
Web Intelligence 0 (2020) 1 1
IOS Press

Active Learning Strategies for Solving the
Cold User Problem in Model-Based
Recommender Systems
Tomas Geurts a, Stelios Giannikis a, Flavius Frasincar a,∗

a Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA, Rotterdam, The Netherlands
E-mail: tomasgeurts92@gmail.com, steliosgiannik@gmail.com, frasincar@ese.eur.nl

Abstract. Customers of a webshop are often presented large assortments, which can lead to customers struggling finding their
desired product(s), an issue known as choice overload. In order to overcome this issue, recommender systems are used in web-
shops to provide personalized product recommendations to customers. Though, model-based recommender systems are not able
to provide recommendations to new customers (i.e., cold users). To facilitate recommendations to cold users we investigate mul-
tiple active learning strategies, and subsequently evaluate which active learning strategy is able to optimally elicit the preferences
from the cold users in a matrix factorization context. Our model is empirically validated using a dataset from the webshop of
de Bijenkorf, a Dutch department store. We find that the overall best-performing active learning strategy is PopError, an active
learning strategy that measures the variance score for each item.

Keywords: Collaborative filtering, matrix factorization, active learning

1. Introduction

Modern-day consumers have made the transition
from shopping at brick-and-mortar retailers with a
limited assortment on display to shopping at web-
shops with practically unlimited assortment available.
The most eminent example of such a webshop is the
American on-line retailer Amazon.com, which offers
over 480 million products. Even though Amazon.com
has more products in its assortment compared to any
other webshop, other webshops also have consider-
ably larger assortments when compared to their off-
line counterparts.

Being able to present a wide and diverse assortment
is important for each webshop. When webshops offer
a large, varied assortment they can presumably better
fit the individual needs of customers. However, when
the size of the assortment grows substantially, a new is-
sue arises for webshops. This issue is known as choice

*Corresponding author. E-mail: frasincar@ese.eur.nl.

overload [1]. Choice overload implies that when cus-
tomers are exposed to a considerably large assortment,
they struggle with finding the desired products, and
subsequently experience stress, anxiety, or other neg-
ative emotions. This could lead to dissatisfied cus-
tomers, or even customers leaving the website and pur-
chasing the desired product elsewhere. Hence, it is key
for webshops to display products which are relevant
for customers.

The challenge of offering a personalized, and thus
relevant, assortment to customers gave birth to the con-
cept of recommender systems (RS) [2]. RS’s are effec-
tive when it comes to information filtering, news ar-
ticle recommendation, and numerous e-commerce re-
lated applications [3]. They provide personalized rec-
ommendations, which possibly increase the probabil-
ity of a customer purchasing a product [4].

Interest in the field of RS’s was boosted when
Netflix initiated a contest where they challenged re-
searchers and enthusiasts to outperform their RS at
the time, Cinematch, by 10%. The performances of

2405-6456/20/$35.00 c© 2020 – IOS Press and the authors. All rights reserved

2 T. Geurts et al. / Active Learning Strategies for Solving the Cold User Problem in Model-Based Recommender Systems

the competing RS’s were measured by the root mean
square error (RMSE). Netflix promised one million
dollars to the first team achieving this goal. On the 21st

of September 2009 ‘BellKorr’s Pragmatic Chaos’ was
the first team to outperform Cinematch by 10%.

Despite its importance, there are only a few works
[5,6,7,8,9] that propose a solution regarding how to
provide personalized recommendations to new users,
also known as cold users. The reason why there are
only few works that have come up with a solution
to the cold user problem is evident: it is difficult to
provide personalized recommendations to a user for
whom there is no information available. However, be-
ing able to provide personalized recommendations to
cold users is of vital importance for a webshop. Fail-
ing to deliver personalized recommendations can lead
to cold users leaving the webshop, which in turn leads
to the webshop missing out on a customer. In this sce-
nario, a webshop not only loses one sale, but the cus-
tomer might never return, hence missing out on many
potential sales. Though, many works on RS’s do not
focus on this type of users. In fact, the majority of the
works on RS’s remove all users that have less than
a certain number of ratings from their datasets. Re-
searchers do this in order to ease the testing procedure
of their RS’s, because when more ratings are known
from a user, the better the remaining ratings can be pre-
dicted. This is particularly the case for RS’s utilizing
collaborative filtering, which rely on comparing users
by their past behaviour in order to provide recommen-
dations.

Only a small number of existing works propose a
solution to the cold user problem, usually by incorpo-
rating additional sources of information. Examples of
additional sources of information regarding the cold
users utilized to facilitate personalized recommenda-
tions to these cold users are social information [5],
demographical information [6] (demographical infor-
mation has been also used for improving collabora-
tive filtering in general [10]), or queried item prefer-
ences [7,8,9]. For webshops, the first two options are
not desirable as this information is not always available
when a customer visits the webshop for the first time
(demographical information), or customers are most-
likely not willing to share this information (social in-
formation). Yet, the latter option (querying item pref-
erences) seems like a viable solution for webshops to
facilitate providing personalized recommendations to
cold users. We further explore such a solution in this
paper, however, by taking a slightly different approach
compared to the existing literature.

We recognize one serious problem for many RS’s,
being providing personalized recommendations to
cold users. This in particular holds for RS’s relying on
matrix factorization, because a user who has not yet
provided any information to the system cannot be com-
pared to other users, and hence no personalized rec-
ommendations can be provided. Though, matrix fac-
torization, has become increasingly popular because
it is able to provide accurate recommendations [11].
Hence, it would be of particular interest to find a so-
lution to the cold user problem for RS’s which utilize
matrix factorization. One of the most renowned RS’s
using matrix factorization is the model proposed by
Koren et al. [12].

In this paper we focus on adapting an existing RS
using matrix factorization, where we use the model
from [12] as our reference, such that the cold user
problem is addressed. This leads to the following re-
search question: how can RS’s using matrix factoriza-
tion be adapted such that it can provide personalized
recommendations to cold users?

In order to solve the problem posed in the re-
search question, the model proposed by Koren et al.
[12] is adapted. Our adaptation first elicits the pref-
erences from the cold users with respect to a num-
ber of items, and subsequently incorporates the prefer-
ences of the cold users in the optimization procedure.
What items are shown is decided by an item ranking,
which depends on a particular active learning strategy.
We produce multiple item rankings which rely on dif-
ferent strategies, and accordingly evaluate which ac-
tive learning strategy elicits the preferences of the cold
users best, ultimately leading to the most accurate rec-
ommendations. This work is an extension of our previ-
ous research presented in [13], where we propose four
additional ranking methods (Misclassification Error,
PopError, Variance, and PopVariance) that we evaluate
against each other and our previously proposed meth-
ods.

2. Related Work

At the beginning of the 1990’s the first works on
RS’s were published. During the same decade, re-
search in the field of RS’s slowly advanced into a full-
grown field of research. [14,15,16]. Since the turn of
the century, RS’s have further been developed. For a
complete overview we refer the reader to a number of
surveys on recommender systems [17,2,18].

T. Geurts et al. / Active Learning Strategies for Solving the Cold User Problem in Model-Based Recommender Systems 3

When RS’s are not able to provide personalized rec-
ommendation to cold users, we refer to this as the cold
user problem [19]. Collaborative filtering methods that
do not incorporate additional information on the cold
users, are not able to provide personalized recommen-
dations to cold users, since there is no historical data
available on these users. Hence, the RS can not com-
pare them to other users because they have not rated or
interacted with any items yet. This logic also applies
to newly introduced items. The literature on RS’s dis-
tinguishes between three types of RS’s: content-based
methods, collaborative filtering methods, and hybrid
methods [2]. Content-based methods profile the users
and items using available characteristics, e.g., user de-
mographics or item specifications. Items are recom-
mended to the users by comparing the characteristics
of the previously obtained items with all other items,
and recommending items that are relatively similar to
the previously obtained items based on their character-
istics. In [20] for example the items are songs, and for
each item a large number of features are collected by a
trained music analyst. These features capture not only
the musical identity of a song, but also the many sig-
nificant qualities that are relevant to understanding the
musical preferences of listeners [20]. Thus, each song
obtains its own genome. When a user listens to a num-
ber of songs, the RS recommends other, comparable
songs to the user, based on the genomes of the songs
the user previously listened to.

