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Abstract

Given the exponential growth in the amount of genetic
data being produced, it is more important than ever for
researchers to have effective tools to help them manage
this  data.   This  paper  describes  a  system that  enables
users,  generally  biologists,  to  construct  components  to
answer specific questions in their field. The system allows
the  creation  of  modules  and  submodules  via  top-down
decomposition.  Concepts  and  terms  can  be  defined
through  conversation.  These  are  then  used  when
composing  base-level  functions  to  produce  code  for
modules and for interfacing modules.

1. Introduction

For more than a decade the quantity of genetic data
produced  each  year  has  been  growing  exponentially.
GenBank's database has grown from just over 217 million
base pairs in 1994 to more than 44 billion in 2004 [1],
increasing  on  average  by  a  factor  of  1.7  each  year.
PubMed now contains over 15 million citations [2] and is
growing by approximately 450,000 each year. Not only is
the quantity of data increasing but so too is the number of
databases, web-sites and other information sources that a
researcher must cope with. Also, given the ever increasing
number and speed of modern DNA sequencing machines,
micro-arrays and other devices, it seems unlikely that the
flood  will  abate  any  time  soon.  Faced  with  such  an
information  overload,  researchers  need  computerized
tools to assist them in making best  use of the available
data.

The basic problem is to build a system that enables
users,  generally  biologists,  to  construct  components  to
answer specific questions in their field. The following list
provides  examples  of   questions  in  the  context  of  the
malaria parasite Plasmodium falciparum:

• Find  a  list  of  all  proteins  that  have predicted  trans-
membrane  anchor  sequences  and  are  expressed  in
asexual blood stages.

• Find secreted proteins that have disulphide bonds.
• Find proteins with repeats.
• Find allelic variants of this surface protein that have

been identified in Thailand.
• Find  homologs  in  other  species  and  home-in  on

conserved sequences.

The authors created a prototype of a system intended
to fulfill some of these needs. Based on a workflow style
graphical interface where the user drags modules from a
palette of tools onto a drawing frame and then connects
the outputs  of  some modules  to the  inputs  of  other,  as
shown in figure  below. 

Sufficient  modules  were  programmed  to  enable  the
system to answer some real-life biological questions in the
domain mentioned above. In the course of developing the

Figure 1: Work flow representation



system  some  significant  problems  were  encountered
including: 
• Modules  tend  to  be  extremely  complex,  requiring

much time and expertise to build.
• Some  of  the  modules  were  very  fragile.  A  slight

change in a data source, for example, could cause the
module to fail.

• A new module has to be  created  for each new data
source.

This prototype is described in more detail in section 2.

To overcome these problems it was decided to break
the large modules down into many small units, each one
representing  a  very  basic  piece  of  functionality;  for
example, read an HTML page, send an SQL query to a
relational  database,  find  a  substring  of  some  text  etc.
Because each module is  now trying to do much less, it
requires fewer lines of code and is less complex. There
are fewer ways in which a small module can go wrong,
making it  easier  to trap errors.  There  will of course be
more  modules.  However,  the  system  allows
decomposition of modules into submodules. Indeed most
common workflow modules will be sequential, permitting
a functional definition for each in terms of input(s) and
output(s). 

The creation of modules and submodules is typical of
top-down  decomposition.  This  allows  consideration  of
(sub)modules  in  isolation,  thus  keeping  complexity
manageable. The coding within (sub)modules is a mixture
of top-down and bottom-up. The system allows concepts,
terms etc  to  be defined through conversation.  However
the  base-level  functions  are  composed  in  a  bottom-up
manner applying to the defined terms. Section 3 presents
the conversational process within the system.

2. Related Methods

The problem of data integration has been approached
in many ways, some of which are described below. There
is a degree of overlap between some of these approaches,
and  many  solutions  to  the  problem of  data  integration
consist of combinations of these approaches.

• Data Warehousing: Data is extracted from its original
location and added to a common, centralized database.
The  main  problems  with  this  approach  is  that  the
quantity  of  data  is  so  large  that  it  would  require
massive amounts of computing power to handle it, and
there  are  so  many  different  types  of  information
sources  that  a  vast  programming  effort  would  be
required to write the extraction routines.

