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Aspect-Based Sentiment Quantification
Vladyslav Matsiiako, Flavius Frasincar, and David Boekestijn

Abstract—In the current literature, many methods have been devised for sentiment quantification. In this work, we propose
AspEntQuaNet, one of the first methods for aspect-based sentiment quantification. It extends the state-of-the-art QuaNet deep learning
method for sentiment quantification in two ways. First, it considers aspects and ternary sentiment quantification concerning these aspects
instead of binary sentiment quantification. Second, it improves on the results of QuaNet with an entropy-based sorting procedure instead
of multisorting. Other sentiment quantification methods have also been adapted for ternary sentiment quantification instead of binary
sentiment quantification. Using the modified version of the SemEval 2016 dataset for aspect-based sentiment quantification, we show that
AspEntQuaNet is superior to all other considered existing methods based on obtained results for various aspect categories. In particular,
AspEntQuaNet outperforms QuaNet often by a factor of 2 on all considered evaluation measures.

Index Terms—sentiment analysis, sentiment quantification, aspect-based sentiment quantification
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1 INTRODUCTION

W IDESPREAD usage of the Web has enabled customers’
instantaneous and elaborate sharing of feedback or

reviews, conveying useful information for businesses. This
kind of information could arguably be more reliable than
questionnaires people are often unwilling to answer, while
simultaneously being more readily available.

Considering the speed at which the amount of data
(particularly textual data like user reviews, comments, and
forum posts) on the Web increases, it becomes practically
impossible to analyze all of the data manually. Nevertheless,
analysis of this data remains an important task for both the
private and public sectors. For instance, restaurant chains
prefer knowing as precisely as possible what people think
about their new meals [1], and financial analysts could use
sentiment retrieved from Tweets to potentially explain price
swings in stocks [2]. It is therefore essential to use algorithms
specifically designed for extracting and determining the
sentiment of texts, which could afterward be used to create
valuable insights.

The described branch of research is called sentiment anal-
ysis (SA) [3]. Its main objective is determining the sentiment
towards a certain entity. While general SA methods aim to
determine the sentiment of an entire text [4], aspect-based
sentiment analysis (ABSA) is concerned with identifying the
sentiment level per aspect (feature) within that text [5]. For
example, the following sentence contains two aspects scenario
and acting.

“The scenario of that movie was great, but the
acting could have been better.”

In this sentence, the sentiment towards the aspect scenario
is positive, while the sentiment towards acting is negative.
Using the methods of ordinary SA, we would run into the
issue that the review conveys both negative and positive
sentiment. However, by performing the SA task on an aspect
level, we would obtain separate sentiment scores for each
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of the involved aspects. Therefore, with the methods of
ABSA, we would be able to obtain more in-depth insights.
For example, knowing particular sentiment scores for each
feature of a certain product could provide useful information
on how to improve it, and importantly, which parts to
improve.

While for some use cases personal sentiment scores are
important (e.g., in CRM marketing one wants to target
every user separately) [6], there are many cases in which
only aggregate numbers matter. For example, for political
campaigns, it is only important to know the share of the
population which supports a certain policy or candidate,
while it makes no difference to know sentiment estimates
on the individual level [7], [8]. Another example would
be estimating the severity of an epidemic by means of
identifying medical reports with a certain diagnosed disease
[9]. For this reason, there exists a branch of research that
explores sentiment quantification (SQ) [10].

Until now, despite the abundance of aspect-based senti-
ment classification methods, there has been little research
connecting SQ with ABSA [11], [12], [13]. Hence, the novelty
of this research lies in bridging the gap between those two
fields. In particular, it compares the performance of usual
sentiment quantification techniques on the aspect level as
well as proposes a novel method, AspEntQuaNet, based on
current state-of-the-art findings from both SQ and ABSA. All
researched quantification methods are also extended to be
applied to ternary (positive, neutral, and negative) instead
of binary (positive and negative) sentiment classification.
Additionally, for the purposes of this paper, we introduce the
term aspect-based sentiment quantification (ABSQ), a field
at the intersection of SQ and ABSA.

The paper is structured as follows. In Section 2, relevant
literature concerning SQ and ABSA is provided. Section 3
outlines the data used in this paper. Next, Section 4 presents
detailed explanations for the proposed methods. Following,
results obtained using the investigated methods are assessed
in Section 5. Finally, Section 6 provides a summary of the
main conclusions of this paper, as well as suggests directions
for future research. All methods and models researched in
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this paper are programmed in the Python programming
language; source code can be found at https://github.com/
vlad-matsiiako/ABSQ.

2 RELATED WORK

As identified in the works of [3] and [14], SA is mainly
concerned with locating opinion-related parts of texts, deter-
mining the sentiment they convey, and quantifying it. There
are three main levels of sentiment identification: document-
level, sentence-level, and aspect-level. The first two aim
to determine the sentiment level within, respectively, a
document or a sentence. When it comes to the aspect level,
both documents and sentences may include multiple aspects
towards which sentiments are expressed. This paper focuses
on the aspect level.

A comprehensive survey of ABSA was provided by [15].
As defined by the authors, its goal is to find the sentiment
towards each aspect of a certain entity. More mathematically,
the task of ABSA equates to finding a quadruple of (s, g, h, t)
[16]. In this quadruple, s denotes sentiment, g denotes the
target, h denotes the holder (the subject that is expressing
the sentiment), and t denotes the time point of the expressed
sentiment. In reality, most methods, including the ones
proposed in this paper, aim to only identify the pair (s, g).

The three main processing steps constituting ABSA
were defined by [17] to be identification, classification, and
aggregation. In the first step, the pairs of opinions and targets
in a piece of text are identified. In the classification step, a
certain algorithm maps the opinion onto a predetermined set
of sentiment values (positive, neutral, or negative) [18], [19].
Finally, the obtained sentiment values are aggregated per
aspect to generate a certain kind of sentiment report. This
paper focuses on the last step: aggregation.

The strong point of ABSA is its greater utilization of the
information given in a text compared to SA. However, it
is essential to define the granularity of the utilized texts,
because, for ABSA, it could vary from a piece of text as small
as a sentence to a large document. In this paper, we aim to
carry out ABSA on the sentence level.

It should be mentioned that both sentiments and aspects
can be explicit or implicit. E.g., the sentence “I expected
much more.” has an explicit sentiment (expectations were
not met), but only an implicit aspect since it is not mentioned
in the text what was “expected much more” of. According to
[20], who analyzed a different dataset of restaurant reviews
proposed by [21], implicit aspect targets do not occur often.
For this reason and considering that the proposed methods
rely on identified aspects, the possibility of implicit aspects
will be ignored in this paper. On the other hand, implicit
sentiments will not be disregarded.