The second type of RS’s is known as collabora-
tive filtering methods. Collaborative filtering methods
compare a user with other users and compute simi-
larities between the users according to their past be-
haviour. This logic also applies to items. An overview
of collaborative filtering methods is presented in [21].
An advantage of collaborative filtering methods is that
they are not bound to a domain, and they are able to
profile more complex relationships between users and
items which are not identified by content-based meth-
ods [12]. This is the foremost reason why we focus on
collaborative filtering methods in this paper.

The final type of RS’s are hybrid methods, some-
times referred to as content-boosted collaborative fil-
tering methods. Hybrid RS’s utilize methods of both
the content-based methods and the collaborative filter-
ing methods, and combine these into one RS [22,23],
levering the conveniences of both content-based RS’s
and collaborative filtering RS’s. In the remainder of
this paper we focus on RS’s which rely on collabora-
tive filtering.

2.1. Collaborative Filtering

The term collaborative filtering was introduced by
Goldberg et al. [24]. They implemented collaborative
filtering in their e-mail filtering system which was
named Tapestry. This system was designed to filter e-
mails received from mailing lists and newsgroup post-
ings.

Collaborative filtering can be divided into two sub-
categories. On the one hand there are memory-based
methods, also referred to as neighbourhood methods.
Memory-based methods check the (full) user-item in-
teraction matrix, the matrix with all user-item inter-
actions, for users that are similar to the initial user,
which is called the user neighbourhood. The first RS’s
were pure memory-based methods and scanned the full
user-item interaction matrix for all pairwise similari-
ties [25]. However, more recent memory-based meth-
ods were proposed that do not scan the full user-item
interaction matrix, but use more advanced, and ef-
ficient methods to find users that are in the neigh-
bourhood of the initial user [2]. Memory-based meth-
ods can even further be split into user-based meth-
ods [26], which compute similarities across users, and
item-based methods [3], which compute similarities
across items. Item-based methods are preferred over
user-based methods, as in general there are more users
than items, and hence item-based methods scale better.

In addition to memory-based methods, there are
model-based methods, which, in contrast to memory-
based methods, only utilize the user-item interaction
matrix once to learn a predictive model, and subse-
quently use this model to predict the user-item interac-
tions. Well-known model-based methods are Bayesian
networks [27], cluster-based models [8], and ma-
trix factorization [12]. From these three model-based
methods, the latter method has become increasingly
popular since the Netflix Prize competition.

Memory-based methods are generally easier to im-
plement, and when the neighbourhood is not too large,
they are also relatively scalable. On the other hand,
the majority of the model-based methods provide
better recommendations compared to their memory-
based counterparts, and hence, dependent on the pre-
cise application, are often preferred over memory-
based methods [11]. A relatively new, well-performing
model-based method is matrix factorization, on which
we elaborate in the next section.

4 T. Geurts et al. / Active Learning Strategies for Solving the Cold User Problem in Model-Based Recommender Systems

2.2. Matrix Factorization

Matrix factorization, especially since the closing of
the Netflix Prize competition, has become an increas-
ingly popular model-based method used for collabora-
tive filtering in RS’s. Briefly, matrix factorization at-
tempts to find lower dimensional vectors for both the
users and items in which the common latent factors
are captured. These lower dimensional vectors with la-
tent factors are inferred from the user-item interaction
matrix. The method is built on the belief that for both
users and items there is a small amount of latent fac-
tors that fully capture the user’s preference and the
item’s characteristics. Matrix factorization can be used
to include both explicit feedback and implicit feedback
[11]. There are multiple types of matrix factorization
methods available. Among others, there are Regular-
ized Singular Value Decomposition [28], Probabilis-
tic Matrix Factorization [29], and Non-negative Matrix
Factorization [30].

A recurring problem concerning matrix factoriza-
tion methods is the fact that these methods only uti-
lize the user-item interaction matrix, and can not in-
corporate additional information concerning the users
or items when learning the latent factors of the users
and the latent factors of the items. This implies that,
when the user has not given (enough) feedback to the
RS, providing personalized recommendations is very
difficult.

2.3. Cold User Problem

When RS’s are not able to provide personalized rec-
ommendation to cold users, we refer to this as the cold
user problem [19]. Collaborative filtering methods that
do not incorporate additional information on the cold
users, are not able to provide personalized recommen-
dations to cold users, since there is no historical data
available on these users. Hence, the RS can not com-
pare them to other users because they have not rated or
interacted with any items yet. This logic also applies
to newly introduced items.

With regard to the cold user problem, a possible so-
lution is incorporating additional sources of informa-
tion to enhance the user profile. Jamali and Ester [31]
and Golbeck et al. [5] propose incorporating social in-
formation of cold users. Even though this seems like
an effortless approach to gather more information on
new customers, research has shown that (new) cus-
tomers are reluctant to sharing their social informa-
tion with webshops [32]. Another possible approach

to include additional sources of information concern-
ing cold users is including demographical information
[6]. For this solution also holds that it is not desirable
to ask for such information when a customer visits the
webshop for the first time, since the webshop would
like to refrain from making privacy-sensitive requests
when the customer is new to, and not familiar with the
webshop. The last approach to obtain additional infor-
mation that we discuss here entails showing a num-
ber of items to the cold users and eliciting the pref-
erences from their responses. In the literature this is
regularly referred to as active learning methods [33].
This additional source of information is incorporated
by, among others, Zhou et al. [9] and Yu et al. [8]. Even
though it is not desirable to require a user to go through
an interview process, this could be the least-harmful
way of eliciting necessary preferences of users towards
items in a short period of time, in order to provide per-
sonalized recommendations afterwards. Asking a cold
user to provide demographical information (e.g., age,
gender, place of residency) is generally considered as
more privacy-intrusive compared to asking a cold user
to provide her preferences towards a number of items.

Until a couple of years back, works concerning the
cold start problem (cold user and cold item problem)
focused in particular on the cold user problem. How-
ever, the cold item problem is possibly as precarious
for webshops. In short, the problem entails that prod-
ucts which are recently added to the assortment are
not recommended as often as products that have been
around for a longer period of time since the current
customer base has not been able to (frequently) buy
these products yet. Hence, pure collaborative filter-
ing methods less often recommend new products com-
pared to products which are around for a longer pe-
riod of time. However, contrary to the cold user prob-
lem, there are a number of solutions available for web-
shops to accommodate for the cold item problem. Ex-
isting content-boosted collaborative filtering methods
[34] provide solutions to this issue when item attribute
information is available, which can be assumed that is
the case for webshops.

Even though the cold item problem is equally pre-
carious as the cold user problem, for our research we
focus on adapting RS’s such that they are able to deal
with the cold user problem. In the next section we fur-
ther look into a number of adaptations which are able
to deal with the cold user problem.

T. Geurts et al. / Active Learning Strategies for Solving the Cold User Problem in Model-Based Recommender Systems 5

2.4. Ranking Problem

There are several solutions for providing person-
alized recommendations to cold users. In particular,
showing items to cold users in order to elicit their pref-
erences, is a promising solution to this problem with
regard to webshop applications. This solution is some-
times referred to as active learning for collaborative fil-
tering [33]. Though, when requiring the opinion on a
number of items from the cold users in a webshop, it is
desirable to use as little time of the cold users as pos-
sible. In other words, we want to minimize the amount
of time needed to learn the preferences from the cold
users. Hence, it is crucial to show items to the cold
users which have the most explanatory power, and give
the most insight into the preferences of the cold users.
In this section we review previous research regarding
the ranking of items such that the most informative
items are ranked highest.

