 
t = 

˜ W 

T 
t −

∫ t 

0 

˜ �u du : t ≥ 0 

}
follows a bidimensional, standard Brownian motion under

the measure P 

s,� . The linearity of the (Riemann) integral

implies 

M 

((
Z X t 

Z K t 

))
≡ Z 

T 
t = M 

(˜ W t −
∫ t 

0 

�u du 

)
= M 

((˜ W 

X 
t ˜ W 

K 
t 

)
+ 

( ∫ t 
0 �u, 1 du ∫ t 
0 �u, 2 du 

) )
. 

Therefore, for each t ≥ 0, 

dZ X t ≡ dX t − K t αs t dt 

K t σX 

and dZ K t ≡ dK t − K t μ� t dt 

K t σK 

are the increments of a standard Brownian motion under

P 

s,� with instantaneous correlation ρdt . In the following,

we say the measure P 

s,� is induced by the processes

{ s }, { � }. Note that all probability measures of the family

{P 

s,� } {{ s } , { � }} are mutually equivalent in that they share the

same null sets. 

A.2.2. Proof of Proposition 2.1 

Proof . Consider an incentive compatible contract � ≡ ({ C },

{ s }, { � }, τ ). Further, assume in the following without loss

of generality that F is the filtration generated by { X }, { K }

in that F t = σ (X s , K s : 0 ≤ s ≤ t) . Then, the agent’s contin-

uation utility at time t (under the principal’s information)

is defined by 

 t (�) ≡ E 

s,� 
t 

[ ∫ τ

t 

e −γ (z−t) dC z + 

∫ τ

t 

e −γ (z−t) K z 

(
C(s z , � z ) 

− C( ̂  s z , ˆ � z ) 
)
dz 

] 
, 

where E 

s,� 
t (·) denotes the conditional expectation given

F t , taken under the probability measure P 

s,� induced by

{ s } and { � }. Define for t ≤ τ : 

�t (�) ≡ E 

s,� 
t [ W 0 (�) ] 

= 

∫ t 

0 

e −γ z dC z + 

∫ t 

0 

e −γ z K z 

(
C(s z , � z ) − C( ̂  s z , ˆ � z ) 

)
dz 

+ e −γ t W t (�) . (A.1)

By construction, { �t ( �): 0 ≤ t ≤ τ } is a square-integrable

martingale under P 

s,� , progressive with respect to F . In

the following, we will invoke incentive compatibility (i.e.,

s t = ˆ s t , � t = 

ˆ � t ) whenever no confusion is likely to arise. 

Next, observe that any sigma-algebra is invariant under

an injective transformation of its generator. In particular,

let M ∈ R 

2 ×2 an invertible, deterministic matrix with

det (M ) � = 1 , and note that 
F t = σ (X s , K s : s ≤ t) = σ (Z 1 s , Z 
2 
s : s ≤ t) = σ (Z s : s ≤ t) 

= σ (M · Z s : s ≤ t) 

with Z t ≡ (Z 1 t , Z 
2 
t ) 

′ . Here, 

dZ 1 t ≡ dX t − K t αs t dt 

K t σX 

and dZ 2 t ≡ dK t − K t μ� t dt 

K t σK 

(A.2)

are the increments of a standard Brownian motion under

the probability measure P 

s,� . Note that dZ 1 t = dZ X t and

dZ 2 t = dZ K t whenever a t = ˆ a t for all a ∈ { s , � }. 

As in the previous section, let the covariance

matrix V (Z t ) = C t and employ a Cholesky decom-

position M 

′ M = C 

−1 . We have already shown that

{ Z 

T 
t ≡ MZ t : 0 ≤ t ≤ τ } follows a bidimensional, standard

Brownian motion under P 

s,� , where both components are

mutually independent. By the martingale representation

theorem (see, e.g., Shreve, 2004 ), there exists a bidimen-

sional process { b t } t ≥ 0 , progressively measurable with

respect to F such that 

d�t (�) = e −γ t b 

′ 
t · dZ 

T 
t = e −γ t b 

′ 
t · MM 

−1 · dZ 

T 
t 

= e −γ t K t 

(
βs 

t σX dZ 1 t + β� 
t σK dZ 2 t 

)
, 

where we exploit the linearity of the Itô integral—i.e.,

d 
(
MZ 

T 
t 

)
= M dZ 

T 
t —and set (βs 

t σX , β
� 
t σK ) ≡ b 

′ 
t M /K t for all t .

Combining with Eq. (A.1) , one can verify that 

d�t (�) = e −γ t K t 

(
βs 

t σX dZ 1 t + β� 
t σK dZ 2 t 

)
= e −γ t − γ e −γ t W t (�) dt + e −γ t dW t (�) , 

and thus Eq. (7) holds after rearranging. Indeed, since the

right-hand side of Eq. (7) satisfies a Lipschitz condition

under the usual regularity conditions (i.e., square integra-

bility of { C } and { s }, { � } of bounded variation), { W } is the

unique strong solution to the stochastic differential Eq. (7) .

Next, we provide necessary and sufficient conditions

for the contract � to be incentive compatible. For this

purpose, let the recommended investment processes { s }

and { � } and the expected payoff of the agent at time t be

W t when following the recommended strategy from time

t onwards. Further, let { ̂ s } and { ̂  � } represent the actual

investment processes, which may in principle differ from

{ s } and { � }. We have 

 t ≡ E 

s,� 
t 

[ ∫ τ

t 

e −γ (z−t) dC z 

] 
. 

Recall that E 

s,� 
t denotes the expectation, conditional on

the filtration F t , taken under the probability measure P 

s,� .

As shown above, the process { W } solves the stochastic

differential equation: 

d W t =γW t d t +βs 
t 

(
d X t −K t αs t d t 

)
+β� 

t 

(
d K t −K t μ� t d t 

)
−d C t .

We can rewrite this stochastic differential equation as 

d W t + d C t = γW t dt + K t β
s 
t 

[
α( ̂  s t − s t ) dt + σX dZ X t 

]
+ K t β

� 
t 

[
μ( ̂  � t − � t ) dt + σK dZ K t 

]
with 

dZ X t ≡ d X t − K t α ˆ s t d t 

K t σX 

and d Z K t ≡ d K t − K t μ ˆ � t d t 

K t σK 

. 

Girsanov’s theorem implies now that dZ X t ≡ dX t −K t α ˆ s t dt 
K t σX 

and

dZ K t ≡ dK t −K t μ ˆ � t dt 
K t σK 

are the increments of a standard Brown-

ian motion under the measure P ̂

 s , ̂ � induced by ({ ̂ s } , { ̂  � } ) . 
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19 Indeed, the possible discontinuities of the functions s ( ·), � ( ·) cause 

technical complications. If s max , � max are sufficiently large, this problem 

is not present anymore. Then, the existence and uniqueness of the solu- 

tion follow from the Picard-Lindelöf theorem since the required Lipschitz 

condition is evidently satisfied. 
Next, define the auxiliary gain process 

g t = g t 
({ ̂  s } , { ̂  � } )

≡
∫ t 

0 

e −γ z dC z −
∫ t 

0 

e −γ z K z (C( ̂  s z , ˆ � z ) − C(s z , � z )) dz 

+ e −γ t W t , 

and recall that W τ = 0 . Now, note that the agent’s actual 

expected payoff under the strategy ({ ̂ s } , { ̂  � } ) reads 

 

′ 
0 ≡ max 

{ ̂ s } , { ̂ � } 
E 

ˆ s , ̂ � 

[∫ τ

0 

e −γ z dC z −
∫ τ

0 

e −γ z K z (C( ̂  s z , ˆ � z ) 

− C(s z , � z )) dz 

]
= max 

{ ̂ s } , { ̂ � } 
E 

ˆ s , ̂ � 
[
g τ
({ ̂  s } , { ̂  � } )]. 