2.1 Sentiment Quantification Task

Historically, SA was considered a sentiment task [22]. The
idea was to classify each piece of text separately and then
aggregate the results in a certain way. However, there are
situations in which a different approach, oriented on aggre-
gation, is needed. For instance, when market researchers try
to estimate the share of the population that likes a newly-
released product, they do not care about each individual

separately, but rather care only about aggregate results. It has
been argued in various examples that the idea of classification
and further aggregation gives a suboptimal performance
[23], [24], [25]. Therefore, it is worth investigating whether
it is possible to design algorithms that outperform simple
classification. This area of research is called Sentiment
Quantification (SQ) and was first introduced by [10].

At first sight, optimizing for classification seems equal to
optimizing for quantification. This is not true. The intuition
behind the fact that simple classification returns suboptimal
performance on the aggregate level is implicit in the measure
that is used for evaluating performance. To illustrate this, we
look at the F1 score, considered to be a common measure for
classification algorithms:

F1 =
2 · TP

2 · TP + FP + FN
, (1)

where TP is the number of true positive predictions, FP
represents the number of false positives, FN is the number of
false negatives, and TN equals the number of true negatives.
Consider a sample of 100 reviews with binary sentiments,
for which the true share of positives vs. negatives is 70:30.
Compare one classifier obtaining the results TP = 50, FP =
20, TN = 10, FN = 20, with another classifier obtaining
different results TP = 70, FP = 10, TN = 20, FN = 0.
The latter model achieves the better F1 score of 0.9333, while
the former achieves a score of only 0.7143. However, for the
SQ task, the latter model gives an estimate of 80:20 positive
vs. negative sentiments, while the former model returned the
ideal answer: 70:30.

In mathematical notation, this means that to optimize
for SQ tasks, it is desirable to reduce |FP − FN | rather
than (FP + FN). For this reason, multiple other measures
that could compensate for the inaccuracy of a classifier were
proposed in [26] and will be discussed further in this paper.
Moreover, as discussed by [23], adjusting the classifiers for
the purposes of SQ requires only a limited amount of training
data compared to the size of the datasets one would need to
improve the accuracy of the actual classifiers.

2.2 Development of Quantification Methods
One of the initial works in the field of quantification was
published by [27]. The author was essentially the first
to argue that in real-world situations, the assumption of
identical characteristics between training and testing data
is not necessarily true. In this work, he proposes an iter-
ative procedure based on the “expectation-maximization”
algorithm for increasing the likelihood of the new data.
Additionally, a statistical test was developed to determine
whether the initial class distribution is different from the
real-world observations.

The next big leap in the direction of quantification was
made by [28]. In his research, three methods were named
and proposed: “Classify and Count”, its adjusted variant,
and “Mixture Model”. The Mixture Model was found to
outperform the others. However, since the first two methods
have been much more widely used in academic literature, we
will consider “Classify and Count” and its adjusted variant
as baselines in this paper.

The previous line of research was further continued by
the work proposed in [23] and [29]. Here, the author presents
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a new branch of quantification called “cost quantification”.
The idea is that in the case of attributed cost available
and relevant to the problem (e.g., estimating the amount
of time per day it takes for support agents to reply to all the
questions), cost quantification might be preferred to ordinary
quantification.

Since then, there have been multiple different directions
in which the previous research developed. [30] explored the
use of probability estimations of the classifier while applying
an additional scaling factor similar to the one developed by
[27]. In later research, these methods are called “Probabilistic
Classify and Count” and “Probabilistic Adjusted Classify and
Count”, and will thus be referred to as such in this paper.

[31] have proposed one of the first methods that would
not be based on classification to derive a quantifier. Instead,
the authors designed a decision tree-based method optimized
directly for quantification. Their results proved this method
to be the new state-of-the-art at that time.

Additionally, [32] have explored the direction of ordinal
text sentiment quantification. The authors present OQT, a
tree-based method, which they use to quantify the data
based on five different sentiment classes (on a scale from very
negative to very positive). Even though the authors obtained
promising results, there has been little following research
in this domain. In this paper, we have opted for ternary
sentiment quantification, with sentiment classes positive,
neutral, and negative.

Based on the SVM for Multivariate Performance Measures
(SVMperf) developed by [33], [34] developed an SVM-based
method able to optimize for multivariate loss functions
created specifically for the quantification task. When released,
their method outperformed all previously existing ones and
became the new state-of-the-art in SQ.

Eventually, [35] came up with a new quantification-
specific method, based on neural networks, which the
authors called “QuaNet”. Tested on an SQ text dataset, it was
proven to substantially outperform all existing methods. This
method will be used as a starting point for the quantification
task and further advanced in the work described in this
paper. To the best of our knowledge, our work is one of the
first to adapt SQ methods for ABSQ.

3 DATA

This section describes the datasets used in this paper. In
Section 3.1, the datasets, their structure, some basic character-
istics, and the employed preprocessing steps are discussed.
Subsequently, Section 3.2 provides important insights into
the datasets with regards to the distribution of data among
aspect categories and sentiment classes of review sentences.

3.1 SemEval 2016 Dataset

The ABSA dataset used in this paper is taken from the
SemEval competition held in 2016. In particular, we use task
5 of SemEval 2016 [36]. This domain dataset is considered
an obvious choice for ABSA and is used in many papers
researching this subject [37]. Additionally, there is also a
dataset from task 12 of SemEval 2015 [38].

Both datasets contain restaurant reviews. Reviews are
split into sentences, each of which might convey multiple

Table 1: Distribution in percentages of review sentences
among sentiment classes.

2015 2016

Pos. Neu. Neg. Pos. Neu. Neg.

Training 72.43 3.20 24.36 70.2 3.80 26.0
Test 53.72 5.32 40.96 74.3 4.90 20.80

sentiments depending on the number of target words within
the sentence. Each opinion has a corresponding target and
target category (FOOD#QUALITY, SERVICE#GENERAL,
etc.), as well as a polarity (positive, neutral, or negative).
The distribution of reviews’ opinions among various polarity
classes is given in Table 1 [18].

To preprocess the dataset, which is in XML format,
similar procedures as in the work of [39] are utilized. Most
importantly, we delete those observations where the target is
implicit (equal to NULL). NULL values represent less than 10%
of all observations and therefore represent a comparatively
rare category. Additionally, according to [20], such implicit
targets appear quite infrequently in general.

3.2 Data insights
Besides the distribution of reviews among sentiment classes,
it is also of high importance to understand the distribution
among aspect categories. The distributions for the training
and test data are provided in Table 2. The first four dominant
categories were selected for the evaluation of the results
in this paper. With data from each of these categories,
we will also train an aspect-specific QuaNet model, called
AspEntQuaNet. Combined, the aforementioned categories
represent approximately 80% of the training data and around
78% of the test data. Other categories were taken out of
consideration for testing purposes for the reason that on
their own, these categories do not represent a large enough
part of the data to draw meaningful conclusions.

For the four categories under consideration, we also pro-
vide the distribution of review sentences among sentiment
classes (positive, neutral, or negative). In Table 3, we see the
distribution of sentiment classes for the observations in the
training and test data. All four distributions are substantially
different from each other, even though they have similar
underlying features (e.g., neutral sentiment is always the
least represented).