Yu et al. [8] present a compelling argument why
showing the “right” items to the cold users is of vi-
tal importance. Supposedly, cold users are not willing
to spend much time on expressing their opinion on a
number of items. This argument makes sense as cus-
tomers that are new to a webshop should probably not
be bothered with time-consuming questionnaires be-
fore being able to make use of the services that are of-
fered within a webshop (e.g., a RS). Asking a new cus-
tomer to fill in a questionnaire might increase the prob-
ability of a customer leaving the webshop before mak-
ing a purchase. As a result of this, when eliciting the
preferences of the cold users on the items, it is essen-
tial to show items which have large explanatory power.
For example, when an item is shown to the cold users
which has previously been rated by only one user, rat-
ings from the cold users on this item do not give much
information concerning their overall preferences, as it
can only be compared with one other user.

Strategies that determine which items should be
ranked highest are called active learning (AL) strate-
gies [33]. We can split AL strategies into two groups,
personalized and non-personalized AL strategies. The
first type implies that personal information from the
cold users are utilized to form an item ranking, and
the second type does not use such information. We
focus on the non-personalized AL strategies, as web-
shops rarely have personal information from cold users
at their disposal. In [35] an overview of different types
of AL strategies is provided. Yu et al. [8] propose an
entropy-based strategy to determine the ranking of the
items. Furthermore, Yu et al. [8] set the number of

shown items to ten. In our research we experiment
with this parameter, which is elaborated on in the up-
coming section. Rashid et al. [7] also propose several
AL strategies. Their best performing AL strategy com-
bines a score inferred from the popularity of an item
and an entropy-based score (we refer to this combined
AL strategy as the PopEnt strategy in the remainder
of this paper). For our AL strategies we follow a sim-
ilar set-up as Rashid et al. [7]. However, our method-
ology differs from the methodology used by Rashid et
al. on a number of points. First of all, next to the AL
strategies evaluated by Rashid et al., we also evalu-
ate the PopGini, PopError and the PopVar strategy, all
variations on the PopEnt strategy, and the Gini, Mis-
classification Error and Variance strategies. Secondly,
the model that provides the recommendations after the
preferences of the cold users are elicited is different
compared to Rashid et al., as we use a RS using matrix
factorization, instead of nearest neighbors, to provide
the personalized recommendations to the cold users.
Finally, our dataset contains implicit feedback, while
the dataset used by Rashid et al. contains explicit feed-
back.

2.5. Contribution

Our contribution to the existing literature is two-
fold. First of all, we adapt the model proposed by Ko-
ren et al. [12] to facilitate providing personalized rec-
ommendations to cold users, since personalized rec-
ommendations can possibly increase sales and cus-
tomer loyalty. This is achieved through showing a
number of items to the cold users and requiring their
opinion regarding the shown items, in order to elicit
the preferences from these cold users. The informa-
tion gathered on the preferences of the cold users is
included in the optimization of the objective function
of the RS. We evaluate which AL strategy is able to
gather the most information from the cold users. We
investigate multiple AL strategies, from which a num-
ber are proposed earlier by Rashid et al. [7]. How-
ever, we also include five novel AL strategies, Gini,
PopGini, Misclassification Error, PopError, and Pop-
Var strategies. As this work is an extension of our pre-
vious research [13], two of these strategies, Gini and
PopGini have been previously presented.

3. Methodology

In this section we elaborate on the model which we
use for our research. This model is an adaptation to

6 T. Geurts et al. / Active Learning Strategies for Solving the Cold User Problem in Model-Based Recommender Systems

the model proposed by Koren et al. [12]. Our model
specifically addresses the cold user problem for RS’s
using matrix factorization.

3.1. Notation

In a RS there are typically N users (customers). The
complete set of users is given by U = {u1, u2, ..., uN}.
Analogous to the notation of the users, there are M
items (products), where the complete set of items is
given by I = {i1, i2, ..., iM}. If a user u interacts with
an item i, this is denoted by aui. Interactions can be rat-
ings on a scale from 1 to 5, in the case of explicit feed-
back (e.g., movie ratings), or binary ratings, in the case
of implicit feedback (e.g., purchased an item, looked
at an item, etc.). The complete set of interactions be-
tween all users and all items, the user-item interaction
matrix, is given by A ∈ RN×M . The domain of aui is
given by aui ∈ {0, 1}. Since the data we use for the RS
is implicit feedback, we have chosen to limit the values
of the interactions to either 0 or 1. In our dataset, the
value 1 indicates one or multiple purchases, and 0 in-
dicates that the item is returned. We follow the reason-
ing of Schafer et al. [4]: if a product is purchased twice
and only one of the two products is returned, we record
this as a 1, as the sum of the interactions is positive. It
holds that the majority of the users only interacted with
a subset of the complete set of items Iu ⊆ I, where Iu

is defined as the subset of items interacted with by user
u. Hence, in general we expect to observe only a small
number of 1’s and 0’s per user.

3.2. Matrix Factorization

Matrix factorization attempts to map both the user
matrix and the item matrix to the same latent space.
The user latent factor matrix, P ∈ RF×N , can be re-
garded as the preferences of users towards the differ-
ent latent factors, while the item latent factor matrix,
Q ∈ RF×M , can be regarded as the resemblance of
items with the different latent factors. Furthermore, it
holds that F � min(N,M). By multiplying the matrix
P and the matrix Q, an approximation to the user-item
interaction matrix A is computed. It should be noted
that A can contain missing values, i.e., since no user
has interacted with all the items (most users have only
interacted with a very small amount of items).

Explaining the observed interactions only by the in-
ner product of P and Q is not sufficient according to
Koren et al. [12], since the interactions can also par-
tially be explained by effects corresponding to a par-

ticular user or particular item. Therefore, we include
three biases: a global bias (represented by µ), a user
bias (represented by bu), and an item bias (represented
by bi). For the values of the latent factors correspond-
ing to user u, pu, and to item i, qi, the approximation
to the user-item interaction aui, is given by,

aui ≈ âui = µ+ bu + bi + pT
u qi. (1)

where âui is the approximation to the initial user-item
interaction aui.

Once P and Q are known, finding Â is straightfor-
ward. However, the challenge lies in finding the latent
factor matrices P and Q. Typically, this is achieved us-
ing Singular Value Decomposition (SVD). SVD was
used to perform latent semantic analysis in the early
1990’s [36]. Subsequently, Paterek [28] and Koren
[11] applied a technique similar to SVD successfully
to matrix factorization.

However, as ordinary SVD is not feasible when we
are dealing with a sparse user-item interaction matrix,
this technique is adapted in order to deal with missing
values. A possible solution to this problem is fitting the
model only to the observed interactions. Even though
this solves the previous problem, it causes the model
to be very susceptible to overfitting. Kim and Yum
[37] use imputation to overcome possible overfitting,
but this in turn leads to more expensive computations.
More recently, several works [11,28,38] fit the model
only on the observed interactions, but they include a
regularization parameter to avoid the model from over-
fitting. We adopt the same approach, but, in contrast to
Koren et al. [12], who only include one global regular-
ization parameter, we choose to include two separate
regularization parameters, one for the bias terms and
one for the latent factors, which should give more flex-
ibility to the model. This leads to the following model,

min
p,q,b

∑
(u,i)∈K

(aui − µ− bu − bi − pT
u qi)

2+

λ1(b2u + b2i) + λ2(||pu||2 + ||qi||2),
(2)

where K is the set containing the interactions that are
included in the training set, λ1 is the regularization pa-
rameter for the bias terms, and λ2 is the regularization
parameter for the latent factors. To convert the predic-
tions made by the model to a binary variable, we use
the following logistic function,

â∗ui =

[
1

1 + exp(−âui)

]
, (3)

T. Geurts et al. / Active Learning Strategies for Solving the Cold User Problem in Model-Based Recommender Systems 7

in this expression âui is the predicted interaction for
user u with item i and â∗ui is the dichotomized predicted
interaction.