We obtain 

e γ t dg t = K t 

[ 
C(s t , � t ) − C( ̂  s t , ˆ � t ) 

] 
dt 

+ K t 

[ 
αβs 

t ( ̂  s t − s t ) + μβ� 
t ( ̂  � t − � t ) 

] 
dt 

+ K t 

[ 
βs 

t σX dZ X t + β� 
t σK dZ K t 

] 
≡ μg 

t dt + K t 

[ 
βs 

t σX dZ X t + β� 
t σK dZ K t 

] 
. 

It is now easy to see that when choosing ˆ s t = s t , ̂  � t = � t , 

the agent can always ensure that μg 
t = 0 , in which case 

{ g z } z ≥ 0 follows a martingale under P 

s,� . Hence, 

 

′ 
0 = max 

{ ̂ s } , { ̂ � } 
E 

ˆ s , ̂ � 
[ 

g τ
({ ̂  s } , { ̂  � } )] ≥ E 

s,� 
[ 

g τ
({ s } , { � } )] = W 0 . 

The inequality is strict if and only if there exist processes 

{ ̂ s } , { ̂  � } and a stopping time τ ′ with P ̂

 s , ̂ � (τ ′ < τ ) > 0 such 

that μg 

τ ′ > 0 . This arises because then there also exists a 

set A ⊆ [0 , τ ) × � with 

μG 
t (ω) > 0 for all (t, ω) ∈ A and L � P 

ˆ s , ̂ � (A ) > 0 , 

where L is the Lebesgue measure on on the Lebesgue 

sigma-algebra in R . Because P ̂

 s , ̂ � (τ < ∞ ) for all admissible 

{ ̂ s } , { ̂  � } it follows that e −γ t μG 
t (ω) > 0 for all (t, ω) ∈ A .

Hence, 

 

′ 
0 ≥

∫ 
A 

e −γ z μg 
z (ω) d 

(
L (z) � P 

s,� (ω) 
)

+ W 0 > W 0 . 

In case W 

′ 
0 

> W 0 , either ˆ s z (ω) � = s z (ω) or ˆ � z (ω) � = � z (ω)

on the set A , which has positive measure so that � is not 

incentive compatible. 

Hence, for � to be incentive compatible, it must, for 

all t ≥ 0 (almost surely), hold that 

max 
ˆ s t , ̂ � t 

{
αβs 

t ( ̂  s t −s t ) + μβ� 
t ( ̂  � t −� t ) + [ C(s t , � t ) −C( ̂  s t , ˆ � t )] 

}
=0 ,

or equivalently 

(s t , � t ) ∈ arg max 
ˆ s t , ̂ � t 

{
αβs 

t ( ̂  s t − s t ) + μβ� 
t ( ̂  � t − � t ) 

+ [ C(s t , � t ) − C( ̂  s t , ˆ � t )] 
}
, 

for given βs 
t , β

� 
t . After going through the maximization, 

we obtain that this is satisfied if C s (s t , � t ) = βs α and 
t 
C � (s t , � t ) = β� 
t μ, in case ( s t , � t ) ∈ (0, s max ) × (0, � max ). If

a t ∈ { s t , � t } is not interior in that a t = a max for a ∈ { s ,

� }, then a t = ˆ a t solves the above maximization problem 

if and only if βs 
t α ≥ C s (s t , � t ) if a t = s t , or β� 

t μ ≥ C � (s t , � t )

if a t = � t . It evidently suffices here to consider first-order 

optimality so that the result follows. �

A.2.3. Proof of Proposition 2.2 

In this section, we proceed as follows. First, we repre- 

sent P ( W, K ) as a twice continuously differentiable solution 

of a HJB equation and then show that there exists a func- 

tion p ∈ C 2 such that P (W, K) = K p(w ) and p ( w ) solves

the scaled HJB Eq. (11) . Second, we verify that P ( W, K ) or

equivalently p ( w ) with corresponding payout threshold w 

and w 0 = w 

∗ characterizes indeed the optimal contract �∗. 

Since we focus on incentive compatible contracts, we will 

work in the following—unless otherwise mentioned—with 

the measure P 

s ∗,� ∗ induced by optimal investment ({ s ∗}, 

{ � ∗}). For convenience, we will denote this measure by P
if no confusion is likely to arise. We follow an analogous 

convention concerning the expectation operator where we 

just write E t (·) instead of E 

s ∗,� ∗ (·|F t ) . 

Scaling of the value function 

Given the optimal control and stopping problem (6) , 

suppose that the principal’s value function P ( W, K ) satisfies 

the HJB equation 

rP = max 
s,�,βs ,β� 

{
αsK − KC(s, � ) + P W 

γW + P K μ�K 

+ 

1 

2 

(
P W W 

[(
βs σX K 

)
2 + 

(
β� σK K 

)
2 + 2 ρσX σK K 

2 βs β� 
]

+ P KK 

(
σK K 

)
2 + 2 P W K 

[(
σK K 

)
2 β� + ρσX σK K 

2 βs 
])}

in some region S ⊂ R 

2 , subject to the boundary condi- 

tions 

P (0 , K) = RK, P (W, 0) = 0 , P W 

( W , K) = −1 , P W W 

( W , K) = 0 . 

Here, W ≡ W (K) = w K parametrizes the boundary of S on 

which W, K > 0. Taking the guess P (W, K) = p(W/K ) K for

some function p ∈ C 2 , we obtain 

P W 

= p ′ (w ) , P K = p(w ) − wp ′ (w ) , P W K = −w/K p ′′ (w ) , 

P W W 

= p ′′ (w ) /K, p KK = w 

2 /K p ′′ (w ) , 

which implies the HJB Eq. (11) and its boundary conditions. 

In the following, we will assume that Eq. (11) admits 

an unique, twice continuously differentiable solution p ( ·) 
on [0 , w ] . A formal existence proof is beyond the scope of

the paper and is therefore omitted. 19 

We first rewrite the principal’s problem (6) in a 

convenient manner. Let 

�t = 

(
ρσK t, σK t 

)′ and 

˜ �t = M �t , 
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where M 

′ M = C 

−1 and C t is the covariance matrix of

(Z X t , Z 
K 
t ) . Next, define the equivalent, auxiliary probability

measure ˜ P according to the Radon-Nikodym derivative (
d ̃  P 

dP 

)
| F t ≡ exp 

{ 

∫ t 

0 

˜ �u d u − 1 

2 

∫ t 

0 

|| ̃  �u || 2 d u 

} 

. (A.3)

By arguments similar to those in Appendix A.2.1 , Gir-

sanov’s theorem implies that 

 Z X t = Z X t − ρσK t and 

˜ Z K t = Z K t − σK t 

are both standard Brownian motions with correlation ρt

under ˜ P . An application of Itô’s lemma consequently yields

that the scaled continuation value { w } evolves according

to 

d w t + d c t = (γ − μ� t ) w t d t + βs 
t σX d ̃  Z X t + (β� 

t − w t ) σK d ̃  Z K t 

under ˜ P . Finally, for ψ t ≡ rt − μ
∫ t 

0 � z dz we can rewrite the

principal’s problem (6) as 

max 
{ c} , { s } , { � } ,w 

∗
˜ E 

[∫ τ

0 

e −ψ t 
(
αs t − C(s t , � t ) 

)
dt 

−
∫ τ

0 

e −ψ t dc t + e −ψ t R 

∣∣∣w 0 = w 

∗
]
, 

where the expectation 

˜ E [ ·] is taken under the equivalent,

auxiliary measure ˜ P . Here, d c t ≡ d C t /K t = max { w t − w , 0 } .
The stated integral expression is implied by following

lemma. 