Table 2: Distribution in percentages of review sentences
among aspect categories.

Aspect Category Training Test

FOOD#QUALITY 40.77 43.54
SERVICE#GENERAL 17.24 16.46
AMBIENCE#GENERAL 12.03 9.08
RESTAURANT#GENERAL 9.85 8.92

FOOD#STYLE OPTIONS 6.12 7.85
FOOD#PRICES 3.73 3.38
RESTAURANT#MISCELLANEOUS 2.61 2.77
DRINKS#QUALITY 2.34 3.38
DRINKS#STYLE OPTIONS 1.7 1.69
RESTAURANT#PRICES 1.38 0.77
LOCATION#GENERAL 1.17 1.54
DRINKS#PRICES 1.06 0.62
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Table 3: Distribution in percentages of sentiment classes
among the chosen aspect categories.

Training Test

Aspect Category Pos. Neu. Neg. Pos. Neu. Neg.

FOOD#QUALITY 73.99 3.53 22.48 85.51 4.24 10.25
SERVICE#G.1 56.48 2.47 41.05 54.21 2.80 42.99
AMBIENCE#G.1 78.07 5.70 16.23 91.53 5.08 3.39
RESTAURANT#G.1 78.69 1.64 19.67 77.59 0.00 22.41

1G. denotes the GENERAL subcategory.

Table 3 shows that for some aspect categories, distribu-
tions between training and test data are quite similar. For
SERVICE#GENERAL, we find a total absolute difference
(TAD, the sum of absolute differences in the true prevalences
of each sentiment class between training and test data) equal
to 4.54%; for RESTAURANT#GENERAL, we find a TAD of
5.48%. However, this is not the case for the other two aspect
categories. Namely, for FOOD#QUALITY, we obtain a TAD
of 24.46%, and for AMBIENCE#GENERAL, there we find a
TAD equal to 26.92%. The differences in these distributions
for the training and test data are not insignificant. Therefore,
it will be particularly interesting to observe the performance
of the chosen methods on the test data for these categories,
once trained to optimality.

4 METHODOLOGY

This section provides an extensive explanation of the meth-
ods researched and proposed in this paper. First, Section 4.1
describes the classification methods and corresponding loss
functions. Following, Section 4.2 discusses the quantification
methods that are built on classification algorithms.

4.1 Classification Methods
This section provides the necessary methodology for the
classification methods proposed in this paper, as well as
describes how to move from classification to quantification.
First, Section 4.1.1 discusses the LCR-Rot-hop++ neural
network architecture designed for ABSA. Then, Section 4.1.2
goes into detail about which loss functions should be applied
for quantification purposes.

4.1.1 LCR-Rot-hop++ Neural Network
To utilize any of the quantification methods that are investi-
gated in this paper, we first need to incorporate a classifier.
For this purpose, we will utilize the deep learning component
of a state-of-the-art Hybrid Approach for Aspect-Based
Sentiment Analysis (HAABSA) which was first developed
by [40] and further improved by [18] (under the name of
HAABSA++).

It has to be noted that considering the fact that for QuaNet
we will need to obtain document embeddings and sort them
in the order of increasing probabilities (as will be discussed
in detail in Section 4.2.6), we can only use the second part
of HAABSA++ for this method (LCR-Rot-hop++). Therefore,
to ensure a fair comparison with the other methods, we will
omit the ontology part completely.

LSTM with attention has become a standard practice
and starting point for the ABSA task [39], [41]. LCR-Rot is

a model proposed by [42] with the intention of allowing
the opinionated expressions to interchange information with
their contexts on both sides of the target. In the research
work of [40], this model is further extended under the name
of LCR-Rot-hop by adding repeated attention.

[18] extends this model even further under the name
of LCR-Rot-hop++ by experimenting with various types
of word embeddings and adding hierarchical attention. In
fact, the largest disadvantage of LCR-Rot-hop is that for the
computation of target2context and context2target vectors
only the local information is used. Hierarchical attention is
meant to solve exactly this issue. By design, it is supposed to
represent the input sentence on a higher abstraction level.

Additionally, we have to notice that in the research work
of [18], there are four ways of implementing hierarchical at-
tention. As an outcome of various experiments, Method 4 (in
which the weighting of attention procedure is employed one
by one at each iteration of the rotatory attention mechanism
for the pairs of intermediate context and target vectors) was
determined to perform the best. For that reason, it will be
the only method utilized in this research work.

Multiple components of LCR-Rot-hop++ will be needed
in this paper. The first and most important is the last layer
of this model. This layer should be extracted and used as
an input for one of the quantification methods, as it can
be considered a representation (embedding) of a document
(opinion with respect to each aspect target). In fact, this layer
consists of the left and right representations, while each of
those consists of two vectors (in the case of the right part: rr

and rtr ; the dimensions of both are 1x600). In turn, each of
the vectors is built upon bi-directional LSTMs which means
that their size is doubled (initially the size is 1x300). In the
end, we end up with 1x2400 vectors which are to be used as
input for quantification methods.

Next to that, after experiments with word embeddings
by [18], their research found BERT word embeddings to
perform the best. BERT word embeddings are a type of
contextual word embeddings [43]. Since we seek to identify
the possible best model and build upon this in terms of
estimating prevalences, only the BERT word embedding will
be used for the purposes of this paper.

4.1.2 Loss Function for Quantifiers

As previously argued in Section 2.1, loss functions that are
commonly used for SA are not always suitable for SQ. In
fact, until recently there has not been extensive research
about the ideal evaluation measure for SQ. [26] proposed a
collection of 8 properties (some of them mutually exclusive)
which would need to hold in order for the evaluation
measure to be suitable. During extensive analysis, the authors
determine that no single measure is in line with all the
proposed properties. However, Absolute Error (AE) and
Relative Absolute Error (RAE) were found to meet the most
requirements (6 out of 8).

Interestingly, AE and RAE are considered the simplest
evaluation measures for quantification. The idea behind AE
is to calculate the absolute difference between the true and
predicted quantification. RAE extends AE by expressing the
difference between the true and predicted quantification in
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terms of true quantification. The formulas for these error
measures are provided in (2) and (3).

AE(p, p̂) =
1

|C|
∑
c∈C

|p̂(c)− p(c)|, (2)

RAE(p, p̂) =
1

|C|
∑
c∈C

|p̂(c)− p(c)|
p(c)

, (3)

where C is the set of all sentiment classes.
It should be noted that RAE is undefined in case the true

quantification is equal to 0. For this reason, [26] proposes the
use of a certain type of additive smoothing:

ps(c) =
|ϵ+ p(c)|

ϵ|C|+
∑

c∈C p(c)
, (4)

where ϵ = 1
2|σ| and σ is the set of opinions. However, even

with such smoothing, RAE may remain numerically unstable
in case of extreme true or predicted prevalences [35].