There are different algorithms which can be used
to solve Equation 2. Commonly applied is Stochastic
Gradient Descent (SGD), which considers one obser-
vation at a time, lowering the computations per itera-
tion. In short, this algorithm implies that for each ob-
served rating included in the training set the prediction
error is computed. Formally,

ε
pred
ui = aui − â∗ui. (4)

Accordingly, bu, bi, pu, and qi are updated using the
following rules,

bu ← bu + γ1(ε
pred
ui − λ1 · bu), (5)

bi ← bi + γ1(ε
pred
ui − λ1 · bi), (6)

pu ← pu + γ2(ε
pred
ui · qi − λ2 · pu), (7)

qi ← qi + γ2(ε
pred
ui · pu − λ2 · qi), (8)

where γ1 and γ2 are the learning parameters.

3.3. Strategies for Item Ranking

For a cold user k, the user vector uk is an empty
vector because this user has not interacted with any
items so far. Since we have no information available
concerning this user, we cannot provide any personal-
ized recommendations to this user. To be able to pro-
vide such recommendations, we should elicit her pref-
erences towards a number of items. In other words, we
would like to know the true values for {ak1, ..., ak j},
where j is a finite number for which holds that j� M.

The goal is to elicit the preferences of the user to-
wards the j products, which lead to the highest rec-
ommendation quality. In our research we try different
values for j as explained in the evaluation. We present
ten strategies which are used to generate the item rank-
ings from which the top-ranked items are shown to
the cold users. All the AL strategies that we propose
do not account for user-specific information and re-
quire each user to give their opinion on the same set
of items. As mentioned before, these AL strategies are
considered as non-personalized AL strategies [35]. A
number of AL strategies that we propose (the random
strategy, the entropy strategy, the popularity strategy,
and the PopEntropy strategy) have been investigated
in other works [39,7] in a different context. Five novel

AL strategies are proposed in this paper: the Gini strat-
egy, based on the Gini impurity measure, the PopGini
strategy, which is a combination of item popularity and
Gini impurity score, the Misclassification Error strat-
egy, the PopError strategy, which is a combination of
the Popularity strategy and the Misclassification Error,
and finally the PopVar strategy, which is a combina-
tion of the Popularity strategy with the Variance strat-
egy introduced by [40], but has not yet been applied
for implicit feedback systems.

For the Random strategy, Gini strategy, Entropy
strategy, Misclassification Error strategy, Variance
strategy PopGini strategy, PopEnt strategy, PopError,
and PopVar strategy only items for which the number
of interactions is larger than ten are considered. If we
do not impose this threshold, items that have only been
interacted with a small number of times (< 10) are
possibly ranked high. We set this value to ten because
for this value we find the best trade-off between the
number of items eligible to be selected using the ran-
dom strategy and the number of available interactions
per item.

3.3.1. Random Strategy
We first propose the random strategy, which entails

a random selection of items to form the item ranking.
This AL strategy is incorporated as a baseline for the
other AL strategies, as we expect the other AL strate-
gies to outperform a randomly assembled item rank-
ing.

The advantage of the random strategy is the fact
that the ranking of the products is at random and
hence, the shown products are by definition uncorre-
lated. Furthermore, all products from the assortment
have a probability of being presented, in contrast to the
other AL strategies which are presented in this section.

3.3.2. Popularity Strategy
The second AL strategy that we propose is the pop-

ularity strategy, which can be seen as a single-heuristic
attention-based AL strategy. With a single-heuristic
attention-based AL strategy we imply an AL strategy
that only depends on a single heuristic whose score
is based on the amount of ‘attention’ an item receives
(i.e., the popularity). This AL strategy implies that the
most popular items are ranked highest in the item rank-
ing. With popular items we denote items that have been
interacted with by the largest number of distinct users.

An advantage of this AL strategy is that the items
which are ranked high are items which many users
have interacted with. On the other hand, there are two
severe disadvantages to this AL strategy.

8 T. Geurts et al. / Active Learning Strategies for Solving the Cold User Problem in Model-Based Recommender Systems

The first disadvantage is the fact that many items
which are ranked high can be relatively similar. For ex-
ample, it could be possible that the three most popular
(and thus highest ranked) items are all t-shirts from the
same brand. Hence, once we know the opinion of the
customer on the first of these three items, the following
two responses do not provide much additional insight
in the preferences of the cold user (but do require an
effort from this cold user).

The second disadvantage entails that this AL strat-
egy only elicits the preferences from the cold users on
a number of popular items. This could lead to the prob-
lem that the RS also recommends more popular items
as opposed to less popular items.

3.3.3. Gini Strategy
Next, we propose the Gini strategy, which uses the

Gini impurity measure to compute the item ranking.
This AL strategy is considered as a single-heuristic
uncertainty-based AL strategy. With an uncertainty-
based AL strategy we imply an AL strategy that is
based on an impurity-measure, computing the ‘uncer-
tainty’ for each item. The Gini impurity for item i is
given by,

Gini(i) = 1−
∑
j∈0,1

(p(j|i))2, (9)

where p(j|i) is the relative frequency of a positive in-
teraction (j = 1) or negative interaction (j = 0) with
item i. Accordingly, the items are shown in descend-
ing order to the user. A high Gini impurity for item
i implies that the ratio between positive interactions
and negative interactions is (relatively) balanced. Intu-
itively, items with high Gini impurity are good in split-
ting the set of users into equally sized groups.

The Gini strategy ensures that the items that are
shown are able to optimally split the set of users,
which is considered advantageous. Specifically, the
Gini strategy highly ranks items which have received
much contrasting feedback from the users. As a result
of this contrasting feedback, the RS is rather unsure
about the user’s opinion on these items. Subsequently,
when a cold user expresses her opinion on this item,
this gives useful information regarding the cold user’s
preferences [35].

3.3.4. Entropy Strategy
Another commonly applied AL strategy is based

on the entropy measure [7,41]. Similar to the Gini
strategy, the Entropy strategy is also a single-heuristic
uncertainty-based AL strategy. We also include this

AL strategy in our research, where we use Shannon’s
entropy as the designated entropy measure. The en-
tropy for item i is computed accordingly,

Entropy(i) = −
∑
j∈0,1

p(j|i) log2 p(j|i), (10)

where p(j|i) is the relative frequency of a positive in-
teraction (j = 1) or negative interaction (j = 0) with
item i. Accordingly, the items are shown in descend-
ing order to the user. A high entropy for item i implies
that the ratio between positive interactions and neg-
ative interactions is (relatively) balanced. Intuitively,
items with a high entropy are good in splitting the set
of users into equally sized groups.

3.3.5. Misclassification Error Strategy
Another new strategy being proposed, is the Mis-

classification Error strategy which from now on will
be called “Error”. Error is a static non-personalized
single-heuristic uncertainty-based strategy used for the
item ranking. The Error for an item i is given by,

Error(i) = 1− max
j∈{0,1}

(p(j|i)) (11)

where it is one minus the maximum relative frequency
of a positive (j = 1) or a negative (j = 0) interaction.