Lemma 1 . Suppose { w } is the unique, strong solution to the

stochastic differential equation 

d w t = δt d t + �t w t d t − d c t + (β� 
t − w t ) σK dZ K t + βs 

t σX dZ X t 

for t ≤ τ , standard Brownian motions { Z X }, { Z K } with cor-

relation ρ and progressive processes { δ}, { �}, { β� }, { βs } of

bounded variation. 20 Assume that dw t = 0 for t > τ where

τ = min { t ≥ 0 : w t = 0 } . Furthermore, dc t = max { w t − w , 0 }
with threshold w > 0 . Let now g : [0 , w ] → R of bounded

variation. Then the twice continuously differentiable function

f : [0 , w ] → R (i.e., f ∈ C 2 ) solves the differential equation 

r t f (w t ) = g(w t ) + f ′ (w t )[ δt + �t w t ] 

+ f ′′ (w t ) 
[
σ 2 

K (β
� 
t − w t ) 

2 + (βs 
t σX ) 

2 

+ 2 ρσX σK β
s 
t (β

� 
t − w t ) 

]
(A.4)

with boundary conditions f (0) = R, f ′ ( w ) = −1 if and only

if 

f (w ) = E 

[∫ τ

0 

e −
∫ t 

0 r u du g(w t ) dt 

−
∫ τ

0 

e −
∫ t 

0 r u du dc t + e −
∫ τ

0 r u du R 

∣∣∣w 0 = w 

]
for a progressive discount rate process { r } of bounded
variation. 

20 We call a process { Y } “of bounded variation” if it can be written as 

the difference of two almost surely increasing processes. Similarly, a func- 

tion F ∈ R [ a,b] is called “of bounded variation” if it can be written as the 

difference of two increasing functions on the interval [ a, b ]. 

 

 

 

Proof . Suppose f ( ·) solves Eq. (A.4) . Define 

h t ≡
∫ t 

0 

e −
∫ z 

0 r u du g(w z ) dz −
∫ t 

0 

e −
∫ z 

0 r u du dc z + e −
∫ t 

0 r u du f (w t ) .

Applying Itô’s lemma, we obtain 

e 
∫ t 

0 r u dt dh t 

= 

{ 

g(w t ) − r t f (w t ) + 

f ′′ (w t ) 

2 

[
σ 2 

K (β
� 
t − w t ) 

2 + (βs 
t σX ) 

2

+ 2 ρσX σK β
s 
t (β

� 
t − w t ) 

]
+ f ′ (w t )(δt + �t w t ) 

} 

dt 

−
[
(1 + f ′ (w t )) dc t 

]
+ f ′ (w t ) 

[
dZ X t β

s 
t σX + dZ K t (β

� 
t − w t ) σK 

]
. 

The first term in curly brackets equals zero because f ( ·)
solves Eq. (A.4) . Since f ′ ( w ) = −1 and dc t = 0 for all

w t ≤ w , the second term in square brackets equals also

zero, and therefore { h } follows a martingale up to time τ .

As a result, we have 

f (w 0 ) = f (w ) = h 0 = E [ h τ ] = E 

[ ∫ τ

0 

e −
∫ t 

0 r s ds g(w t ) dt 

−
∫ τ

0 

e −
∫ t 

0 r s ds dc t + e −
∫ τ

0 r s ds R 

∣∣∣w 0 = w 

] 
. 

The result follows. �

Verification 

Proof . Next, we verify the optimality of the contract �∗

among all contracts � satisfying incentive compatibility. To

do so, we show that the principal obtains under any con-

tract � ∈ IC at most (scaled) payoff ˜ G (�) /K ≤ p(w 

∗) with

equality if and only if � = �∗. Here, p ( ·) solves the HJB Eq.

(11) with corresponding payout threshold w and w 0 = w 

∗. 

Consider any incentive-compatible contract � ≡ ({ C },

{ s }, { � }, τ ). For any t ≤ τ , define its auxiliary gain process

G as 

G t (�) = 

∫ t 

0 

e −ru 
(
dX u − C(s u , � u ) du 

)
−

∫ t 

0 

e −ru dC u + e −rt P (W t , K t ) , 

where the agent’s continuation payoff evolves according to

Eq. (7) . Recall that w t = 

W t 
K t 

and P (W t , K t ) = K t p(w t ) . Itô’s

lemma implies that for t ≤ τ

e rt dG t (�1 ) 

K t 

= 

[
−(r−μ� t ) p(w t ) + αs t −C(s t , � t ) + p ′ (w t ) w t (γ −μ� t )

+ 

p ′′ (w t ) 

2 

[
(βs 

t σX ) 
2 + σ 2 

K (β
� 
t − w t ) 

2 

+ 2 ρσX σK β
s 
t (β

� 
t − w t ) 

]]
dt − (1 + p ′ (w t )) dc t 

+ σK 

(
p(w t ) + p ′ (w t )(β

� 
t − w t ) 

)
dZ K t 

+ σX 

(
1 + βs 

t p 
′ (w t ) 

)
dZ X t . 

Under the optimal investment and incentives, the first

term in square brackets stays at zero always. Other invest-

ment and incentive policies will make this term negative
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21 Froda’s theorem states that each real-valued, monotone function has 

at most countably many points of discontinuity. It is clear that such a 

function cannot have an essential discontinuity (i.e., a point of oscillation). 
22 Since p ( ·) is extended linearly to the right of w , discontinuity to the 

right of w is not an issue. 
(owing to the concavity of p ). The second term is non- 

positive since p ′ (w t ) ≥ −1 but equal to zero under the 

optimal contract. Therefore, for the auxiliary gain process, 

we have 

dG t (�) = μG (t) dt + e −rt K t 

[
σK 

(
p(w t ) 

+ p ′ (w t )(β
� 
t −w t ) 

)
dZ K t +σX 

(
1+βs 

t p 
′ (w t ) 

)
dZ X t 

]
, 

where μG ( t ) ≤ 0. Due to our assumption of bounded 

sensitivities { βs }, { β� }, it follows that 

E 

(∫ t 

0 

e −ru 
(

p(w u ) + p ′ (w u )(β
� 
u − w u ) 

)
dZ K u 

)
= E 

(∫ t 

0 

e −ru 
(
1 + βs 

u p 
′ (w u ) 

)
dZ X u 

)
= 0 , 

which implies that { G t } t ≥ 0 follows a supermartingale. 

Furthermore, under �, investors’ expected payoff is 

˜ G (�) ≡ E 

[∫ τ

0 

e −ru 
(
dX u − C(s u , � u ) du 

)
−

∫ τ

0 

e −ru dC u + e −rτ RK τ

]
. 

As a result, we have 

˜ G (�) = E [ G τ (�)] 

= E 

[ 
G τ∧ t (�) + 1 { t≤τ } 

(∫ τ

t 

e −rs 
(
dX s − dC s − C(s s , � s ) ds 

)
+ e −rτ RK τ − e −rt P (W t , K t ) 

)] 
= E [ G τ∧ t (�)] 

+ e −rt 
E 

[ 
1 { t≤τ } E t 

(∫ τ

t 

e −r(s −t) 
(
d X s − d C s − C(s s , � s ) ds 

)
+ e −r(τ−t) RK τ − P (W t , K t ) 

)] 
≤ G 0 + e −rt 

E 

[
P F B (K t ) − W t − P (W t , K t ) 

]
≤ G 0 + e −rt 

(
p F B − R 

)
E [ K t ] , 

where p F B ≡ P F B (K t ) 
K t 

is the (scaled) first-best value. The 

inequalities follow from the supermartingale property of 

G t , the fact that the value of the firm with agency is below 

first best, and the fact that p F B − w − p(w ) ≤ p F B − R . Since 

μ� max < r , it follows that lim t→∞ 

e −rt 
E [ K t ] = 0 . Therefore, 

letting t → ∞ yields ˜ G (�) ≤ G 0 ≡ P (W 0 , K 0 ) = p(w 0 ) K 0 for 

all incentive compatible contracts. For the optimal contract 

�∗, the investors’ payoff ˜ G (�∗) achieves P (W 0 , K 0 ) = 

p(w 0 ) K 0 since the above weak inequality holds in equality 

when t → ∞ . This completes the argument. �

A.2.4. Proof of Proposition 2.3 

Auxiliary results. In this section, we prove the follow- 

ing auxiliary lemma, which is key for establishing the 

concavity of the value function. 