Another commonly used evaluation measure is Kullback-
Leibler Divergence (KLD) [35], [44], [45]. While developed
much earlier, KLD was first used for SQ only in [28]. It is
computed using (5):

KLD(p, p̂) =
∑
c∈C

p(c) log
p(c)

p̂(c)
. (5)

The ideal scenario is to have KLD = 0. In that case, both
distributions (predicted and original) coincide. Similar to
RAE, KLD is undefined when p̂(c) = 0; we use the same
smoothing technique as shown in (4), although this could
also still result in numerical instability of the smoothed value.

4.2 Quantification Methods
This section elaborates on each of the five various quan-
tification methods reviewed in this paper. Section 4.2.1
discusses the method “Classify and Count” followed by
the explanation of “Adjusted Classify and Count” in Section
4.2.2. Further, Section 4.2.3 presents the adaptation of these
methods for the case of three sentiment classes. Next, Section
4.2.4 discusses the probabilistic version of those methods.
It is followed by the adaptation of these methods for three
sentiment classes in Section 4.2.5. Section 4.2.6 describes the
methodology behind QuaNet. Last, Section 4.2.7 provides
the adapted QuaNet for three sentiment categories and with
entropy-based sorting, named EntQuaNet.

4.2.1 Classify and Count
Considered to be the simplest method for the SQ task, the
idea of “Classify and Count (CC)” is to classify each data
point separately and then compute the share of population
that is estimated to be of a certain sentiment. This can be
achieved using the formula below:

p̂CC
c (D) =

|{x ∈ D|h(x) = c}|
|D|

=
TP c

h + FP c
h

|D|
, (6)

where h(·) is the hard classification function, subscript h
denotes hard predictions, and c is a sentiment class.

Essentially, this can be viewed as sentiment classification
with further aggregation. It is obvious that the perfect
classifier is also the perfect quantifier, but the opposite is
not always the case.

Although we have used three sentiment classes in this
paper instead of two, this does not form a problem for CC.
The only difference is that the formula, written out, is slightly
more extensive:

p̂CC3
1 (D) =

|{x ∈ D|h(x) = 1}|
|D|

=
T1h + F1h

|D|

=
T1h + F1/2h + F1/3h

|D|
.

(7)

In the above equation, T1h is the number of correctly
predicted observations of the first category, F1/2h is the
number of predicted first category observations when the
true category is the second one, F1/3h is the number of
predicted first category observations when the true category
is the third one. Furthermore, in (7) we denote the senti-
ment classes positive, neutral, and negative by 1, 2, and 3,
respectively. Without loss of generality, the formula has been
written out for the first category.

4.2.2 Adjusted Classify and Count
Considering the formula of CC in (6), it can be seen that
it gives optimal estimates when FP = FN . Obviously,
this is rarely the case, which is why an adjusted method
was proposed in [23], [28]. The concept behind “Adjusted
Classify and Count (ACC)” is slightly more intricate, as it
involves adjusting for the number of false positives versus
false negatives if one or the other prevails. In fact, provided
the “true positive rate” and “false positive rate” are known,
we could adjust the share to obtain the optimal result. The
idea can be seen in the following equation:

p̂ACC
c (D) =

p̂CC
c (D)− f̂prh

t̂prh − f̂prh
, (8)

where t̂prh = TPh

TPh+FNh
and f̂prh = FPh

FPh+TNh
, and we have

omitted superscript c due to verbosity. The derivation for
this formula is provided in Appendix A. Essentially, it shows
that in the case of known true positive and false positive
rates (which in reality are estimated from the training data),
we can obtain the true prevalence of a certain class.

Considering that the true rates t̂prh and f̂prh are un-
known in a real-life scenario, we need to estimate them from
our data. According to [34], in ACC, one should estimate
these rates from the training data via the process of k-fold
cross-validation, or by using a hold-out validation dataset.

A potential problem with ACC is that it might return
values that are outside the [0, 1] range. This happens because
t̂prh and f̂prh are not always optimal for the test data. For
this reason, [23] introduced a clipping procedure that adjusts
values higher than 1 to 1, and values lower than 0 to 0.

4.2.3 Adjusted Classify and Count for Three Sentiment
Classes
For the purposes of our paper, the formula of ACC given in
(8) should again be generalized to the case of three sentiment
classes. [46] and [25] have previously provided the general
equations with which it is theoretically possible to derive the
formulas of adjusted classifiers for any number of sentiment
classes. However, to the best of our knowledge, the exact
formulas for the case of three classes were not provided in
any of the previous research work. Therefore, the formula
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that would be optimal for the purposes of this paper should
be written out in order to be used for the case of ternary
sentiment classification.

The idea of obtaining this formula is analogous to that
for ACC. The starting point is the following two equations:

P (1̂) = P (1̂|1) · P (1) + P (1̂|2) · P (2) + P (1̂|3) · P (3), (9)

P (2̂) = P (2̂|1) · P (1) + P (2̂|2) · P (2) + P (2̂|3) · P (3). (10)

After rewriting these equations we obtain the follow-
ing three formulas that represent the adjusted prevalence
estimations:

P (1) =

P (1̂)−
(f̂1/2r − f̂1/3r) · (P (2̂)− f̂2/3r)

t̂2r − f̂2/3r
− f̂1/3r

t̂1r −
(f̂1/2r − f̂1/3r) · (f̂2/1r − f̂2/3r)

t̂2r − f̂2/3r
− f̂1/3r

,

(11)

P (2) =

P (2̂)−
(f̂2/1r − f̂2/3r) · (P (1̂)− f̂1/3r)

t̂1r − f̂1/3r
− f̂2/3r

t̂2r −
(f̂2/1r − f̂2/3r) · (f̂1/2r − f̂1/3r)

t̂1r − f̂1/3r
− f̂2/3r

,

(12)
P (3) = 1− P (1)− P (2), (13)

where t̂1r = T1h
T1h+F2/1h+F3/1h

, f̂2/1r = F2/1h
T1h+F2/1h+F3/1h

,

f̂3/1r = F3/1h
T1h+F2/1h+F3/1h

, t̂2r = T2h
F1/2h+T2h+F3/2h

,

f̂1/2r = F1/2h
F1/2h+T2h+F3/2h

, f̂3/2r = F3/2h
F1/2h+T2h+F3/2h

,

t̂3r = T3h
F1/3h+F2/3h+T3h

, f̂1/3r = F1/3h
F1/3h+F2/3h+T3h

,

f̂2/3r = F2/3h
F1/3h+F2/3h+T3h

. The letter r in these formulas
stands for ‘rate’. Derivations for these formulas are provided
in Appendix B.

For the scenario of three sentiment classes, there still exists
a problem of the output values being outside the [0, 1] range.
However, in this case, simple clipping as proposed by [23]
does not work since multiple numbers may be above one or
below zero. For this reason, we propose a two-step clipping
algorithm. Initially, if the lowest quantification estimate is
lower than zero, it is made zero and then subtracted from
the other two quantification estimates. And at the second
step, each estimated prevalence is divided by the obtained
sum of prevalences (meaning their sum is rescaled to one).