3.3.6. Variance Strategy
Next, the Variance strategy [40], a single-heuristic

uncertainty-based AL strategy, aims at finding items
with the largest variance in their interactions. Items
with high score on variance, are considered uncertain,
as the system does not have a clear rating for those
items. The formula for the Variance strategy is given
by,

Variance(i) =
1

|Ui|
∑
u∈Ui

(rui − ri)
2 (12)

where |Ui| is the number of users u who have inter-
acted with the item i, rui is the interaction (either 1 or
0) for the item i. Finally, ri is the mean interaction for
the item i, taking into consideration all the users who
have interacted with the item i, either positively or neg-
atively.

T. Geurts et al. / Active Learning Strategies for Solving the Cold User Problem in Model-Based Recommender Systems 9

3.3.7. PopGini Strategy
This AL strategy entails a linear combination of the

scores produced by the popularity strategy (see Sec-
tion 3.3.2) and the Gini strategy (see Section 3.3.3).
This AL strategy can best be described as a static
combined-heuristic AL strategy. The popularity score
(i.e., interaction frequency of an item) tends to dom-
inate the PopGini score because of several outliers,
items for which many distinct users have interacted
with them. This leads to the popularity strategy and
PopGini strategy being relatively similar. To overcome
this issue (as we prefer that both scores are relatively
balanced), we take the logarithm with base 10 of the
popularity score. We choose for a log transforma-
tion since the distribution of the item frequencies are
rightly-skewed, i.e. many items which have only a few
interactions and a small amount of items that have
many interactions.

This AL strategy both accounts for popular items,
where many users have interacted with, and items
which are relatively different (in terms of feedback
given by the users), such that more information can be
elicited from the cold users. The importance weights
for the two components are optimized based on the
training data.

3.3.8. PopEnt Strategy
The next AL strategy is similar to the PopGini strat-

egy presented in Section 3.3.7, and also implies a lin-
ear combination of two scores. For this AL strategy,
we use a linear combination of the popularity strategy
(see Section 3.3.2) and the entropy strategy (see Sec-
tion 3.3.4). The PopEnt strategy can best be described
as a static combined-heuristic AL strategy. Similar
to the PopGini strategy, the popularity score tends to
dominate the PopEnt score. This leads to the popular-
ity strategy and PopEnt strategy being relatively simi-
lar. To overcome this issue we take the logarithm with
base 10 of the popularity score.

This AL strategy, similar to the PopGini strategy,
both accounts for popular items, where many users
have interacted with, and items which are relatively
different, such that more information can be elicited
from the cold users. This AL strategy is, as mentioned
before, relatively similar to the PopGini strategy. How-
ever, it is of particular interest whether the Gini impu-
rity measure or entropy measure performs better when
combined with the popularity score. The importance
weights for the two components are determined in the
evaluation.

3.3.9. PopError Strategy
The PopError strategy is another novel strategy for

addressing the cold-user problem, which is a combi-
nation of the Popularity and the Error strategies that
tries to exploit the advantages of both the Popularity
and the Error strategy. A linear combination of these
two strategies is taken and weights are assigned to each
of the strategies. To deal with the issue regarding the
popularity strategy, the logarithm with base 10 is once
again taken for the popularity strategy (see sections
3.3.7 and 3.3.8).

3.3.10. PopVar Strategy
The PopVar strategy, a combination of the Popu-

larity strategy and the Variance strategy, is consid-
ered a non-personalized combined-heuristic strategy
(all the considered AL strategies in this work are non-
personalized). Like the previous combined-heuristic
strategies, PopVar takes into account the frequency of
the items, therefore exploiting the most popular items
that many users have purchased. Next to the Popularity
strategy, the Variance strategy scores high items with
high variance in their interactions, meaning items with
very diverse interactions that are neither popular nor
unpopular. The combination of these two strategies is
achieved by assigning weights to each of the strate-
gies, which will be explained in detail in the evaluation
section. Like the other combined heuristic strategies,
a linear combination is made and the logarithm with
base 10 of the popularity score is taken to deal with the
issue of the popularity score dominating the Variance
score.

4. Evaluation

In this section we explain the evaluation of the
model proposed in this paper. Before presenting and
discussing our results we first introduce the dataset that
is used for our research. Subsequently, we present the
metric by which our model is evaluated, and the set-up
that is used to perform this experiment. We then final-
ize with presenting the results and discussing these.

4.1. Dataset

To empirically validate our model we use a dataset1

provided by de Bijenkorf, a Dutch department store

1Dataset is available from http://tinyurl.com/
z8mqele.

10 T. Geurts et al. / Active Learning Strategies for Solving the Cold User Problem in Model-Based Recommender Systems

with a large webshop. The webshop has over 100,000
unique visitors each day, over a quarter million euro
sales each day, and more than 200,000 unique products
currently in their assortment.

The dataset contains all interactions between cus-
tomers and products (i.e., purchases and returns) from
14 July 2015 till 13 July 2016. There are 563,495
unique customers and 242,020 unique products in our
dataset, and in total the dataset contains 2,563,878
unique interactions between a customer and a product.
We have chosen for dichotomized interactions, and
hence the interactions are assigned a 1 when the num-
ber of times product i is purchased by customer u is
larger than the number of times product i returned by
customer u and a 0 when these two values are equal.

Out of the 2,563,878 interactions, 2,159,538 inter-
actions are positive interactions (i.e., are assigned a
1) and 404,340 interactions are negative interactions
(i.e., are assigned a 0). If a customer has not purchased
(and hence also not returned a product), the interaction
between the customer and the product does not exist
(i.e., it is missing from the user-item interaction ma-
trix). This implies that the user-item interaction matrix
is very sparse. Each customer has interacted with 4.55
items on average, while each item has been interacted
with by 10.59 customers on average. Finally, in this
dataset all customer identifiers are anonymized.

4.2. Set-up and Model Parameters

To evaluate the performance of the model proposed
in this paper we include the score on the most-widely
used metric in the field of RS’s. This metric indicates
how the proposed models score with regard to the rec-
ommendation quality. The metric which we report is
the root mean square error (RMSE), which is given by,

RMS E =

√∑
(u,i)∈T (aui − â∗ui)

2

|T |
. (13)

where T is the test set, aui is the interaction of user u
with item i and â∗ui is the dichotomized predicted in-
teraction of user u with item i. For the RSME holds
that the lower its value, the better the recommendation
quality of the proposed model. We choose to only re-
port the RMSE, and not the MAE, as the RMSE and
the MAE are equivalent (up to a square root) when us-
ing binary values as the input for user-item interaction
matrix.

The goal of our experiment is to evaluate which
AL strategy elicits the most information from the cold

users such that the RS is able to provide the best rec-
ommendations, in terms of the RMSE, to these cold
users. We elicit the information from the cold user by
showing them a number of items and requiring their
opinion on these items. We evaluate the AL strategies
for different numbers of items shown to the cold users:
10, 25, 50 and 100.

We use the following experimental set-up: 25% of
the total set of users is randomly selected to be a cold
user. Similarly to other works that attempt to elicit
information from cold users, this number is picked
somewhat arbitrarily [39]. All the interactions of the
non-cold users are included in the training set. Addi-
tionally, all the interactions of the cold users with items
that are included in the item ranking under considera-
tion, under the condition that the cold user has inter-
acted with the item shown to her, are also included in
the training set (e.g., if cold user u has only interacted
with one of the items shown to her, only that particu-
lar interaction is included in the training set). The re-
maining interactions of the cold users are included in
the test set. Only cold users that have interacted with
at least one item in the ranking under consideration
(i.e., items shown to the cold user) are included in the
training and test set. If a cold user has not interacted
with any of the items shown to her (this can be inter-
preted as the cold user having no opinion on any of
the items from the item ranking shown to her), this
particular cold user is excluded from both the training
set and test set. We do this because if this user is still
included, we would be providing recommendations to
a cold user for which the ranked items did not elicit
any information from this particular user, and hence
the recommendations are not personalized. The intu-
ition behind this set-up is that previous to making rec-
ommendations to the cold users, the only information
we have at our disposal is the information on the inter-
actions of the previous (non-cold) users and the pref-
erences of the cold users with respect to the items that
are shown to them (i.e., the items from the item rank-
ing under consideration).