Lemma 2 . Let p ( ·) the unique, twice continuously differen- 

tiable solution to the HJB Eq. (11) on the interval [0 , w ] 

subject to the boundary conditions p(0) = R, p ′ ( w ) = −1 , 

and p ′′ ( w ) = 0 . Further, assume the processes { s }, { � } are of

bounded variation. Then it follows for any w 1 ∈ (0 , w ] with 

p ′′ (w 1 ) = 0 , that p ′ ( w 1 ) < 0 and the policy functions s ( ·),
� ( ·) are continuous in a neighborhood of w . 
1 
Proof . We start with an important observation. Because 

the processes { s }, { � } are, by hypothesis, of bounded 

variation, they can be written as the difference of two 

almost surely increasing processes such that a t = a 1 t − a 2 t 

for all t ≥ 0, a ∈ { s , � } and a 
j 
(·) increases almost surely.

By Froda’s theorem, 21 each of the processes { ̂  a } has no 

essential discontinuity and at most countably many jump- 

discontinuities with probability one. Since { w } follows a 

Brownian semimartingale, this implies that any point of 

discontinuity of a ( ·) can neither be an essential discon- 

tinuity nor can the set of discontinuity points of a ( ·) be 

dense in [0 , w ] for all a ∈ { s , � }. 

We first prove that p ′ ( w 1 ) < 0. Let us suppose to the

contrary p ′ ( w 1 ) ≥ 0 hence w 1 < w . Note that for any δ > 0

exists z ∈ (w 1 − δ, w 1 + δ) such that s ( ·), � ( ·) are continu-

ous in a neighborhood of z because discontinuity points do 

not form a dense set. Since p ′ ( ·), p ′′ ( ·) are continuous, for

any ε > 0, we can choose δ > 0 and z ∈ (w 1 − δ, w 1 + δ)

such that min { p ′ (z) , p ′′ (z) } > −ε. The HJB Eq. (11) and the

fact that � (z) = � F B is not necessarily optimal imply 

(r − μ� F B ) p(z) 

≥ max 
s ∈ [0 ,s max ] 

{ 

αs + p ′ (z)(γ −μ� F B ) z−C(s, � F B )+p ′′ (z)�(z) 
}

≥ max 
s ∈ [0 ,s max ] 

{ 

αs − ε 
(
γ − μ� F B ) z − C(s, � F B ) + �(z) 

]} 

. 

Sending ε, δ → 0 such that s = s (z) = s max ≥ s F B and in

particular for z = w 1 

αs − C(s, � F B ≥ αs F B − C(s F B , � F B ) ≥ (r − μ� F B ) p F B . 

Hence, there exists z ∈ [0 , w ] such that p ( z ) ≥ p FB , a

contradiction. 

Next, let us prove that � ( ·) must be continuous in a 

neighborhood of w 1 , and assume to the contrary that 

there is no neighborhood of w 1 on which � ( ·) is continu- 

ous. Since the set of discontinuities of � ( ·) must be discrete 

(not dense), it is immediate that 

� − ≡ lim 

w ↑ w 1 

� (w ) � = lim 

w ↓ w 1 

� (w ) ≡ � + , 

i.e., � ( ·) has a jump discontinuity at w 1 itself. Without loss 

of generality, we will assume that � − < � + and w 1 < w . 22 

Note that for all ε > 0, there exists δ > 0 such that for 

all z ∈ (w 1 , w 1 + δ) , it holds that | � (z) − � + | < ε. The op-

timality of � ( z ) requires that ∂ p(z) 
∂� 

| � = � (z) ≥ 0 with equality 

if � ( z ) is interior. Due to the continuity of p ′′ ( ·), the limit

ε → 0 yields �� ( w 1 ) ≥ 0 for 

�� (w ) = p(w ) − p ′ (w ) w − C � (s, � + ) with C � (s, � + ) 

= 

∂C(s, � ) 

∂� 
| � = � + . 

In addition, for all ε > 0, it must be that there ex- 

ists δ > 0 such that for all x ∈ (w 1 − δ, w 1 ) , it holds

that | � (x ) − � −| < ε . Hence, for ε > 0 sufficiently small,
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∂s ∂θ ∂� ∂θ

23 For convenience, we suppress the dependence of p(·) , w on θ in the 

notation. 
� ( x ) < � max and therefore ∂ p(x ) 
∂� 

| � = � (x ) = 0 , which implies

together with the continuity of p ′′ ( ·) that ̂ �� (w 1 ) = 0 for ̂ �� (w ) = p(w ) − p ′ (w ) w − C � (s, � −) . 

Next, observe that 

0 ≤ �� (w 1 ) − ̂ �� (w 1 ) = −λ� (� + − � −) . 

Then, it follows that � − ≥ � + , a contradiction. 

Finally, assume that there is no neighborhood of w 1

on which s ( ·) is continuous. Since the set of discon-

tinuity points of s ( ·) is discrete, this is equivalent to

s − ≡ lim w ↑ w 1 
s (w ) � = lim w ↓ w 1 

s (w ) ≡ s + . Without loss of

generality, suppose s + > s −. Then, for all ε > 0, there

exists δ > 0 such that for all z ∈ (w 1 , w 1 + δ) , it holds

that | s (z) − s + | < ε. Optimality requires ∂ p(z) 
∂s 

| s = s (z) ≥ 0 .

Taking the limit ε → 0, we obtain �s ( w 1 ) ≥ 0 for

�s (w ) = αs (w ) − C s (s + , � ) . Similarly, ̂ �s (w 1 ) = 0 for̂ �s (w ) = s (w ) + p ′ (w ) C s (s −, � ) . Hence, 

0 ≤ �s (w 1 ) − ̂ �s (w 1 ) = −λs (s + − s −) . 

Then, it follows that s − ≥ s + , a contradiction. �

Concavity of the value function 

Proof . Since p ′′ ( ·) is continuous on [0 , w ] and { s }, { � } are

of bounded variation, it follows that the mappings s ( ·),
� ( ·) are continuous on [0 , w ] up to a discrete set with

(Lebesgue) measure zero. On the set, where s ( ·), � ( ·) are

continuous, the envelope theorem implies now that p ′′′ ( ·)
exists and is given by 

p ′′′ (w ) = 

(r−γ ) p ′ (w )−p ′′ (w ) 
(
w (γ −μ� )−σ 2 

K (β
� −w )−ρσX σK β

s 
)

1 
2 

(
(βs σX ) 2 + σ 2 

K 
(β� − w ) 2 + 2 ρσX σK βs (β� − w ) 

) . 

We have to show that p ′′ ( w ) < 0 for all 0 ≤ w < w . 

By Lemma 2 we know that s ( ·), � ( ·) are continu-

ous in a neighborhood of w . Then, we observe that

p ′′′ ( w ) ∝ γ − r > 0 due to βs ≥ λs s > 0, and thus

p ′′′ ( ·) > 0 in a neighborhood of w . Hence, p ′′ ( w ) < 0 on

an interval ( w − ε, w ) with appropriate ε > 0. 

Next, suppose there exists w 0 ∈ [0 , w ] with p ′′ ( w 0 ) > 0,

and define w 1 ≡ sup { w ∈ [0 , w ) : p ′′ (w ) ≥ 0 } . By the pre-

vious step and continuity, it follows that p ′′ (w 1 ) = 0 and

w 1 < w . We obtain now from Lemma 2 that s ( ·), � ( ·) are

continuous in a neighborhood of w 1 and p ′ ( w 1 ) < 0.