4.2.4 Probabilistic CC and ACC

CC and ACC use binary classification models for generating
predicted values. The majority of such classifiers (as is
also the case with LCR-Rot-hop++) are also able to out-
put the values in terms of posterior probabilities Pr(c|x).
Additionally, considering that posterior probabilities rep-
resent a confidence level of certain classification outcome,
which potentially represents more information, it might be
beneficial to create probabilistic versions of CC and ACC
[35]. This can be done via substituting counts TPb, TNb,
FPb, FNb by their soft counts TPs =

∑
x∈c,D Pr(c|x),

TNs =
∑

x∈c̄,D 1 − Pr(c|x), FPs =
∑

x∈c̄,D Pr(c|x),
FNs =

∑
x∈c,D 1 − Pr(c|x).

Using all of the above, “Probabilistic Classify and Count”
(PCC) can be defined as follows:

p̂PCC
c (D) =

∑
x∈D Pr(c|x)

|D|
=

TPs + FPs

|D|
. (14)

Initially, this method was deemed as non-working by
[23], [28], while in later research, it was shown to perform
moderately well [47].

At the same time, “Probabilistic version of Adjusted
Classify and Count” (PACC) has the formula:

p̂PACC
c (D) =

p̂PCC
c (D)− f̂prs

t̂prs − f̂prs
, (15)

where t̂prs = TPs

TPs+FNs
and f̂prs = FPs

FPs+TNs
. It was first

designed by [30] under the name of “Scaled Probability
Average”, and has the idea of substituting variables from (8)
to their soft versions (using probabilities instead of counts)
as described above.

4.2.5 Probabilistic CC and ACC for Three Sentiment
Classes

The versions of PCC and PACC for ternary sentiment classi-
fication is only different because it has different components.
This way, T1s =

∑
x∈1,D Pr(1|x), T2s =

∑
x∈2,D Pr(2|x),

T3s =
∑

x∈3,D Pr(3|x), F1/2s =
∑

x∈2,D Pr(1|x),
F1/3s =

∑
x∈3,D Pr(1|x), F2/1s =

∑
x∈1,D Pr(1|x),

F2/3s =
∑

x∈3,D Pr(2|x), F3/1s =
∑

x∈1,D Pr(3|x),
F3/2s =

∑
x∈2,D Pr(3|x).

At the next step, the true and false positive rates are
computed as in Section 4.2.3. Then, using the calculated rates,
adjusted quantification values are computed using (11), (12),
and (13). Additionally, since the problem of estimates going
above one or below zero is also typical for PACC, the same
clipping procedure is applied as proposed in Section 4.2.3.

4.2.6 QuaNet

The deep learning method for binary quantification predic-
tion was first proposed by [35]. QuaNet requires document
embeddings and a predicted prevalence score for one of the
sentiment classes in the case of binary data. This input is
extended for our proposed EntQuaNet for n-ary quantifi-
cation, which additionally requires predicted prevalences
for all sentiment classes, as well as an entropy score. The
architecture of EntQuaNet, based largely on the architecture
of QuaNet, is provided in Fig. 1.

For QuaNet, the first step comprises the classification
of the given data (e.g., positive or negative) using LCR-
Rot-hop++ as discussed in Section 4.1.1. As a result, we
obtain the probabilities of each aspect opinion to belong
to a certain sentiment class, along with their embeddings
(concatenations of rl, rtl , rtr , rr). Afterwards, these two
elements are concatenated into one single vector to obtain |D|
pairs of type [Pr(c|x), x⃗]. Additionally, these pairs are sorted
in increasing order of Pr(c|x) (in the binary quantification
case, it does not matter which class is chosen for sorting)
before being passed to a bi-LSTM layer. According to [35],
the sorting step is needed for QuaNet to leverage the ordered
sequence of Pr(c|x) and spot the transition point between
negative and positive documents.
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Concurrently, using the classified data from the initial
step, we calculate prevalences p̂CC

c (D), p̂ACC
c (D), p̂PCC

c (D),
p̂PACC
c (D), as well as rates t̂prs, f̂prs, t̂nrs, f̂nrs. These

eight values are then combined in a single vector before being
concatenated to the hidden state of the bi-LSTM. The ob-
tained vector is passed through the second main component
of QuaNet (n fully connected layers, with ReLU activation
functions). The idea is that QuaNet could adjust the quantifi-
cation embedding of bi-LSTM with the help of quantification-
related statistics obtained using LCR-Rot-hop++. Finally,
the quantification embedding is passed through a softmax
function to obtain the prevalences p̂QuaNet

c (D).
The reason for choosing these particular quantification-

related statistics is that they do not require much computa-
tional power. Moreover, extensive ablation experiments were
performed by [35], which confirmed the assumption that all
inputs in the last step of QuaNet improve its performance.

Considering the EntQuaNet structure in Fig. 1, it should
be noted that the QuaNet-based models will be trained
separately from LCR-Rot-hop++ in a two-step approach. This
two-step approach entails that we will first train the LCR-
Rot-hop++ classification model. Then, using the obtained
opinion embeddings as well as the predicted probabilities,
these are used as training input for the QuaNet part.

4.2.7 QuaNet for Three Sentiment Classes
To adjust the QuaNet architecture for the case of three senti-
ment classes, some changes were made. In the explanations
and in Fig. 1, sentiment classes are denoted 1, 2, and 3,
instead of positive, neutral, and negative.

First, we concatenate to the document embeddings all
three probabilities (each corresponding to a certain sentiment
class) instead of only one. Next to that, we concatenate the
value of entropy calculated from the three given probabilities.
We employ the following entropy formula:

Entropy = −
∑
c∈C

p̂(c) log p̂(c). (16)

We then sort the document embedding obtained with
LCR-Rot-hop++ from lowest to highest entropy. Essentially,
this corresponds to sorting from the easiest to hardest
sentiment choices. In the case of low entropy, there is a
clear prediction; when entropy is high, the prediction can be
considered to be less certain.

In general, we argue that in our case, entropy-based
sorting is better at treating minority data categories because it
takes into account all probabilities at once. On the other hand,
probability-based sorting tends to disregard the minority
categories as the classification is initially decided on the
majority category. Only when the probabilities of belonging
to the majority category are equal (which is in our case a rare
event), does probability-based sorting consider the minority
categories. It is known that the sentiment of customers’
reviews is predominantly positive [48], leading to unbalanced
distributions like those found in this paper. As such, we
consider entropy-based sorting to be a fitting option for the
sentiment quantification task under consideration.