• Standardised  Databases:  Several  attempts have  been
made to come up with a standard (relational) database
structure to suit all purposes within the Bioinformatics
field.  Examples  of  this  are  GUS[3]  (used  for
PlasmoDB,  AllGenes,  EPConDB,  GeneDB  etc.),
ACEDB[4]  (used  for  WormBase,  DictyDB etc)  and
GMOD[5] (used for WormBase, FlyBase, MGI, SGD,
Gramene, Rat Genome Database, EcoCyc, and TAIR).
The  main  problem  with  this  approach  is  finding  a
format  that  suits  everyone,  otherwise leading  to  a
proliferation  of  standards,  defeating  the  original
purpose.

• Federated Databases: Data is not amalgamated into a
data  warehouse,  instead  it  remains  in  its  original
location and is  retrieved  on  demand.  This  approach
requires  interfaces  to  each  data  source  to  be
constructed. This is manageable if all the data sources
are of a similar type, e.g. relational databases, but it
can become impractical if the data sources vary wildly
in type and structure, requiring expertise in both data
analysis and the subject matter of the data sources.

• Web  Services:  Applications are  made  available  for
automatic  use  by  other  systems  via  a  network.  The
main problem here is that each data source would need
to provide its own services and make them generally
available.

• Database Wrappers:  Similar to the idea of federated
databases,  this  consists  of  a  piece  of  software  that
interfaces  between  the  user  and  the  target  database.
This software receives queries and returns replies in a
standard format, enabling the user to query multiple
data sources in the same way regardless of the target's
type.  This  concept  requires  the  software  to  be
specifically built for each target, requiring expertise in
data analysis and the subject matter.

• Semantic Web: Consists of annotating data sources in
a standardized, machine readable way, so that systems
can extract meaning from them (e.g. the types of entity
represented in  the data and how they relate to  each
other).  Contrast this to the World Wide Web, where
the data sources (web pages) have content, but little
machine  readable  meaning.  Few  bioinformatic  data
sources  have  done  this  so  far,  although  a  few  do
provide data in XML as well as HTML.

Our initial model for an information system was based
on  a  combination  of  the  above  approaches,  and  was
developed  from the  observation that  people  often  draw
flow  diagrams  to  describe  the  information  flow  and
processing that they wish to perform. The system interface
consists of a palette of tools and a drawing pane, as shown



in figure 1 above.  This work-flow type of interface has
been  used  in  a  number  of  other  systems,  for  example,
DiscoveryNet[6].

Each tool is written as a separate module to perform a
specific  task,  like  read  from  a  specific  database  or
combine two sets of data etc. Each tool may have data-
streams as inputs and outputs, and a set of parameter type
inputs used to tailor the specifics of its functionality. To
perform some work the user drags tools from the palette
onto the drawing frame, sets the values of any parameters
and then joins the output data-streams of modules to the
input data-streams of others to produce a work-flow type
diagram. When the  work-flow is  executed,  all  modules
with  no  input  data-streams  (generally   functions  like
reading from data sources) are run first, each in a separate
execution thread, and their output data-streams are passed
onto the appropriate modules as indicated by the arcs in
the  diagram.  When  a  module  has  received  a  sufficient
amount of  its  input data-streams,  it  too runs and so on
until  all  modules  have  been  executed.  The  terminal
modules of the work-flow are generally those that produce
some sort of output for the user (writing a file, producing
a printout etc) and so do not pass their output data streams
onto another module. The example of a simple work-flow
in figure 1 shows two databases being read,  their outputs
combined and displayed on the screen.

The  initial  system  was  set  up  with  several
representative modules, including:

• Run a TMPRED query (Prediction of Transmembrane
Regions and Orientation) at EMBNet in Switzerland
(http://www.ch.embnet.org/software/TMPRED_form.h
tml).

• Run a SignalP query (presence and location of signal
peptide  cleavage  site  prediction  in  amino  acid
sequences)  at  the  Center  for  Biological  Sequence
Analysis  at  the  Technical  University  of  Denmark
(http://www.cbs.dtu.dk/services/SignalP-2.0/).

• Count amino acids in a protein and selecting proteins
with counts in specified ranges.

• Create the intersection of two sets of proteins.