However, this implies p ′′′ ( w 1 ) > 0 and therefore p ′′′ ( ·) > 0

in a neighborhood of w 1 . Thus, there exists w 

′ > w 1 with

p ′′ ( w 

′ ) > 0, a contradiction to the definition of w 1 . This

completes the proof. �

Last, let us state the following corollary, which proves

useful in some instances: 

Corollary 1 . If γ − r and σ 2 
K 

are sufficiently small, then

p ′′′ ( w ) > 0 for any w ∈ [0 , w ) . 

Proof . It is immediate from the above given the expression

of p ′′′ ( w ). �

A.3. Proofs of Propositions 3 and 4 

Proof . The expressions for s = s (w ) , � = � (w ) follow di-

rectly from the maximization of p ( w ) over s ∈ [0, s max ] and
� ∈ [0, � max ] for a given w as indicated by the HJB Eq. (11) .

Interior levels s ( w ), � ( w ) must solve the respective first-

order conditions of maximization (i.e., ∂ p(w ) 
∂s 

| s = s (w ) = 0

and 

∂ p(w ) 
∂� 

| � = � (w ) = 0 ). After rearranging the first-order

conditions, one arrives at the desired expressions. 

Due to p ′′ ( w ) < 0 for all w < w and p ′′ ( w ) = 0 , it is

immediate to see that s ( w ) ≤ s FB , with the inequality

holding as equality if and only if w = w . When γ − r and

σ K are sufficiently small, then p ′′′ ( w ) > 0 (see Corollary 1 )

for all w , and due to 

sign 

(
∂s (w ) 

∂w 

)
= sign (p ′′′ (w )) , 

short-run investment increases in w under these circum-

stances. 

Evaluating the HJB equation at the boundary under the

optimal controls yields 

(r − μ� ) p( w ) + (γ − μ� ) w = αs − C(s, � ) . 

Hence, owing to γ > r and agency-induced termination,

P(τ < ∞ ) = 1 : 

p( w ) + w < 

(
αs − C(s, � ) 

r − μ� 

)
≤ p F B . 

Since C � (s F B , � F B ) = μp F B and C � (s ( w ) , � ( w )) = μ(p( w ) +
w ) , it is clear that � ( w ) < � F B and therefore by continuity

that � ( w ) < � FB in a left neighborhood of w . �

A.4. Proof of Proposition 5 

We prove Proposition 5 i) in two parts. Part I shows

that either σX = 0 or σK = 0 implies � ( w ) < � FB . Part I

shows that there exist parameter values so that � ( w ) > � FB

once σ X , σ K > 0. We start the proof with an auxiliary

lemma. 

A.4.1. Proof of Proposition 5—auxiliary results 

Lemma 3 . Under the optimal contract for an arbitrary

parameter θ �∈ { r, μ} , it holds 

∂ p(w ) 

∂θ
= E 

{∫ τ

0 

e −rt+ μ ∫ t 
0 � s ds 

[ 
∂α

∂θ
s t − ∂C(s t , � t ) 

∂θ

+ p ′ (w t ) w t 

∂ 
(
γ − μ� t 

)
∂θ

− p(w t ) 
∂ 
(
r − μ� t 

)
∂θ

+ 

p ′′ (w t ) 

2 

∂ 

∂θ

[
(βs 

t σX ) 
2 + σ 2 

K (β
� 
t − w t ) 

2 

+ 2 ρσX σK β
s 
t (β

� 
t − w t ) 

]] 
dt 

∣∣∣∣w 0 = w 

}
. 

Proof . Let w ∈ [0 , w ] , θ �∈ { r, μ} and s = s (w ) , � =
� (w ) , βs = βs (w ) , β� = β� (w ) be determined by the

HJB Eq. (11) . 23 Then, by the envelope theorem, 

∂ p(w ) ∂s (w ) = 

∂ p(w ) ∂� (w ) = 0 , 
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and therefore total differentiation of the HJB Eq. w.r.t. θ
yields 

(r − μ� ) 
∂ p(w ) 

∂θ
+ 

∂(r − μ� ) 

∂θ
p(w ) 

= 

∂α

∂θ
s− ∂C(s, � ) 

∂θ
+ p ′ (w ) w 

∂(γ −μ� ) 

∂θ
+ w 

(
γ −μ� 

) ∂ 

∂w 

∂ p(w ) 

∂θ

+ 

p ′′ (w ) 

2 

∂ 

∂θ

[ 
(βs σX ) 

2 + σ 2 
K (β

� − w ) 2 + 2 ρσX σK β
s (β� − w ) 

] 
+ 

∂ 2 

∂w 

2 

∂ p(w ) 

∂θ

[ 
(βs σX ) 

2 +σ 2 
K (β

� −w ) 2 +2 ρσX σK β
s (β� −w ) 

] 
. 

Note that we used 

∂ k 

∂w 

k 

∂ p(w ) 

∂θ
= 

∂ 

∂θ

∂ k p(w ) 

∂w 

k 
for k ∈ { 1 , 2 };

i.e., we changed the order of (partial) differentiation, 

which is possible since p is sufficiently smooth. The above 

ordinary differential equation admits a unique solution 

subject to the boundary conditions 

∂ p(w ) 

∂θ
| w =0 = 0 and 

∂ p ′ (w ) 

∂θ
| w = w 

= 

∂ 

∂w 

∂ p(w ) 

∂θ
| w = w 

= 0 , 

and we can invoke Lemma 1 to arrive at the desired 

expression. �

A.4.2. Proof of Proposition 5 (i)—part I 

Let us assume σX = 0 and state the following lemma: 

Lemma 4 . Assume σX = 0 . Hence, short-run investment s ( w ) 

is contractible and constant over time. Then, it must be that 

β� > w. 

Proof . The proof is split in several parts. Part (a) shows 

that β� ( w ) � = w . Part (b) shows that β� (w ) � = w, and part

(c) concludes by showing β� ( w ) > w for all w ∈ [0 , w ] . 

a) Let us first show that β� ( w ) = λ� � ( w ) � = w . Define 

� := � ( w ) and suppose to the contrary λ� � = w . Then 

p( w ) = 

1 

r − μ� 

(
αs − 1 

2 

(
λ2 

s αs + λ� � 
2 μ

)
− w (γ − μ� ) 

)
. 

Let ε > 0 and consider the Taylor expansion of p( w −
ε) around p( w ) , given by p( w − ε) = p( w ) + ε + o(ε 3 ) .
Further, define � ε := � ( w − ε) and note that in opti- 

mum β� ( w − ε) = λ� � ε + o(ε) by continuity. Hence 

(r − μ� ε ) p( w − ε) 

= αs − λs αs 2 

2 
− 1 

2 
λ� � 

2 
ε μ + p ′ ( w − ε)((γ − μ� ε )( w − ε)) 

+ 

σ 2 
K (λ� � ε + o(ε ) − w + ε ) 2 

2 
p ′′ ( w − ε) 

= αs − λs αs 2 

2 
− 1 

2 
λ� � 

2 
ε μ + (−1 + o(ε 2 ))((γ − μ� ε )( w − ε))

+ 

σ 2 
K (λ� � ε − w + o(ε)) 2 

2 
p ′′ ( w − ε) , 

where we used that p ′ ( w − ε) = p ′ ( w ) − εp ′′ ( w ) + 

o(ε 2 ) . 
Combining the above and using the Taylor expansion 

for p( w − ε) around p( w ) yields 

p( w − ε) μ(� ε − � ) 

= ε(r − μ� ) + (γ − μ� ε )( w − ε) − w (γ − μ� ) 
+ 

1 

2 

μλ� 

(
� 2 ε − � 2 

)
− σ 2 

K (λ� � ε − w +o(ε)) 2 

2 

p ′′ ( w −ε)

+ o(ε 2 ) + o(ε 3 ) . 

