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ABSTRACT
Recommender systems are widely used by online retailers to entice
customers into making new purchases. Understanding and predict-
ing customer behavior is thus of utmost importance to retailers. In
this paper our main goal is to predict the next product category
that a certain customer will buy given his/her purchase history. We
propose a Sequential Event Prediction model that captures both
general and customer-specific consumption behavior through con-
fidence rules. We use anonymized purchasing data from a Web
shop in the Netherlands to show empirically that our approach
outperforms several models proposed in the literature.
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• Information systems→Recommender systems; Personaliza-
tion; Retrieval tasks and goals.
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1 INTRODUCTION
With the accelerated growth of e-commerce and themassive amount
of purchase data being collected, it is crucial that online retailers
make a sensible use of this data to remain competitive. In fact,
recommender systems that exploit this data are extensively used
nowadays. Online retailers can increase their revenues mainly in
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two ways: by attracting new customers – which is said to be much
more expensive than retaining an existing one [11] – or by selling
more products to existing customers, which is known as cross-
selling. For instance, most retailers periodically send personalized
e-mails where they recommend certain products or product cate-
gories to their customers. If these recommendations are relevant to
the customers, it is likely that they will visit their website and make
a purchase, as shown in [2]. Therefore, it is of retailers’ interest to
be able to determine the most relevant product categories for each
customer at each point in time.

In this paper, our main objective is to predict the next product
category that a certain customer will buy given his/her purchase
history in aWeb shop (for our experiments we use aWeb shop from
the Netherlands, name is not disclosed due to privacy concerns).
Unlike other approaches, we are only interested in predicting the
product category and not the specific product. Note that the prob-
lem at hand also differs from the classical ‘market basket prediction’
problem which, e.g., supermarkets face. As opposed to the products
that supermarkets sell, which are usually basic products that are
bought recurrently, the products that our considered Web shop
offers are durable goods, which are usually purchased only once.
Furthermore, models for basket prediction usually rely on market-
ing instruments such as pricing and promotions [9].

There are several aspects we must take into account when con-
structing a suitable model that will allow us to make predictions. A
customer’s purchase history consists of many purchases that are
ordered chronologically. Each of these purchases contains one or
several products that were bought together. In our application the
sequential order of the purchases is relevant, however, the order
of the products inside a purchase is not. Furthermore, note that
purchases are not equally spaced in time. The mathematical transla-
tion of this is that we need to model sequences (customer histories)
of different lengths, each one consisting of itemsets (purchases) of
different sizes.

In our research approach we frame the problem of predicting
the next product category that a customer will buy in the context
of Sequential Event Prediction (SEP) [15]. To this end, we build on
the theoretical framework proposed by [7], which uses association
rules to model sequences of events. The novelty of their work lies
in that they establish a theoretical foundation for using association
rules in supervised sequence learning. The method they propose
computes partial probabilities (the confidence of these association
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rules) that are weighted according to optimized parameters in order
to rank the items that are most likely to appear next in a sequence.
As opposed to some black-box approaches whose results are difficult
to interpret, by using these association rules marketeers are able to
gain a better insight into the customers’ consumption behaviors.
We extend the work of Letham et al. by using additional parameters
that allow us to better capture the heterogeneity in the consumption
behavior across customers, leading to better predictive power. We
apply this model individually, as personalization can yield more
accurate predictions [3].

The structure of our paper is as follows. Section 2 reviews pre-
vious literature related to the problem at hand. Section 3 briefly
describes and explores the data that is used to evaluate the model.
The core of this paper – the proposed method – is presented in
Section 4. Section 5 introduces the performance measures and dis-
cusses the results of the evaluation of our model. Lastly, Section 6
presents the conclusions and suggests some directions for future
research.