• Read a number of protein sequences from a FASTA
format file.

• Format protein data for screen output.

The size and functionality of the modules were chosen
based on the level of breakdown that a biologist  would
use when thinking of a real-world problem. For example,
a  question  might  be:  “Which  secreted  proteins  have
disulphide bonds?”, and a biologist could break this down
into the following parts:

a) Get protein sequences from file x.fasta

b) Count  the  number  of  Cysteine  amino  acids  in  each
protein, keep only the proteins with 2 or more.

c) Feed  those  proteins  into  the  SignalP  service  with
parameters:

i. Truncate at 50 residues
ii. Organism group = Eukaryotes
iii. Method = HMM

and  keep  only  those  proteins  that  return  a  positive
result.

d) Feed those proteins into TMPRED with parameters:

i. Minimum  length  of  hydrophobic  part  of  trans-
membrane helix = 17

ii. Maximum  length  of  hydrophobic  part  of  trans-
membrane helix = 33

and keep only those that return a negative result.

e) Display those proteins.

It  is  easy  to  see  how  the  modules  listed  above
correspond to  the steps in the process, which would be
represented graphically as in figure 2:

It might also be advantageous to perform some of the
steps  in  parallel  to  take  advantage  of  distributed
processing if  tasks  run on remote  processors  (as in the
case of SignalP and TMPRED), in which case the process
could be represented as in figure 3:

Figure 2: Serial configuration



Although  the  system  worked  well,  producing  the
expected results in a reasonable time-frame, a number of
problems were found:

• Complexity:  Many  of  the  modules  were  very
complex, requiring much time, effort  and knowledge
about  the  biological  subject  matter  and  computing
techniques,  making them too difficult for a biologist
to produce.

• Fragility: Some of the modules (particularly those that
interfaced  with  external  systems)  were  very
susceptible  to  minor  changes  in  the  target  system,
causing  it  to  either  fail  or  yield  incorrect  results.
Because  of  the  complexity of  the module they also
contain many possible points of failure. The number
and  variety  of  ways that  a  module  could  fail  made
trapping  the  errors  and  taking  appropriate  action
difficult.

• Variability: A new module would need to be created
for  each  new data  source,  and  even  sometimes  for
different  questions  posed  to  the  same  data  source.
Given  the  explosion  in  the  number  and  types  of
bioinformatic  data  sources  it  would  require  a  very
significant effort to keep up.

These  problems  indicate  that  the  development  and
ongoing  maintenance  load  required  for  such  a  system
would be impractical to maintain.

3. A Solution: PolyOme

To overcome the problems listed in section 2, it was
decided to breakdown the high level modules, like “Run a
SignalP  query...”  into  base-level  modules  like  “Get  an

HTML page”  or  “Run  a  remote  CGI  script”.  Smaller,
simpler  modules  with  limited  functionality  have  the
advantage  of being:

• easier, quicker and cheaper to build,

• reusable, only need to be written once but can be used
in many combinations with other small modules, and

• more  robust,  simpler  modules  have  fewer  ways  in
which  they  can  go  wrong,  making  error  trapping
easier.

However,  having  many  small  modules  introduces
another  problem.  It  became  correspondingly  more
difficult for the user to join together a large number of
small modules compared to a small number of large ones.
Essentially,  the  skill  that  the  developer  of  the  large
module had used in writing it, now had to be shown by the
user  in  linking  the  smaller  modules  together.  Clearly
another method of linking the modules was required. 

After considering a number of GUI type interfaces, it
was decided to  use a text based interface, with English
words as input. A text based interface would be superior
in several ways: 
a) It  would be more flexible, allowing the system to cope

with a wide variety of questions, statements and data
sources. 

b) Details  of  the  workings  of  the  functional  modules
could be hidden from the user.

c) The  system  could  resolve  ambiguities  or  request
further  information  from  the  user  via  the  same
interface, establishing a conversation with the user.

d) The system could use the same process to handle non
English  type  inputs  such  as  HTML,  XML,  comma
delimited data etc. enabling it to not only handle user
input,  but  also  to  process  the  information  returned
from a data source.