Next, note that � = � ε + ε� ′ ( w − ε) + o(ε 2 ) , in case

� ( ·) is differentiable, which is guaranteed for ε > 0 

sufficiently small. This yields 

μp( w − ε )(−ε � ′ ( w − ε )) 

= ε(r − γ ) − w με� ′ ( w − ε) + o(ε 2 ) 

⇐⇒ o(ε) − μ
(

p( w − ε) + w 

)
� ′ ( w − ε) = r − γ . 

If � ( w ) = � max , then it must be either that � ′ ( w − ε) =
o(ε) for ε sufficiently small, which leads to γ − r = o(ε) 

and thereby a contradiction, or lim w ↑ w 

� ′ (w ) > 0 . 

If � ( w ) < � max or lim w ↑ w 

� ′ (w ) > 0 , then � ( w − ε)

solves the following first-order condition of maximiza- 

tion, ∂ p( w −ε) 
∂� 

= 0 . Moreover, � ( w ) < � max also solves 

the FOC at w = w : 

μp( w ) + μw − λ� μ� ( w ) = 0 

⇐⇒ p( w ) + w − λ� � ( w ) = 0 . 

Invoking the implicit function theorem, we can differ- 

entiate the above identity with respect to w = w so 

as to obtain � ′ ( w ) = 0 as well as � ′′ ( w ) = 0 . Then, by

Taylor’s theorem, which is applicable owing to p ∈ C 2 , 

we get � ′ ( w − ε) = o(ε 2 ) , which yields the desired 

contradiction. This concludes the proof. 

b) Let us assume that there exists now w < w with 

β� = λ� � (w ) = w optimal, in which case the HJB 

equation under the optimal control reads: 

(r − μ� (w )) p(w ) = αs (w ) − λs αs (w ) 2 

2 

− λ� μ� (w ) 2 

2 

+ p ′ (w ) w (γ − μ� (w )) . 

Due to p ′ (w ) ≥ −1 (i.e., since scaled payouts at rate 

w (γ − μ� ) and this way keeping w t = w constant 

for all future times t is always an option but not 

necessarily optimal), it follows that 

p(w ) ≥ 1 

r − μ� (w ) 

(
αs (w ) − λs αs (w ) 2 

2 

− λ� � (w ) 2 μ

2 

− w (γ − μ� (w )) 
)
. 

Likewise, due to the fact that � (w ) λ� = w is optimal, it

also must hold that 

p(w ) ≥max 
s,� 

1 

r−μ� 

(
αs− λs αs 2 

2 

− λ� � 
2 μ

2 

−w (γ −μ� ) 
)
. 

Then 

p(w ) < p( w ) − (w − w ) 

= max 
s,� 

1 

r − μ� 

(
αs − λs αs 2 

2 

− λ� � 
2 μ

2 

− w (γ − r) 

− w (r − μ� ) 
)

< max 
s,� 

1 

r − μ� 

(
αs − λs αs 2 

2 

− λ� � 
2 μ

2 

− w (γ − r) 

− w (r − μ� ) 
)
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= max 
s,� 

1 

r − μ� 

(
αs− λs αs 2 

2 

− λ� � 
2 μ

2 

− w (γ − μ� ) 
)
, 

where the first inequality is due to strict concavity and

the second one due to w < w . This yields the desired

contradiction. 

c) Eventually, let us assume that to the contrary

β� = � (w ) λ� < w for at least one point w and de-

fine for this sake the function χ(w ) = β� (w ) − w . In

a neighbourhood of w = 0 (i.e., on (0, ε) for appro-

priate ε > 0), it is evident that χ ( w ) > 0 because

0 < R = p(0) ⇒ � (0) > 0 . 

If there is w 

′ such that χ ( w 

′ ) < 0, then there exists

also w such that χ(w ) = 0 by continuity. If χ(w ) = 0

for some w > 0, then it must either be that χ( w ) = 0 ,

which contradicts part a), or χ(w ) = 0 for 0 < w < w ,

which contradicts part b). Hence, β� = � (w ) λ� > w for

all w ∈ [0 , w ] , which eventually proves the lemma. 

�

A.4.3. Proof of Proposition 5 (i)—part II 

Proof . Here, we prove that σK = 0 and σ X > 0 imply that

� ( w ) < � FB provided investment is not at the corner. 

For interior levels, � = � (w ) solves the first-order

condition of maximization 

∂ p(w ) 
∂� 

= 0 so that 

μ(p(w ) − p ′ (w ) w ) − λ� μ� = 0 . 

Because of p(w ) − wp ′ (w ) < p F B and � FB solves

μp F B − λ� μ� = 0 , it is immediate to see that � ( w ) < � FB

for all w ∈ [0 , w ] . For corner levels, a similar argument

applies, which readily yields � ( w ) ≤ � FB with the inequality

being strict if � max > � FB . �

A.4.4. Proof of Proposition 5 (ii) 

Proof . Let θ denote an arbitrary set of model parameters

and denote the family of solutions to the principal’s prob-

lem by { p θ , w θ } θ . By Berge’s maximum theorem, w θ is

continuous w.r.t. (the value of) θ , in the standard Euclidean

metric space on R and p θ is continuous in θ on A 

B with re-

spect to the topology, induced by the norm || ·, ·|| ∞ 

where 

|| f || ∞ 

= sup 

x ∈ A 
| f (x ) | . 

Here, A, B are some compact subsets of R that satisfy all

necessary regularity conditions and possibly depend on θ .

We choose A sufficiently large so that w θ ∈ A and 0 ∈ A

for all considered θ . We may choose B so that p θ ( w ) ∈ B

for all w ∈ [0 , w θ ] for all considered θ . For brevity, we omit

a formal introduction of the sets A, B and the associated

notation in the following. 

Without loss of generality, we assume throughout that

the constraint � ≤ � max is never tight. The proof goes

through as long as the first-best level is interior (i.e.,

� max > � FB ). Formally dealing within the proof with corner

levels would merely complicate the notation. 

Let us start by considering the limit case μ → 0 hold-

ing the remaining parameters fixed. That is, we study the

family { p μ, w μ} μ≥0 and take the limit μ → 0. The model

in the limit case μ → 0 is well behaved and features a

value function p with reflecting boundary w > 0 . Due to
0 0 
continuity in μ, it follows that p μ → p 0 and w μ → w 0 as

μ → 0. As a consequence, 

� (w )→ 

−wp ′′ 0 (w ) λ� σ 2 
K 

−p ′′ 
0 
(w )(λ� σK ) 2 

= 

w 

λ� 

∧ � max > 0 for w 0 > w > 0 , 

where we omit for simplicity indexing for the optimal con-

trols (e.g., for � = � μ). It can be verified for w < w μ that 

V (dw ) = (βs σX ) 
2 dt + (β� − w ) 2 σ 2 

K dt = o(σ 2 
X ) dt, 

when μ → 0 because β� → λ� � (w ) = w . If it were � (w ) =
� max , then it is easy to verify that β� = w becomes optimal.

As a consequence, the joint limit σ X , μ → 0 would lead

to a solution where { w } has no volatility and accordingly

w 0 = 0 . That is, lim σX → 0 w 0 = 0 . Hence, σX = 0 ⇒ w 0 = 0 .

Since the limit case μ → 0 corresponds (effectively) to

the model of DeMarzo and Sannikov (2006) , we know that

σX > 0 ⇔ w 0 > 0 . 

To take the limit lim μ → 0 � 
FB , we have to use

L’Hospital’s rule, which yields 

lim 

μ→ 0 

1 

μ

[
r −

√ 

r 2 − μα

λs λ� 

]
= lim 

μ→ 0 

1 

2 

√ 

r 2 − μα
λs λ� 

α

λs λ� 

= 

α

2 λs λ� r 
. 

To avoid cluttering with subscripts, we omit indexing

model quantities by μ when it does not cause confusion. 