2 LITERATURE REVIEW
A lot of research has been done in the field of recommendation algo-
rithms over the last decade [5, 12, 14, 17]. These algorithms are best
known for their use on e-commerce Web sites, where customers’ in-
terests are employed to generate personalized lists of recommended
items [1]. In real-world scenarios, customers usually purchase series
of baskets of items at different times. This recommendation task in
e-commerce sites is formulated as the next basket recommendation
[13]. In 2003 Linden et al. introduced the item-to-item collabora-
tive filtering. This model was created and used by Amazon.com
to personalize the online store for each customer. The algorithm
attempts to find similar items to the ones purchased by the user and
recommends the most popular or correlated items. To determine
the most similar match of a given item, the algorithm uses cosine
similarity to build a table of similar items by finding those items
that customers tend to purchase together. This technique measures
the cosine of the angle between two vectors, where each vector
corresponds to an item rather than to a customer. Item-to-item
collaborative filtering is an effective form in terms of creating a
personalized shopping experience for each customer. According
to the authors, the method is scalable over very large numbers of
customers and product catalogs. Nonetheless, we argue that this
method may have difficulties in considering sequential features of
transaction histories, i.e., the algorithm does not take into account
the sequential nature of the data. Moreover, the authors present
this method as a solution for large numbers of items disconsid-
ering product categories, while in our work we consider product
categories.

In 2010, Rendle et al. proposed the Factorizing Personalized
Markov Chains (FPMC) method, which is based on underlying
Markov chains. For each customer an individual transition matrix
is generated, which in total results in a transition cube which con-
tains all the individual transition matrices. In this model sequential
data and user-taste are captured by user-specific transition matrices.
To deal with the sparsity of the data, a factorization model based on
pairwise interactions is proposed. The factorization model allows
each transition to be influenced by similar users, similar items, and

similar transitions. The FPMC can capture sequential effects as
well as the general interests of customers. However, this method
can only model sequential behaviors between adjacent baskets. In
addition, it utilizes a linear operation on multiple factors influenc-
ing customers’ next purchase and it cannot depict the interactions
among multiple factors, which we consider here.

In 2015, Wang et al. introduced the Hierarchical Representation
Model (HRM) which explores sequential behavior (buying one item
leads to buying another item) and the general taste of individuals
by involving transactions and user representation in prediction.
HRM represents each customer and item as a vector and is based on
a two-layer structure, where the first layer aggregates item vectors
from the last transaction to build the transaction representation,
and the second layer aggregates the individual vector and the trans-
action representation to form the hybrid representation from the
last transaction. This final hybrid representation is used to predict
the items in the next basket. Furthermore, HRM allows different
interactions among multiple factors of the input representation,
such as average pooling (a linear operation) and max pooling (a non-
linear operation). Nevertheless, the main deficiency of this model
is that it extracts local sequential features only between adjacent
baskets, which we address in this work by taking in account baskets
that are further apart from each other.

Also in 2015, Yu et al. introduced the Dynamic Recurrent Basket
Model (DREAM), which is based on a Recurrent Neural Network
(RNN). DREAM learns a dynamic representation of a user and
captures global sequential features among overall historical trans-
action data. Yu et al. formalize the problem of predicting a ranked
list of items for each buyer at a specific time moment. A dynamic
representation with different baskets over time is made for each
customer by pooling and matrix operations, and global sequential
features are obtained by the recurrent structure. The paper shows
that the employed nonlinear operations are effective in learning
the representation of a basket and capturing complex interactions
among multiple factors of items. Moreover, the authors show that
DREAM outperforms the aforementioned FPMC and HRM models.
However, since the method could be classified as a black-box ap-
proach, it is not well-suited for our case as we would like to have
deeper insights into the model.