It  was  decided  not  to  use  a  full-blown  Natural
Language Processing (NLP) system because it would be
unnecessarily  complicated.  The  domain  is  simpler,  not
needing full  NLP. Also,  full NLP would not permit  the
handling  of  HTML,  XML  and  other  non  English
information. 

PolyOme is essentailly a mechanism by which the user
can compose submodules from base-level units and higher
level  modules  from  submodules  by  means  of  a
conversational  process.  The  general  architecture  of
PolyOme  consists  of  the  user  interface,  a  database,  a

Figure 3: Parallel configuration



library of basic functions and a set of processes, see figure
4.

The  system is  implemented  as  a  single  user,  single
database structure for the sake of simplicity. 

• User Interface: The user interface is implemented as
a simple two part  screen, the user types input at the
bottom and the system's reply appears at the top,  as
shown in figure 5.

• Database:  The  database  consists  of  two  parts,  a
relational database (RDB) and a logic database (LDB).
The LDB is used to  contain facts about the subject
matter and the RDB is used to record part-of speech
tags and translation rules. Although the database could
have been constructed using either a LDB or a RDB
alone, a combination of the two was chosen so that
each could be used for the tasks to which it  is best

suited. A LDB (implemented here in Prolog) is good
for storing a wide variety of information, having no
strict field/table structure, and the logic engine is good
at inferring information from the stored facts. Both of
these  are  difficult  to  do  in  a  relational  database.
However,  Prolog  tends  to  be  slow,  so  tasks  that
require little or no use of the inferencing engine and
have  well  defined  data  structures  would  be  better
performed by the RDB. 

• Basic Function Library: The basic function library
consists of a number of Prolog functions, and provides
the basic  capabilities  of the system, such as reading
relational databases, reading HTML pages etc. Some
of these are  programmed as  Java classes,  which are
then  registered  with  the  Prolog  engine  as  'built-in'
functions, and some are written as pure Prolog. 

These functions are purely for internal use within the
system. They are  hidden from the  user by the  User
Interface  and  the  process  ProcessMsg,  which  is
described below.

The following two Java functions provide the system
with the ability to read any ODBC data source and to
add that information into the LDB.

readODBC/4,  which  reads  an  ODBC  data  source.
Given the data source name, table name and a list of
fields it  returns a list of values corresponding to the
rows and columns extracted from the table. 

factise/3,  which  converts  a  list  of  row and  column
values (as returned by readODBC/4 for example) into
facts which are added to the LDB.

An example of a pure Prolog function is xisa/2:

xisa(X,Y):-isa(X,Y).

xisa(X,Y):-isa(X,Z),xisa(Z,Y)

The  function  isa(X,Y)  corresponds  to  the  English
statement  “X is a Y”. xisa(X,Y) extends this to say
that if “X is a Z” and “Z is a Y” then “X is a Y”. For
example, if it is known that isa(human,mammal) and
isa(mammal,vertebrate) (i.e. “human is a mammal and
a  mammal  is  a  vertebrate)  then  the  question  “isa
(human,vertebrate)”  gets  the  answer  “No”,  however
asking  “xisa(human,vertebrate)”  gets  the  answer
“Yes”.

Several  other functions have been written in Java to
assist in the system's processing. These include: 

Figure 4: PolyOme general architecture.

Figure 5: User interface



checkPoint/1, to take a snapshot of the LDB.

rollBack/1,  to  restore  the  LDB  from  a  previous
checkPoint snapshot.

These functions are required to enable the system to
test sets of updates to the  LDB and back them out if
required.  checkPoint/1  is  also  used  to  ensure  LDB
persistence from one user session to the next.

• Processes: The main process, Converse, is responsible
for  conducting  a  dialog with the  user,  see  figure  6
below.

The user enters some input, which may be a question
or  a  statement,  and  this  is  passed  to  a  sub-process;
ProcessMsg  (the  workings  of  which  are  discussed
below).  Having  processed  the  input,  ProcessMsg
returns  either  a  statement  or  a  question.  If  it  is  a
statement, it is passed to the user and the conversation
ends. If it is a question, it is also passed back to the
user,  but  in  this  case  the system places  the original
input on a stack and waits for a reply from the user.
When the system receives a reply it is passed to a new
invocation of ProcessMsg. This second invocation of

ProcessMsg  can  also  return  either  a  statement  or  a
question. If a question is returned, the (second) input
is stacked, the question is sent to the user, etc on down
through another level. If a statement is returned, this
too is  sent  to  the user  and the system pulls the top
message from the stack and passes it  to ProcessMsg
where it is processed again from scratch. 