We prove now the claim regarding γ . Let us fix all

parameters except γ and consider the (continuous) family

of solutions { p γ , w γ } γ >r≥0 . We evaluate the HJB equation

at the boundary: 

(r − μ� ( w γ )) p γ ( w γ ) 

= 

α

2 λs 
− (γ − μ� ( w γ )) w γ − λ� μ� ( w γ ) 2 

2 

, 

and totally differentiate with respect to γ . Using

d p( w γ ) /d γ = p ′ ( w γ ) ∂ w γ /∂ γ + ∂ p( w γ ) /∂ γ and the

boundary condition p ′ ( w γ ) = −1 , we obtain 

∂ w γ

∂γ
= − 1 

γ − r 

(
w γ + (r − μ� ( w γ )) 

∂ p γ ( w γ ) 

∂γ

)
, 

where, by Lemma 3 , 

∂ p γ ( w γ ) 

∂γ
= E 

(∫ τ

0 

e −rt+ μ ∫ t 
0 � u du p ′ γ (w t ) w t dt 

∣∣∣w 0 = w γ

)
≥ −E 

(∫ τ

0 

e −rt+ μ ∫ t 
0 � u du w t dt 

∣∣∣w 0 = w γ

)
, 

where the inequality uses p ′ γ ≥ −1 . 

Let us assume that 
∂ p γ ( w γ ) 

∂γ
≥ 0 . Then 

A (γ ) : = w γ + (r − μ� ( w γ )) 
∂ p γ ( w γ ) 

∂γ

≥
w γ E 

(∫ τ
0 e −rt+ μ ∫ t 

0 � u du dt 

∣∣∣w 0 = w γ

)
E 

(∫ τ
0 e −rt+ μ ∫ t 

0 � u du dt 

∣∣∣w 0 = w γ

)
+ (r − μ� max ) 

∂ p γ ( w γ ) 

∂γ
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≥ (r − μ� max ) w γ E 

(∫ τ

0 

e −rt+ μ ∫ t 
0 � u du dt 

∣∣∣w 0 = w γ

)
+ (r − μ� max ) 

∂ p γ ( w γ ) 

∂γ

≥ (r−μ� max ) E 

(∫ τ

0 

e −rt ( w γ −w t ) dt 

∣∣∣w 0 = w γ

)
>0 ,

where we use that p ′ γ ≥ −1 as well as P(τ < ∞ ) = 1 . In 

case 
∂ p γ ( w γ ) 

∂γ
< 0 , we obtain similarly 

A (γ ) = w γ + (r − μ� ( w γ )) 
∂ p γ ( w γ ) 

∂γ

≥ w γ − rE 

(∫ τ

0 

e −rt+ μ ∫ t 
0 � u du w t dt 

∣∣∣w 0 = w γ

)
≥ rE 

(∫ τ

0 

e −rt ( w γ − w t ) dt 

∣∣∣w 0 = w γ

)
≥ (r−μ� max ) E 

(∫ τ

0 

e −rt ( w γ −w t ) dt 

∣∣∣w 0 = w γ

)
>0 

for all γ > r . 

It follows that w γ + (r − μ� ( w γ )) 
∂ p γ ( w γ ) 

∂γ
> 0 , so that 

∂ w γ

∂γ
< 0 . Since the process { w } has—because of σ X > 0 and 

βs ( w ) = λs s 
F B —strictly positive volatility at the boundary 

w γ , the payout boundary w γ cannot constitute an absorb- 

ing (or attracting) state. This holds true for any γ > r . 

Due to that and the fact that the stochastic process { w } 

possesses strictly positive volatility almost everywhere on 

(0 , w γ ) , it cannot be that the above expectation E(γ ) := 

E 

(∫ τ
0 e −rt ( w γ − w t ) dt 

∣∣w 0 = w γ

)
tends to zero, as γ → r 

so that E(γ ) �∈ o(γ − r) , and therefore lim γ↓ r E(γ ) > 0 . By 

continuity, the aforementioned limit exists but possibly 

takes value ∞ . From there it follows that 

∂ w γ

∂γ
= 

A (γ ) 

−(γ − r) 

≤
(r − μ� max ) E 

(∫ τ
0 e −rt ( w γ − w t ) dt 

∣∣w 0 = w γ

)
−(γ − r) 

, 

and accordingly 

lim 

γ↓ r 
∂ w γ

∂γ
= lim 

γ↓ r 
A ( γ ) 

−( γ − r ) 

≤ lim 

γ↓ r 
( r − μ� max ) E 

(∫ τ
0 e −rt 

(
w γ − w t 

)
dt | w 0 = w γ

−( γ − r ) 

= −∞ . 

Thus, the function γ �→ w γ , which is defined on [ r , ∞ ), has 

a singularity (pole) at γ = r, which implies lim γ↓ r w γ = ∞ . 

By continuity, for any ε > 0 and for any μ > 0, there 

exists γ > r sufficiently low so that the payout threshold 

w μ,γ (dependent on μ, γ ) satisfies 
w μ,γ

λ� 
> 

α
2 λs λ� r 

+ ε. 

Under these circumstances, there is a value 0 < ˜ w 

μ
γ < w μ,γ

with 

˜ w 

μ
γ

λ
> 

α

2 λ λ r 
+ ε. 
� s � 
Taking the limit of the above constructed sequence yields 

(by construction) 

lim 

μ→ 0 
� ( ̃  w 

μ
γ ) > lim 

μ→ 0 
� F B . 

By continuity, there exist now μ > 0 and γ > r sufficiently 

low and w ∈ (0 , w μ,γ ) so that � ( w ) > � FB . 

Let w 

H ≡ sup { w : � (w ) > � F B } and w 

L ≡ sup { w : � (w ) >

� F B } . Since � ( w μ,γ ) < � F B for any μ > 0, γ > r , it

must be that w 

H < w μ,γ with lim μ→ 0 ,γ → r w 

H = w μ,γ . 

In addition, lim μ→ 0 ,γ → r w 

L = 

α
2 λs r 

. It follows then that 

in the limit μ → 0, γ → r it must be that the set 

{ w : � (w ) = w/λ� + o(μ) ∧ � max > � F B } is convex. By con-

tinuity, there exist μ > 0 and γ > r , ensuring the set { w :

� ( w ) > � FB } is convex, thereby concluding the proof. �

A.4.5. Proof of Proposition 5 (iii) 

Proof . We consider parameters are such that sup { � (w ) : 

w ∈ [0 , w ] } = � F B , and let μ > 0 so that � ( w ) > 0 for

any w ∈ (0 , w ] . Let us evaluate the HJB equation at the

boundary: 

(r − μ� ( w )) p( w ) = 

α

2 λs 
− (γ − μ� ( w )) w − λ� μ� ( w ) 2 

2 

. 

Differentiating this identity w.r.t. σ i for i ∈ { X, K } leads to 

∂ w 

∂σi 

= 

r 

r − γ

∂ p( w ) 

∂σi 

. 

Lemma 3 then implies: 

∂ p( w ) 

∂σK 

= E 

(∫ τ

0 

e −rt+ μ ∫ t 
0 � u du p ′′ (w t )(β

� 
t −w t ) 

2 σK dt 

∣∣∣w 0 = w 

)
<0 ,

∂ p( w ) 

∂σX 

= E 

(∫ τ

0 

e −rt+ μ ∫ t 
0 � u du 

(
p ′′ (w t )(β

s 
t ) 

2 σX 

)
dt 

∣∣∣w 0 = w 

)
< 0 

so that w increases in σ i for i ∈ { X, K }. The claim follows

due to continuity in parameter values { σ X , σ K }. �

A.5. Proof of Proposition 6 and 7 

We prove the two propositions separately. In both cases 

claim i) is trivial since σK = 0 precludes risk externalities 

between short- and long-run incentives. 

A.5.1. Proof of Proposition 6 (ii) 

Proof . The proof of Proposition 6 (ii) is split in two parts. 