As explained in the previous section, the last hidden state
of the bi-LSTM and a more extensive set of 21 statistics
(instead of eight for the binary quantification case) are
concatenated and passed through the fully connected layers
with ReLU activation functions as shown in Fig. 1. Nine of the
statistics come directly from the classified data (T1 - preva-
lence of correctly predicted first category observations, F1/2
- prevalence of wrongly predicted first category observations
when the true value is the second category, etc.). The other
12 values are prevalence predictions for each of the three
categories generated by the aforementioned quantification
methods: CC, PCC, ACC, and PACC. This way, quantification
results of the QuaNet-based models are built upon four
simpler models. Considering the advancements with the
proposed entropy-based sorting and the extension of three
sentiment categories, we call this new model EntQuaNet.

Additionally, to make sure EntQuaNet indeed improves
upon QuaNet for the ABSQ task in this paper, we train the
ordinary QuaNet on the whole training set without including
the value of entropy as a separate variable. Because we
consider three probabilities instead of two, it is unclear
which probability should be chosen for sorting. For the
purposes of this paper, it was decided to apply multi-sorting
based on the two most common sentiment classes. Hence,
it was first sorted on the probability of opinions belonging
to the positive class. Then, in case the probabilities of at
least two opinions belonging to the positive class were equal,
we employed a similar sorting based on the probability
of opinions belonging to the negative class (second-most
common). It is pointless to include the last class in the multi-
sorting procedure: if the first two probabilities are the same

Figure 1: The architecture of the EntQuaNet quantification system for three sentiment classes.
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for any two sentiments, the third probability of belonging to
the neutral class is equal as well.

To account for the ABSQ task and to see that the aspect
restriction of the training sample improves the performance
of the quantifiers, we select the four most prevalent aspect
categories (FOOD#QUALITY, SERVICE#GENERAL, AMBI-
ENCE#GENERAL, RESTAURANT#GENERAL), and train
separate EntQuaNets for each of them. These aspect-specific
variants will be referred to as AspEntQuaNet.

In our implementation of various QuaNets for three senti-
ment classes, LSTM cells contain n hidden dimensions. These
dimensions range from 128 to 512; the optimal dimension
varies depending on the model and is to be found with a
Randomized Grid Search (RGS) procedure. As a result, this
architecture gives an output with dimensions 1× 2n, as the
utilized LSTM is bidirectional. Afterwards, this output is
concatenated with the 21 additional quantification statistics
that were discussed above in detail. Essentially, this gives
the vector of size 1× (2n+ 21). Subsequently, the resulting
vector is passed through three or four dense layers with a
varying number of dimensions (also determined via the RGS,
and ranging from 64 to 512). Each of these dense layers has
a ReLU activation function as well as a 0.3 dropout layer
(found to be the most suitable option for the majority of the
models via the RGS). At the end, there is a layer of size three
with a softmax activation function (each of the output values
corresponds to the quantification of a certain sentiment class).

To train the models, it is important to understand how
the training and test datasets are created. In our case, for
each of the aspect categories as well as the full dataset, we
create subdatasets by sampling without replacement the
opinions from the total or category datasets. The size of these
subdatasets is determined for each of the aspect categories
separately. In this paper, we chose this size as approximately
40% of the test dataset size. This percentage was chosen
to make sure that the subdatasets are sufficiently different
from each other, while at the same time ensuring they are of
large enough size for the models to achieve stable test results
after training. As such, the subdatasets for FOOD#QUALITY
comprise 150 opinions; for SERVICE#GENERAL, 60 opinions;
for AMBIENCE#GENERAL and RESTAURANT#GENERAL,
30 opinions. For each of these subdatasets, we calculate the
corresponding quantifications of size 1× 3.

The optimal number of subdatasets within the training
datasets, for each of the aspects and models, was found
using an RGS procedure. For this reason, depending on the
specification, the number of subdatasets inside the training
dataset may range from 1700 to 10000. For testing, we have
opted to determine the performance over a constant set
of 100 randomly generated subdatasets. This allows us to
obtain more accurate and stable performance, as well as
fairer comparison between the models.

Additionally, taking into account that the RAE and KLD
may become numerically unstable in case the true prevalence
of one of the categories is equal to zero, we make sure there
is at least one opinion from every sentiment class in each of
the subdatasets. However, this could not be done for the test
dataset of the RESTAURANT#GENERAL aspect category,
since the true prevalence of neutral sentiments is zero.

5 RESULTS

In this section, we discuss and compare results obtained
from all previously mentioned ABSQ models and methods.
Section 5.1 provides the training process and optimal hyper-
parameter configurations of the QuaNet models. Following,
Section 5 and 5.3, respectively, show the quantification results
for the largest aspect category (FOOD#QUALITY) and for the
remaining smaller aspect categories (SERVICE#GENERAL,
AMBIENCE#GENERAL, and RESTAURANT#GENERAL).

5.1 Hyperparameter Optimization
The performance of machine learning models depends
greatly on the configuration of its hyperparameters. Hence,
to optimize performance, we employ an RGS to find the
optimal configuration of hyperparameters. RGS has been
proven to generate models of at least the same quality as
those discovered by Grid Search in a fraction of the time [49].

For a fair comparison of results, we compared the models
from RGS on a validation dataset comprising 20% of the train-
ing dataset from each of the aspect categories. Considering
the characteristics for each of the models, displayed in Table
4, we have identified the generally best-performing optimizer
for this problem to be Adam and the best-performing loss
function to be Mean Absolute Error (MAE), calculated over
the constant number of test subdatasets. Additionally, for
most of the models, a range of four to seven training epochs
was found to be optimal. More training epochs were required
to reach optimality in the case of larger datasets.

The best results for AspEntQuaNet were achieved after
16 epochs in terms of the MAE, and 19 epochs when assessed
on KLD. After these points, training set losses continue to
decrease while losses for the validation set start to increase.
Such overfitting behavior is common for deep learning
models and shows the importance of finding the right
tradeoff between in-sample and out-of-sample performance.
We have selected 16 training epochs for this model (MAE
was the best loss function for the QuaNet-based models).

For example, AspEntQuaNet was trained specifically on
the FOOD#QUALITY aspect category, on 5000 subdatasets
of the training dataset. Inside the model were four stacked
dense layers of dimensions 512-256-128-64 (in said order),
and it was trained using an Adam optimizer with a batch
size of 32, and the MAE loss function. Losses were evaluated
and averaged over 100 random test samples.

Table 5 shows the optimal configurations of hyperparam-
eters for each of the considered models. For the majority of
these models, the optimal batch size trained on our data was
determined to be 32. Also in the majority of the cases, four
dense layers were superior to three. Additionally, as already
mentioned above, smaller models required significantly

Table 4: Set of hyperparameters used in the Grid Search.

Characteristic Domain Set

Optimizer Adam, RmsProp, SGD
Loss Function Mean Absolute Error, KLD
#Epochs up to 25
#Subdatasets 1700, 2200, 3000, 4000, 5000, 7000, 10000
#Dense Layers 3, 4
Dense layer dimensions 512-256-128-64, 512-256-128, 256-128-64
Batch size 8, 16, 32, 64
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Table 5: Optimal configuration of hyperparameters for each of the considered models.