Before conducting our experiments we first tune the
model parameters. During both the model parameters
tuning and the experiments, we set the maximum num-
ber of iterations for the optimization procedure to 50.
To find the optimal number of factors to include in the
matrix factorization, and the optimal values for the reg-
ularization parameters, we use a grid search. In order
to validate the results of the grid search, we perform
10-fold cross-validation on the complete set of inter-
actions for each parameter combination. We find that

T. Geurts et al. / Active Learning Strategies for Solving the Cold User Problem in Model-Based Recommender Systems 11

the optimal number of factors is 200, the optimal value
for λ1 (regularization parameter for the bias terms) is
1 × 10−7, and the optimal value for λ2 (regulariza-
tion parameter for the latent factors) is 1 × 10−6. For
the remainder of the parameter tuning and our later ex-
periments we continue to use these values. To provide
some more insight in the model parameters, we also
include a sensitivity analysis. When adjusting λ1 to its
next-best value, being 1 × 10−8, we observe that the
RMSE decreases by 0.29%. Similar, for λ2 the next-
best value is 1 × 10−5, but this implies a decrease of
2.26% in terms of RMSE, which is almost 10 times
as much as the decrease in RMSE for adjusting λ1 to
its next-best value. Adjusting the number of factors
has the least influence on the performance in terms of
RMSE, the next-best value for the number of factors to
include in the matrix factorization is 150 factors, and
this causes a decrease of 0.02% in terms of RMSE.
Hence, we conclude that the RMSE depends most on
λ2, followed by λ1, and then the number of factors in-
cluded.

Next to the model parameters, we also compute
the optimal weights for the two components of the
PopGini, PopEnt, PopError and PopVar score. To ob-
tain the optimal weights, the RMSE of each combi-
nation of weights using the initial experimental set-up
is computed. For each combination we take the mean
of the RMSE for 10 and 100 items shown to the cold
users. The range of the weights are the values between
0.1 and 1, with step size 0.1. Hence, in total there are
100 unique combinations of weights. We use that 25%
of the users is selected to represent cold users. The op-
timal weights are 0.9 for the popularity component and
1 for the entropy component.

We have implemented our model and the AL strate-
gies for computing the item rankings in Python, and
ran our experiments on a C4 instance of Amazon EC2
with 8 vCPU’s (High frequency Intel Xeon E5-2666
v3 Haswell processors) and 15GB of RAM. The RS
which is included in our model is built using the ma-
chine learning framework GraphLab Create developed
by Turi. The utilized machine learning framework is
built in Python and backed by a C++ engine. This
framework facilitates building and deploying machine
learning applications at scale, which is desirable when
working with very large datasets.

4.3. Results

In this subsection we evaluate the different AL
strategies on their performance in terms of the RMSE.

The results are presented in Figure 1 and Table 1.
From Figure 1 we can conclude that when 25 items
are shown to the cold users, the random strategy is the
best-performing AL strategy in terms of the RMSE. It
is surprising that the random strategy significantly out-
performs the other AL strategies for 25 items shown,
however, if we look at the remainder of the results, we
observe that the random strategy varies substantially in
its performance. However, it is closely followed by the
PopGini strategy with a difference of 0.0372 between
the two strategies. For 10 items, the Variance strategy
outperforms the rest of the strategies, closely followed
by the PopVar strategy. For 50 items, the PopError
strategy dominates while for 100 items, the PopGini
strategy performs best.

10 25 50 100
Number of items shown to the cold users

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56
RM

SE

Random
Popularity
Gini
Entropy
Error
Variance
PopGini
PopEnt
PopError
PopVar

Fig. 1. Graph visualization of the RMSE for different numbers of
shown items per AL strategy.

Surprisingly, the impurity measure-based AL strate-
gies are the worst-performing AL strategies. The low-
est RMSE is achieved by the random strategy for 25
items.

4.4. Discussion

Having presented the results in the previous section,
in this section we further investigate the results and
discuss their implications.

When we take a closer look at Figure 1 we can
make a number of observations. First, for the random
strategy the results vary a lot for different number of
items shown to the cold users, which makes sense as
the random strategy proposes random items to gauge
user preferences, some of these items are useful while

12 T. Geurts et al. / Active Learning Strategies for Solving the Cold User Problem in Model-Based Recommender Systems

others are not. Also, differently than for the impurity-
based measures the Variance strategy leads to an in-
creasing function, which is probably due to the fact
that the variance measures the spread of the values and
depends on our class encoding, i.e., 1 for a liked item
and 0 for a disliked item, while the impurity measures
are based on the class distribution (we also noticed that
the changes in variance are smaller than in the consid-
ered impurity measures as we increase the number of
items shown to the cold users, making more difficult
the selection of the most relevant items).

Second, the popularity strategy performs better than
expected surpassing in all situations the Entropy, Gini,
and Classification Error strategies. This is probably
due to the fact that many users have a (strong) opinion
on popular items and hence, the items are very infor-
mative regarding the users preferences.

Third, the impurity measure-based AL strategies are
the worst-performing AL strategies. This seems sur-
prising, especially considering that these AL strategies
perform worse than the random strategy except when
the number of shown items is 10. A possible expla-
nation could be that the bad performance of these AL
strategies is due to the fact that odd items are being
ranked high. Items that have almost equal purchase
and return rates (and thus rank high when using these
strategies to generate the item rankings) are most of the
time items where there is some deficiency or malfunc-
tioning, and hence, these items might not be a good re-
flection of the true preference of users towards an item.

At last, we observe that, according to the number of
shown items, different strategies perform best. In two
situations, when the number of shown items is 50 and
100, the PopError and the PopGini strategies are the
best-performing AL strategies since they achieve the
lowest RMSE. Overall, the best-performing AL strat-
egy is the PopError strategy, since this AL strategy
achieves the lowerst mean RMSE over all number of
items shown to the cold users. This observation is plau-
sible as this AL strategy depends both on the popu-
larity strategy, which performs well on average as in
every situation outperforms the Gini and the Entropy
strategy, and on the Error strategy. The combination
of these two, appears to be the overall best-performing
AL strategy.

5. Conclusions

Nowadays, RS’s are widely used in webshops. They
are able to provide personalized recommendations to

Table 1
Tabular representation of the RMSE for different numbers of shown
items per AL strategy (best values per column are given in bold font).

Ranking Number of items shown
Strategies 10 25 50 100 Mean

Random 0.5547 0.3992 0.4951 0.4539 0.4757
strategy
Popularity 0.4453 0.4387 0.4349 0.4221 0.4353
strategy
Gini 0.5344 0.5181 0.5052 0.4751 0.5082
strategy
Entropy 0.5351 0.5165 0.5064 0.4741 0.5080
strategy
Error 0.5364 0.5132 0.5066 0.4748 0.5078
strategy
Variance 0.4264 0.4489 0.4657 0.4820 0.4558
strategy
PopGini 0.4469 0.4364 0.4289 0.4190 0.4328
strategy
PopEnt 0.4492 0.4380 0.4298 0.4210 0.4345
strategy
PopError 0.4444 0.4372 0.4281 0.4194 0.4323
strategy
PopVar 0.4443 0.4385 0.4289 0.4203 0.4330
strategy

customers of the webshop. One of the most popular
methods used for RS’s is matrix factorization. Though,
RS’s using this method are not able to provide per-
sonalized recommendations to cold users. In this pa-
per we present an adaptation to the model proposed by
Koren et al. [12], such that this type of RS is able to
provide personalized recommendations to cold users.
To be able to provide personalized recommendations
to cold users, we opt to adapt the model proposed by
Koren et al. [12], by showing a number of items to
the cold users, to elicit the preferences from these cold
users. Using this information on the cold users we are
able to provide personalized recommendations. In our
research we evaluate different strategies to produce the
item rankings. From the item rankings a number of the
highest ranked items are shown to the cold users. We
evaluate which AL strategy places the most informa-
tive items on top of the item ranking, such that as much
information as possible is elicited from the preferences
of the cold users, which subsequently leads to the most
accurate recommendations being provided.