In this way the system conducts a conversation with
the user, successively seeking clarification to anything
that it does not know how to handle.

The sub-process ProcessMsg is responsible for taking
one input at a time, converting it into a set of calls to
functions  from  the  Basic  Function  Library  and
executing  these  functions.  This  is  done  in  the
following steps:

• The  words  are  split  up  and  associated  with  all
known  part-of-speech  tags  from  the  RDB.  For
example, the input:

“rip is a protein” 

gives the combinations of patterns:

(rip,noun),(is,verb),(protein,noun)

(rip,verb),(is,verb),(protein,noun)

• Each pattern is then matched, word by word, to a
set  of  translation  rules  from  the  RDB.  Each
translation  rule  associates  a  pattern  of
words to one or more basic functions. E.g:

(%sub%,noun),(is,verb),(%obj%,noun)  =
assert(isa(%sub%,%obj%))

The left side of the rule specifies the word patterns
to  which  it  matches  (note  the  use  of  named
variables, %sub% and %obj%) and the right side
specifies the corresponding basic functions. 

It is possible to have several patterns for an input,
and  for  each  of  these  to  match  to  several
translation rules. Hence an algorithm is applied to
all  the  possible  interpretations  of  the  input   to
decide which is the most appropriate. For example,
the second pattern would not  match this rule.  In
fact it is unlikely that a rule for a verb/verb/noun
pattern would exist, so this interpretation would be
discarded. 

Figure 6: Converse.



After matching, the actual values from the pattern
are substituted for the appropriate variables in the
right side of the rule, giving a prolog statement:

assert(isa(rip,protein))

Note  that  for  some patterns  it  is  possible  that  a
series of more than one rule may apply, i.e. rule1
matches the first 4 words of the pattern and rule2
matches the next 5 and so on. 

• The Prolog clauses are then passed to the Prolog
engine for processing. In this example it adds one
fact to the LDB.

Note that the system is not attempting to understand
the  input.  It  is  merely  determining  the  most  likely
association  between  the  input  and  a  set  of  basic
functions based on the  rules it has in its database. The
system does not impose a specific syntax on the user.
It is also possible for the system to accept other forms
of input, for example, structured text such as XML or
HTML, by adding appropriate translation rules to the
database. 

4. Future Work

The  essence  of  the  converstaional  engine  has  been
presented. The following are yet to be investigated fully:

• Scaling: It is not yet clear how well the Prolog engine
will cope with a significant increase in the size of the
LDB.

• Scoring algorithm: As more and more translation rules
are added to the database the scoring algorithm may
need to be changed in order to adequately differentiate
between them.

• Automatic  generation  of  translation  rules:  For  the
system to  'grow and  learn'  it  will  be  necessary  for
ProcessMsg to be able to add appropriate translation
rules to the database.

• Fault tolerance: Improve the mechanism for handling
failure within a basic function.

• Bulk load part-of-speech tables and LDB: To give the
system a head start it is intended to bulk-load several
parts of the database from various online dictionaries
and ontologies.

• Build primitive function library:  What the system is
able  to  do  is  limited  mainly by the  contents  of  the
basic function library. It will be necessary to write an
extensive set of routines.

• Make the system available to a number of biologists to
assess its usefulness.

5. Conclusion

The  outline  of  a  system  for  the  integration  and
querying of data sources in the bioinformatic domain has
been given. It has a simple, intuitive user interface, and is
capable of being extended to cope with new data sources.
A mechanism for the composition of high level modules
from base-level units using a conversational process has
also  been  presented.  The  full  system  is  still  under
development.  It  already  performs  reasonably  well  on
simple  tasks  and  statements  like  learning  facts  from
conversation to add to the LDB where appropriate, being
able  to  read  data  from  a  (relational)  data  source  and
integrate  it  into  the  LDB,  and  to  answer  simple  user
queries on that data.  Further development is required to
demonstrate the system's full potential and to investigate
the effects of increases of scale.
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