Aspect Category Model #Epochs #Subdatasets #Layers Layer dimensions Batch size

FOOD#QUALITY
QuaNet 11 5000 3 512-256-128 32
EntQuaNet 10 5000 4 512-256-128-64 32
AspEntQuaNet 16 5000 4 512-256-128-64 32

SERVICE#GENERAL
QuaNet 5 5000 4 512-256-128-64 32
EntQuaNet 5 4000 4 512-256-128-64 16
AspEntQuaNet 7 10000 3 256-128-64 32

AMBIENCE#GENERAL
QuaNet 5 5000 4 512-256-128-64 32
EntQuaNet 4 5000 4 512-256-128-64 32
AspEntQuaNet 4 4000 4 512-256-128-64 32

RESTAURANT#GENERAL
QuaNet 4 4000 4 512-256-128-64 32
EntQuaNet 3 4000 4 512-256-128-64 32
AspEntQuaNet 3 2200 4 512-256-128-64 16

less computation time and reached optimality in a smaller
number of epochs. Lastly, the most common number of
subdatasets was either 4000 or 5000, with only two models
giving the best results for either 2200 or 10000 subdatasets.

5.2 Results for the FOOD#QUALITY Aspect Category
This section reports results for the largest aspect category by
the number of opinions. Table 6 displays results obtained by
applying all models to FOOD#QUALITY. The test dataset for
this aspect category comprised 283 review opinions.

The first important observation is that ACC and PACC
perform the worst when evaluated by the KLD measure, and
are worse than ordinary CC in terms of both AE and RAE.
This can be explained by the following two arguments. First,
consider the training and testing data distribution: in both
datasets, there is always a category that contains less than
6% of observations; in fact, in 50% of the cases this number
is less than 3%. Second, as discussed previously, ACC and
PACC can in theory return probability values that are lower
than zero or higher than one (for this reason, [23] proposed a
clipping procedure for binary data, which we extended to be
usable for ternary data). During the process of obtaining the
results it was discovered that, when faced with unbalanced
distributions, ACC and PACC may overshoot below zero
and above one so much that the clipping procedure changes
the quantification estimates completely.

The issue with this clipping procedure is illustrated in the
following example. We have randomly selected a subdataset
of the test dataset for the FOOD#QUALITY aspect category.
First, we have run CC on it and obtained the following
predictions for, respectively, positive, negative, and neutral
classes: [0.893333, 0.106667, 0]. For ACC, we obtain for this

Table 6: Results of the quantification method evaluated on
the largest aspect category, FOOD#QUALITY (best perfor-
mances in bold).

Model AE RAE KLD

CC 0.036000 0.420337 0.261060
ACC 0.069849 0.754300 0.295884
PCC 0.030851 0.400516 0.043322
PACC 0.062101 0.506329 0.311720
QuaNet 0.114636 0.731996 0.095213
EntQuaNet 0.093901 0.652151 0.072461
AspEntQuaNet 0.023564 0.235014 0.013482

subdataset: [0.978551, 0.11480645, -0.09335745]. Since one of
the values is lower than zero, the quantifications are rescaled
using the clipping procedure described in Section 4.2.3. This
gives us [0.837381, 0.162619, 0] as a quantification output. A
similar situation occurs with PACC, where the quantification
output is clipped from [1.037080, 0.145764, -0.182844] to
[0.787794, 0.212206, 0], changing the output considerably.

This problem is bolstered by the fact that in the majority
of the cases, there is not enough training data to estimate all
the probabilities and rates mentioned in Sections 4.2.3 and
4.2.5. Hence, especially for the smaller-sized categories, these
coefficients may be skewed.

As expected, QuaNet, which was trained on the whole
training dataset with a multi-sorting based on probabilities,
performed worse than EntQuaNet for which the opinions’
sorting was done based on the entropy values calculated
using all three probabilities. In fact, there is approximately a
20% difference across all the evaluation measures.

However, it comes as a surprise that both QuaNet and
EntQuaNet are significantly worse than CC in terms of AE
and RAE. By contrast, when evaluated on KLD, they surpass
ordinary CC by around three times. This can be explained
by the fact that QuaNet-based models have been shown
to be the best at predicting the prevalence of the minority
data class. Hence, the value inside the logarithm of the KLD
measure (see (5) in Section 4.1.2) does not get as high as
when the prediction for the category is equal to zero (which
happens often with CC, ACC, and PACC). The fact that KLD
punishes more for errors in smaller data categories (ceteris
paribus) is its particular feature.

The second-best method for this aspect category was
found to be PCC. This is largely explained by the fact that
it is much more flexible than CC for the minority classes.
In fact, when CC falsely misses the minority category, the
probabilistic classifier assigns a (small) probability to it. So,
even when CC has predicted zero prevalence for the minority
category, its probabilistic counterpart always has a small
number assigned to that category, which is most times closer
to the true prevalence than a zero prediction.

AspEntQuaNet came out as the best method for this
aspect category. In particular, it surpassed the general
QuaNet models by roughly three to seven times across
all performance measures and outperformed ordinary CC
by almost 20 times when evaluated on KLD. These results
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highlight the added value of both entropy-based sorting and
training the model on separate aspect categories.

5.3 Results for SERVICE#GENERAL and Remaining
Categories
This section discusses the results obtained for the other
(smaller) aspect categories. Table 7 displays the results of all
researched models evaluated on the SERVICE#GENERAL
aspect category, comprising 107 observations in the test data.

In this case, we observe that PACC again underperforms
on all three metrics. This time, however, contrary to the case
for FOOD#QUALITY, ACC gives better quantification per-
formance than both CC and PACC, although improvements
are marginal. In turn, PCC gives prevalence estimations of
competitive quality according to the evaluation measures,
since it manages to accurately estimate the minority category.

Again, entropy-based sorting generates better results than
multisorting on the first two probabilities. This is supported
by the fact that EntQuaNet surpasses the performance of
normal QuaNet on all three evaluation measures.

For this aspect category, all QuaNet-based models out-
perform ordinary CC. Additionally, AspEntQuaNet became
the best method according to AE and KLD. It was only
marginally surpassed by EntQuaNet when evaluated on
RAE. Because they are great at predicting the prevalence
of the minority category, QuaNet-based models performed
particularly well when evaluated on KLD.

Similar results were found for the remaining smaller
aspect categories AMBIENCE#GENERAL and RESTAU-
RANT#GENERAL, which comprise 59 and 58 observations
in the test data, respectively. For the former category, AspEn-
tQuaNet outperformed the other models on all performance
measures. For the latter category, an absence of the neutral
sentiment class in the test dataset (see Table 3) resulted in
numerical instability for the RAE performance measure. In
this case, we found ordinary CC to perform best according
to RAE; for the AE and KLD performance measures, As-
pEntQuaNet proved most effective once more. Additionally,
EntQuaNet performed better than normal QuaNet for both
categories on almost all performance measures, again high-
lighting the added benefit of sorting documents on entropy
rather than multisorting on the first two probabilities.