The results show that the AL strategy which per-
forms best is dependent on the number of items that
are shown to the cold users. When we only show ten

T. Geurts et al. / Active Learning Strategies for Solving the Cold User Problem in Model-Based Recommender Systems 13

items to the cold users, we observe that the Variance
strategy outperforms the other nine strategies in terms
of the RMSE. When the number of shown items to the
cold users increases to 25, then the Random strategy
outperforms the other strategies. Next, for 50 shown
items, the PopError strategy performs best, by combin-
ing the Popularity strategy with the Error strategy. Fi-
nally, when 100 items are shown to the cold users, the
proposed PopGini strategy, a combination of the Popu-
larity strategy and the novel Gini strategy outperforms
all other AL strategies. Overall, we conclude that the
PopError strategy is the best-performing AL strategy,
as it achieves the lowest mean RMSE.

Concluding, in this paper we have taken a specific
approach to facilitating personalized recommendations
to cold users. We do this by showing the cold users
a number of items and asking for their opinions on
these items. Using this information, personalized rec-
ommendations are provided to the cold users. This
paper contributes to the literature by proposing sev-
eral new AL strategy, named the Gini, PopGini, Er-
ror, PopError and the PopVar strategy, using a different
type of dataset compared to other works regarding this
topic, and using a RS relying on matrix factorization to
provide the personalized recommendations to the cold
users. In the remainder of this section we discuss pos-
sible directions for future research.

For future work we distinguish between three direc-
tions. First of all, the data collected for our research
originates from the webshop of de Bijenkorf. In our
research, to determine the opinion of a customer with
respect to an item, we take into account purchases
and returns. We assumed that a positive interaction is
only dependent on purchases and returns. Though, it
can be argued that this interpretation of a positive and
a negative interaction is subjective. Additionally, the
user-item interaction matrix is very sparse, as there are
many customers who have only interacted with a small
number of products. For example, a little less than 46%
of all customers have only interacted with one prod-
uct. In comparison, in the Netflix dataset 50% of the
users have rated at least 100 movies. From this we can
conclude that on the majority of the customers in our
dataset, there is only a minimum amount of informa-
tion available. This is obviously not beneficial for the
recommendation quality. In order to obtain more in-
formation on each customer, additional implicit feed-
back of users should be gathered. In our research we
only use purchases and returns because of data avail-
ability at de Bijenkorf. However, if at the researchers’
disposal, on-line behaviour of customers can also be

taken into account. Incorporating this additional infor-
mation leads to a more dense user-item interaction ma-
trix. The advantage of having a dense user-item inter-
action matrix is the fact that it includes more informa-
tion on the customers and hence, more accurate rec-
ommendations can be made. However, it comes at the
cost of computational efficiency.

With regard to the methodology used in our re-
search, there are a number of alterations possible. First,
it would be of interest to include other AL strategies.
Other AL strategies could be based on different im-
purity measures (e.g., entropy0 [42]), or possibly fol-
low a completely different approach (e.g., greedy ex-
tend [43]). Moreover, in our research we use that the
items shown to the cold users are the same for each
cold user, regardless of the opinion of the cold user. In
this setting, the opinion of a cold user on the first item
shown to her is not used when determining which item
to show next. It might be advantageous to make the
item shown to the cold user dependent on her opinion
on the previously shown item. This type of AL strate-
gies are also known as personalized AL strategies. Sec-
ondly, in the current set-up the model is learnt during
the training phase using the errors on the predictions
of all users, both non-cold and cold users. This most-
likely ensures the best overall performance in terms of
the RMSE. However, if we prioritize the predictions
made for the cold users over the non-cold users, there
are some alterations possible with regard to the way
that the matrix factorization method is applied. Instead
of treating all errors equally, it could be investigated
whether adding a cost to the errors of the cold users
would improve the recommendations to the cold users.

Our current experimental set-up enables us to exe-
cute our research using only the initial dataset, without
requiring additional feedback from the cold users. This
particular set-up eases the execution of our research, as
we do not actively need to gather additional feedback
from the cold users. However, this set-up also has a
few drawbacks. Some cold users are excluded from the
test set because they have not interacted with any of the
items shown to them. Especially when the number of
items shown to the cold users is small (which in a web-
shop application would be the case), many cold users
are excluded from the test set. This heavily affects the
results as test sets differ substantially for different AL
strategies and number of shown items. Furthermore,
the information gathered per cold user can differ sub-
stantially, as it could be very well possible that the first
cold user has interacted with the first half of the items
shown to her, while the second cold user has interacted

14 T. Geurts et al. / Active Learning Strategies for Solving the Cold User Problem in Model-Based Recommender Systems

with the second half of the items shown to her. A pos-
sible solution would be performing a live user study in
which the cold users are asked to provide their opin-
ion on the highest ranked items from the different AL
strategies. In this set-up we elicit the preferences from
all cold users on all highest ranked items from the dif-
ferent AL strategies, leading to the same amount of in-
formation gathered for each cold user. However, this
would require a substantial effort from cold users.

References

[1] S.S. Iyengar and M.R. Lepper, When choice is demotivating:
Can one desire too much of a good thing?, Journal of Person-
ality and Social Psychology 79(6) (2000), 995.

[2] G. Adomavicius and A. Tuzhilin, Toward the next genera-
tion of recommender systems: A survey of the state-of-the-art
and possible extensions, IEEE Transactions on Knowledge and
Data Engineering 17(6) (2005), 734–749.

[3] G. Linden, B. Smith and J. York, Amazon.com recommenda-
tions: Item-to-item collaborative filtering, IEEE Internet Com-
puting 7(1) (2003), 76–80.

[4] B.J. Schafer, J. Konstan and J. Riedl, Recommender systems in
e-commerce, in: Proceedings of the 1st ACM Conference on
Electronic Commerce (EC 1999), ACM, 1999, pp. 158–166.

[5] J. Golbeck, J. Hendler et al., FilmTrust: Movie recommenda-
tions using trust in web-based social networks, in: Proceedings
of the 3rd IEEE Consumer Communications and Networking
Conference (CCNC 2006), Vol. 96, IEEE, 2006, pp. 282–286.

[6] M.J. Pazzani, A framework for collaborative, content-based
and demographic filtering, Artificial Intelligence Review 13(5–
6) (1999), 393–408.

[7] A.M. Rashid, I. Albert, D. Cosley, S.K. Lam, S.M. McNee,
J.A. Konstan and J. Riedl, Getting to know you: Learning new
user preferences in recommender systems, in: Proceedings of
the 7th International Conference on Intelligent User Interfaces
(IUI 2002), ACM, 2002, pp. 127–134.

[8] K. Yu, A. Schwaighofer, V. Tresp, X. Xu and H.-P. Kriegel,
Probabilistic memory-based collaborative filtering, IEEE
Transactions on Knowledge and Data Engineering 16(1)
(2004), 56–69.

[9] K. Zhou, S.-H. Yang and H. Zha, Functional matrix factor-
izations for cold-start recommendation, in: Proceedings of the
34th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 2011), ACM,
2011, pp. 315–324.