The first part of the proof shows that there is short- 

termism, s ( w ) > s FB , for σ X sufficiently small; the second 

one points out under which circumstances { w : s ( w ) > s FB }

is convex. 

Let us assume that correlation ρ is negative. Let us 

fix all parameters and consider the family of solution 

{ p σX 
, w σX 

} , which is–by Berge’s maximum theorem—

continuous in σ X w.r.t. an appropriate topology, already 

discussed before. In the limit case σ X → 0, we have 

s ( w ) → s FB for all w ∈ [0 , w σ ] . In addition, for any σ X ≥ 0,
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including the limit case σ X → 0, we have p ′′ σX 
(0) < 0 , as

w σX 
> 0 due to σ K > 0. For notational convenience, we

omit indexing model quantities by σ X when no confusion

is likely to arise. 

We can write 

s (w ) = 

α + p ′′ (w ) ρσX σK λs (λ� � (w ) − w ) 

λs α − p ′′ (w )(λs σX ) 2 

= 

α + p ′′ (w ) ρσX σK λs λ� � (w ) 

λs α − p ′′ (w )(λs σX ) 2 
+ o(w ) . 

From there it follows immediately that 

∂s (w ) 

∂ p ′′ (w ) 
= o(σX ) . 

Thus 

ds (w ) 

dσX 

= 

∂s (w ) 

∂σX 

+ 

∂s (w ) 

∂ p ′′ (w ) 

∂ p ′′ (w ) 

∂σX 

∝ 

[
λs α−p ′′ (w )(λs σX ) 

2 
]

p ′′ (w ) ρσK λs (λ� � (w ) −w )

+ 2[ α + p ′′ (w ) ρσX σK λs (λ� � (w ) − w )] 

× p ′′ (w ) λ2 
s σX + o(σX ) 

= p ′′ (w ) ρσK λ
2 
s (λ� � (w ) − w ) α + o(σX ) 

= p ′′ (w ) ρσK λ
2 
s λ� � (w ) α + o(σX ) + o(w ) , 

where ∝ means “has the same sign as.”

Because of R > 0, we have � (0) > 0. This implies

� ( w ) > 0 close to zero and � (w ) �∈ o(w ) . Hence, it holds

that λ� � ( w ) > w in a neighborhood of zero, implying

short-run investment s ( w ) increases in σ X , provided

σ X > 0 and w are sufficiently close to zero. This follows

from lim σX → 0 p 
′′ �≡ 0 and p ′′ (0) < 0 because σ K > 0

guarantees a nontrivial boundary w > 0 , even in the limit

σ X → 0. Because of s (w ) = s F B , if σX = 0 , there exists

σ X > 0 and w ∈ [0 , w ] so that s ( w ) > s FB , which concludes

the first part of the proof. 24 

The second part of the proof establishes the convex-

ity of the set { w : s ( w ) > s FB } under certain parameters

conditions. Let us calculate 

∂s (w ) 

∂w 

≡ s ′ (w ) ∝ p ′′′ (w ) ρσX σK λs (λ� � (w ) − w ) 

+ p ′′ (w ) ρσX σK λs 
∂(λ� � (w ) − w ) 

∂w 

+ o( σ 2 
X ) . 

If γ − r (and possibly σ 2 
K 

) is sufficiently small, then

p ′′′ ( w ) ≥ 0 (see Corollary 1 ) so that the first term is

negative for w < λ� � ( w ) (i.e., for w close to zero). If λ� is

sufficiently small, then 

∂(λ� � (w ) − w ) 

∂w 

= λ� � 
′ (w ) − 1 < 0 

so that the second term is also negative. The remainder is

negligible for σ X sufficiently small. Under these conditions,

s ′ ( w ) < 0 for w ≤ λ� � ( w ). 

Let us conclude the proof by demonstrating { w :

s ( w ) > s FB } must be a convex set, containing zero when in

addition to σ X also λ� and γ − r are sufficiently small so

as to ensure ∂ s ( w )/ ∂ w < 0 for w < λ� � ( w ). Without loss of
24 If we did not have R > 0, the proof is still valid as long as there exists 

a point w < w satisfying � ( w ) > w / λ� . The existence of such a point can 

be ensured by appropriate λ� . 

 

 

 

generality, assume that { w : s ( w ) > s FB } is nonempty. If the

set is not convex, it must be that there exists w 

′ ∈ [0 , w ]

with s (w 

′ ) = s F B and s ′ ( w 

′ ) > 0 such that w 

′ < w . Next, let

us take a look at 

s (w ) = 

α + p ′′ (w ) ρσX σK λs (λ� � (w ) − w ) 

λs α − p ′′ (w )(λs σX ) 2 
, 

and notice that for s ( w 

′ ) ≥ s FB being optimal it is necessary

that λ� � ( w 

′ ) > w 

′ , as ρ < 0 and p ′′ ( w 

′ ) < 0. This implies

s ′ ( w 

′ ) < 0 when λ� and γ − r are sufficiently small, a

contradiction. 

Next, assume the set does not contain zero (i.e.,

s (0) ≤ s FB ). It follows that s ′ ( ̂  w ) > 0 for ˆ w = inf { w ≥ 0 :

s (w ) > s F B } . By continuity s ( ̂  w ) = s F B . However, due to

s ( w ) = s F B , it must be that ˆ w < w . For s ( ̂  w ) = s F B being

optimal, it must be that λ� � ( ̂  w ) > ˆ w . This implies s ′ ( ̂  w ) < 0

when λ� and γ − r are sufficiently small, a contradiction.

This concludes the proof. �

A.5.2. Proof of Proposition 7 (ii) 

Proof . Fix σ X > 0 and consider γ − r sufficiently small,

such that there exists w < w with w > λ� � ( w ). This is pos-

sible as w → ∞ for γ → r and because there exists a left

neighborhood of w , where � ( w ) < � FB < ∞ for any γ > r . 

Note that this holds for any σ X > 0. Therefore, we can

choose σ X sufficiently small and γ − r sufficiently small

so that there exists w < w with p ′′ ( w ) < 0 and s ( w ) > s FB

because of 

s (w ) = 

α + p ′′ (w ) ρσX σK λs (λ� � (w ) − w ) 

λs α + o(σX ) 2 
, 

that is, because the incentive cost of short-run investment

is of order σ 2 
X 
, while the incentive externality is of order

σ X . Taking the limit σ X → 0 is innocuous only because

σ K > 0 guarantees a nontrivial solution in this limit. To be

more rigorous, one could mimick and adapt the argument

of the proof of Proposition 6 (ii). 

Since in the limit μ → 0 for arbitrary σ X > 0, long-

term investment satisfies � (w ) → 

w 

λ� 
, it follows that

s (w ) → ˆ s (w ) < s F B for w < w , as μ → 0. From there, it

follows readily that there exist μ > 0, γ − r, and σ X suf-

ficiently small such that { w : s ( w ) > s FB } is nonempty and

convex with its infimum exceeding zero and its supremum

equal to w . �

A.6. Proof of Proposition 8 

Proof . Claim i) is straightforward, directly follows from the

HJB equation, and is already explained in the main text. 

Claim ii) is implied by the proof of Proposition 5 (i),

where we show that λ� � ( w ) > w for all w when σX = 0 .

The proof can be easily adjusted for linear cost (compare,

e.g., He, 2009 ). 

Claim (iii) relies on the premise that w increases in

1 / (γ − r) with lim γ↓ r w = ∞ and can be proven to mimick

the argument of the proof of Proposition 5 (ii). Moreover,

the limit λ� → 0 leads to a well-behaved solution with

a strictly positive payout threshold. Hence, it follows

by continuity of the solution { p λ� 
, w λ� 

} λ� ≥0 that there

exists w with β� (w ) = w > λ� for 0 < w < w λ� 
when λ� is
sufficiently small. �
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