6 CONCLUSION

In this paper, we proposed EntQuaNet, an aspect-based
sentiment quantification (ABSQ) method built upon LCR-
Rot-hop++, a state-of-the-art classification architecture for the

Table 7: Results of the quantification method evaluated on
the SERVICE#GENERAL aspect category (best performances
in bold).

Model AE RAE KLD

CC 0.075444 0.468466 0.267874
ACC 0.065944 1.447930 0.262462
PCC 0.042534 0.254345 0.030829
PACC 0.091526 1.291486 0.094069
QuaNet 0.057297 0.261275 0.031820
EntQuaNet 0.030276 0.187150 0.015957
AspEntQuaNet 0.029821 0.188882 0.013353

task of aspect-based sentiment analysis. It extends QuaNet,
a state-of-the-art method for sentiment quantification, in two
ways. It is the first ABSQ method explicitly defined for the
quantification of three sentiment classes (positive, neutral,
negative), instead of two (positive, negative). Additionally,
it uses a novel entropy-based sorting procedure instead of
multisorting on probability estimates. Entropy-based sorting
was argued to be better at handling minority data categories
and resulted in better performance than multisorting for all
investigated aspect categories and performance measures.

AspEntQuaNet, the aspect-specific variant of EntQuaNet,
consistently outperformed the other methods on almost
all evaluation measures. We conclude that AspEntQuaNet
can be successfully applied to ternary ABSQ, and often
outperforms all existing methods by at least a factor of 2.

Further research could investigate other sorting methods.
Currently, input document embeddings are ordered via
probability entropy sorting. We would like to investigate
other dimensionality reduction techniques such as PCA or
the use of autoencoders to represent the three probabilities in
one value and sort the document embeddings on that value.
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APPENDIX A
DERIVATION FOR ADJUSTED CLASSIFY AND COUNT

p̂ACC
c =

p̂CC
c (D)− f̂prh

t̂prh − f̂prh
=

TPh + FPh

|D|
− FPh

FPh + TNh

TPh

TPh + FNh
− FPh

FPh + TNh

=

TPh + FPh

TPh + FPh + TNh + FNh
− FPh

FPh + TNh

TPh

TPh + FNh
− FPh

FPh + TNh

=

TPh + FPh

TPh + FPh + TNh + FNh
− FPh

FPh + TNh

TPh · FPh + TPh · TNh − FPh · TPh − FPh · FNh

(TPh + FNh) · (FPh + TNh)

=

TPh·FPh+FPh·FPh+TPh·TNh+FPh·TNh−FPh·TPh−FPh·FPh−TNh·FPh−FNh·FPh

(TPh+FPh+TNh+FNh)·(FPh+TNh)

TPh·TNh−FPh·FNh

(TPh+FNh)·(FPh+TNh)

=
TPh · TNh − FNh · FPh

(TPh + FPh + TNh + FNh) · (FPh + TNh)
· (TPh + FNh) · (FPh + TNh)

TPh · TNh − FPh · FNh
=

TPh + FNh

TPh + FPh + TNh + FNh

= Share of Positives

APPENDIX B
DERIVATIONS FOR (PROBABILISTIC) ADJUSTED CLASSIFY AND COUNT FOR THREE SENTIMENT CLASSES

P (1̂) = P (1̂|1) · P (1) + P (1̂|2) · P (2) + P (1̂|3) · P (3) = t̂1r · P (1) + f̂1/2r · P (2) + f̂1/3r · P (3)

= t̂1r · P (1) + f̂1/2r · P (2) + f̂1/3r · (1− P (1)− P (2)) = (t̂1r − f̂1/3r) · P (1) + (f̂1/2r − f̂1/3r) · P (2) + f̂1/3r

P (1) =
P (1̂)− (f̂1/2r − f̂1/3r) · P (2)− f̂1/3r

t̂1r − f̂1/3r

P (2̂) = P (2̂|1) · P (1) + P (2̂|2) · P (2) + P (2̂|3) · P (3) = f̂2/1r · P (1) + t̂2r · P (2) + f̂2/3r · P (3)

= f̂2/1r · P (1) + t̂2r · P (2) + f̂2/3r · (1− P (1)− P (2)) = (f̂2/1r − f̂2/3r) · P (1) + (t̂2r − f̂2/3r) · P (2) + f̂2/3r

P (2) =
P (2̂)− (f̂2/1r − f̂2/3r) · P (1)− f̂2/3r

t̂2r − f̂2/3r

P (1) =

P (1̂)− (f̂1/2r − f̂1/3r) ·
P (2̂)− (f̂2/1r − f̂2/3r) · P (1)− f̂2/3r

t̂2r − f̂2/3r
− f̂1/3r

t̂1r − f̂1/3r

=

P (1̂)−
(f̂1/2r − f̂1/3r) · (P (2̂)− f̂2/3r)

t̂2r − f̂2/3r
+

(f̂1/2r − f̂1/3r) · (f̂2/1r − f̂2/3r)

t̂2r − f̂2/3r
· P (1)− f̂1/3r

t̂1r − f̂1/3r

=

P (1̂)−
(f̂1/2r − f̂1/3r) · (P (2̂)− f̂2/3r)

t̂2r − f̂2/3r
− f̂1/3r

t̂1r − f̂1/3r
+

(f̂1/2r − f̂1/3r) · (f̂2/1r − f̂2/3r)

ˆt2r − f̂2/3r

t̂1r − f̂1/3r
· P (1)

P (1) =

P (1̂)−
(f̂1/2r − f̂1/3r) · (P (2̂)− f̂2/3r)

t̂2r − f̂2/3r
− f̂1/3r

t̂1r − f̂1/3r

1−

(f̂1/2r − f̂1/3r) · (f̂2/1r − f̂2/3r)

t̂2r − f̂2/3r

t̂1r − f̂1/3r

=

P (1̂)−
(f̂1/2r − f̂1/3r) · (P (2̂)− f̂2/3r)

t̂2r − f̂2/3r
− f̂1/3r

t̂1r −
(f̂1/2r − f̂1/3r) · (f̂2/1r − f̂2/3r)

t̂2r − f̂2/3r
− f̂1/3r

(continued on next page)



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 13

P (2) =

P (2̂)−
(f̂2/1r − f̂2/3r) · (P (1̂)− f̂1/3r)

t̂1r − f̂1/3r
− f̂2/3r

t̂1r − f̂1/3r

1−

(f̂2/1r − f̂2/3r) · (f̂1/2r − f̂1/3r)

t̂1r − f̂1/3r

t̂2r − f̂2/3r

=

P (2̂)−
(f̂2/1r − f̂2/3r) · (P (1̂)− f̂1/3r)

t̂1r − f̂1/3r
− f̂2/3r

t̂2r −
(f̂2/1r − f̂2/3r) · (f̂1/2r − f̂1/3r)

t̂1r − f̂1/3r
− f̂2/3r

P (3) = 1− P (1)− P (2)