[10] M.G. Vozalis and K.G. Margaritis, On the enhancement of col-
laborative filtering by demographic data, Web Intelligence and
Agent Systems 4(2) (2006), 117–138.

[11] Y. Koren, Factorization meets the neighborhood: A multi-
faceted collaborative filtering model, in: Proceedings of the
14th ACM International Conference on Knowledge Discovery
and Data Mining (KDDM 2008), ACM, 2008, pp. 426–434.

[12] Y. Koren, R. Bell and C. Volinsky, Matrix factorization tech-
niques for recommender systems, Computer 42(8) (2009), 30–
37.

[13] T. Geurts and F. Frasincar, Addressing the cold user prob-
lem for model-based recommender systems, in: Proceedings of

the International Conference on Web Intelligence (WI 2017),
ACM, 2017, pp. 745–752.

[14] P. Resnick and H.R. Varian, Recommender systems, Commu-
nications of the ACM 40(3) (1997), 56–58.

[15] C. Stevens, Knowledge-based assistance for accessing large,
poorly structured information spaces, PhD thesis, Univer-
sity of Colorado, 1993, http://www.holodeck.com/
curt/mypapers/Thesis.pdf.

[16] R.J. Mooney, P.N. Bennett and L. Roy, Book recommending
using text categorization with extracted information, in: Pro-
ceedings of the 3rd Association for the Advancement of Artifi-
cial Intelligence Workshop on Recommender Systems (AAAI
1998), AAAI, 1998.

[17] D. Jannach, P. Resnick, A. Tuzhilin and M. Zanker, Recom-
mender systems: Beyond matrix completion, Communications
of the ACM 59(11) (2016), 94–102.

[18] J. Bobadilla, F. Ortega, A. Hernando and A. Gutiérrez, Recom-
mender systems survey, Knowledge-Based Systems 46 (2013),
109–132.

[19] A.I. Schein, A. Popescul, L.H. Ungar and D.M. Pennock,
Methods and metrics for cold-start recommendations, in: Pro-
ceedings of the 25th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval
(SIGIR 2002), ACM, 2002, pp. 253–260.

[20] T. Westergren, The music genome project, 2007, http://
pandora.com/mgp.

[21] X. Su and T.M. Khoshgoftaar, A survey of collaborative filter-
ing techniques, Advances in Artificial Intelligence 2009 (2009),
4.

[22] R.D. Burke, Hybrid recommender systems: Survey and exper-
iments, User Modeling and User-Adapted Interaction 12(4)
(2002), 331–370.

[23] C. Basu, H. Hirsh and W. Cohen, Recommendation as clas-
sification: Using social and content-based information in rec-
ommendation, in: Proceedings of the 15th National Confer-
ence on Association for the Advancement of Artificial Intel-
ligence/Innovative Applications of Artificial Intelligence Con-
ferences (AAAI/IAAI 1998), AAAI, 1998, pp. 714–720.

[24] D. Goldberg, D. Nichols, B.M. Oki and D. Terry, Using collab-
orative filtering to weave an information tapestry, Communica-
tions of the ACM 35(12) (1992), 61–70.

[25] U. Shardanand and P. Maes, Social information filtering: Al-
gorithms for automating “word of mouth”, in: Proceedings of
the 13th Conference on Human Factors in Computing Sys-
tems (CHI 1995), ACM Press/Addison-Wesley Publishing Co.,
1995, pp. 210–217.

[26] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom and J. Riedl,
GroupLens: An open architecture for collaborative filtering
of netnews, in: Proceedings of the 5th ACM Conference on
Computer Supported Cooperative Work (CSCW 1994), ACM,
1994, pp. 175–186.

[27] J.S. Breese, D. Heckerman and C. Kadie, Empirical analysis of
predictive algorithms for collaborative filtering, in: Proceed-
ings of the 14th Conference on Uncertainty in Artificial Intel-
ligence (UAI 1998), Morgan Kaufmann Publishers Inc., 1998,
pp. 43–52.

[28] A. Paterek, Improving regularized singular value decomposi-
tion for collaborative filtering, in: Proceedings of KDD Cup
and Workshop (KDD 2007), Vol. 2007, ACM, 2007, pp. 5–8.

[29] R. Salakhutdinov and A. Mnih, Bayesian probabilistic matrix
factorization using Markov chain Monte Carlo, in: Proceed-

T. Geurts et al. / Active Learning Strategies for Solving the Cold User Problem in Model-Based Recommender Systems 15

ings of the 25th International Conference on Machine Learning
(ICML 2008), ACM, 2008, pp. 880–887.

[30] D.D. Lee and H.S. Seung, Algorithms for non-negative matrix
factorization, in: Proceedings of 14th Advances in Neural In-
formation Processing Systems Conference (NIPS 2001), NIPS
Foundation, 2001, pp. 556–562.

[31] M. Jamali and M. Ester, A matrix factorization technique with
trust propagation for recommendation in social networks, in:
Proceedings of the 4th ACM Conference on Recommender
Systems (RecSys 2010), ACM, 2010, pp. 135–142.

[32] S.-T. Sun, E. Pospisil, I. Muslukhov, N. Dindar, K. Hawkey
and K. Beznosov, What makes users refuse web single sign-
on?: An empirical investigation of OpenID, in: Proceedings of
the 7th Symposium on Usable Privacy and Security (SOUPS
2011), ACM, 2011, p. 4.

[33] N. Rubens, D. Kaplan and M. Sugiyama, Active learning in
recommender systems, in: Recommender Systems Handbook,
Springer, 2011, pp. 735–767.

[34] J. Nguyen and M. Zhu, Content-boosted matrix factorization
techniques for recommender systems, Statistical Analysis and
Data Mining 6(4) (2013), 286–301.

[35] M. Elahi, F. Ricci and N. Rubens, Active learning in collabora-
tive filtering recommender systems, in: Proceedings of the 15th
International Conference on Electronic Commerce and Web
Technologies (EC-Web 2014), Springer, 2014, pp. 113–124.

[36] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer and
R. Harshman, Indexing by latent semantic analysis, Journal

of the American Society for Information Science 41(6) (1990),
391.

[37] D. Kim and B.-J. Yum, Collaborative filtering based on itera-
tive principal component analysis, Expert Systems with Appli-
cations 28(4) (2005), 823–830.

[38] R. Salakhutdinov, A. Mnih and G. Hinton, Restricted Boltz-
mann machines for collaborative filtering, in: Proceedings
of the 24th International Conference on Machine Learning
(ICML 2007), ACM, 2007, pp. 791–798.

[39] Y. Yu, C. Wang and Y. Gao, Attributes coupling based item
enhanced matrix factorization technique for recommender sys-
tems, CoRR abs/1405.0770 (2014).

[40] A. Kohrs and B. Merialdo, Improving collaborative filtering for
new-users by smart object selection, in: Proceedings of the In-
ternational Conference on Media Futures 2001 (ICMF 2001),
2001.

[41] D. Vandic, F. Frasincar and U. Kaymak, Facet selection algo-
rithms for Web product search, in: Proceedings of the 22nd
ACM International Conference on Information & Knowledge
Management (CIKM 2013), ACM, 2013, pp. 2327–2332.

[42] A.M. Rashid, G. Karypis and J. Riedl, Learning preferences of
new users in recommender systems: An information theoretic
approach, SIGKDD Explorations 10(2) (2008), 90–100.

[43] N. Golbandi, Y. Koren and R. Lempel, On bootstrapping rec-
ommender systems, in: Proceedings of the 19th ACM Con-
ference on Information and Knowledge Management (CIKM
2010), 2010, ACM, 2010, pp. 1805–1808.