In 2011, Rudin et al. presented a theoretical framework for the
problem of sequential event prediction, which aims to determine
which event will be revealed next. This approach is common in
the medicine field – e.g., [10] uses the Hierarchical Association
Rule Model (HARM) based on ranking association rules to predict
patients’ medical conditions. The idea behind this method is to
use the information from similar patients to add to the missing
data on a particular patient’s history. The algorithm proposed by
Rudin et al. uses association rules, defined as an implication “a → b”
(meaning that itemset a co-occurs with item b), to find correlations
and make predictions based on subsets of past events that occur at
the same time. Two algorithms, employed as ranking models which
are based on association rules, are presented: a max confidence, min
support algorithm, and an adjusted confidence algorithm. The latter
has an advantage over the first one: it allows rare rules to be used,
and among rules with similar confidence, it prefers those with a
larger support. However, this paper does not look over marketing
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cases as proposed here, and does not discuss the possibility of in-
cluding additional information such as users’ heterogeneity, which
we hypothesize could help improve the prediction accuracy.

Lately, in 2013, Letham et al. proposed in [7] association rules
for sequential event prediction in a supervised ranking framework,
which is based on the predictive power of sets of past events. In
their approach they employ optimization-based algorithms based
on the principle of empirical risk minimization (ERM). Each of
the sequential event predictions is treated as a supervised ranking
problem. To be able to find the partial probabilities, Letham et al.
propose the so-called max confidence algorithm. The method is
based on association rules “a → b”. Items b are scored and ranked
in descending order to make the predictions. We believe that this
approach suits well our problem of ranking the categories that a
customer might purchase next. Therefore, we use this theoretical
framework as the base for our model and extend it by personalizing
the parameters for each customer and considering both individual
and aggregate-level data.

3 DATA
TheWeb shop data consist of transaction information on a selection
of 246,932 customers from a Web shop in the Netherlands. This
dataset contains a random and anonymized set of purchases of
customers made in a three year period from 1 January 2015 to 31
December 2017, with a total number of approximately 3.4 million
orders. Although there are two levels of categorization (Products
and Categories), we focus only on the latter (18 Categories). Due to
privacy concerns the other summary statistics of the data are not
made available.

We only take into consideration those customers whomademore
than one purchase, since a minimum of two purchases is required to
train the model and to evaluate how well it performs. The subset of
these contains 167,194 customers. The average number of purchases
per customer in this subset is 11.2 and the average number of items
per basket is 1.6. Last, note that in order to test the models we
split each customer’s purchase history into a training set, which
contains all purchases except the last one, and a test set, which
consists of the last purchase.

4 METHOD
In this section we first present the notation that we will employ in
the rest of the section. Thereafter we present the base model, which
corresponds to the model proposed for SEP by [7]. This base model
is applied sequentially to all customers in order to obtain parameters
that are common to all of them. As opposed to the SEP approach,
we suggest to apply the method per customer and obtain individual-
specific parameters. First, we present the individual model, which
uses an individual confidence matrix; second, we introduce the
general model, which instead uses a general confidence matrix; and
last, we combine the intuition behind both models in the mixed
model. We hypothesize that a model personalized to each customers’
behavior would lead to more accurate predictions than a general
model for all customers.

4.1 Notation
We first introduce the notation that we will use in presenting the
models. For the sake of readability, in the following we refer to
customer purchases instead of events, customer histories instead of
sequences, and categories instead of items. However, note that this
approach extends easily to other problems where one has multiple
sequences of events. Following the notation in Letham et al., we
define:

• m, the number of customer histories;
• Z, the set of categories, of size N ;
• Ti , the number of purchases of customer i;
• zi ,t , t-th purchase of customer i (category or set of categories
bought at time t by customer i);

• xi ,t , all purchases of customer i up to and including time t
(xi ,t = {zi , j }j=1, ...,t );

• Xi = xi ,Ti , all purchases of customer i – his/her full history;
and,

• Xm , all purchases of all m customers.

Figure 1: Notation scheme

Next, we introduce association rules, which are the building
blocks of our model. Association rules establish dependency re-
lationships between events. In our application, association rule
“a → b” denotes that buying category (categories) a implies buying
category b thereafter. Association rules that establish dependen-
cies between several categories and one category could allow us
to capture more complex relationships in the data. For instance,
“{m,n} → b”, where {m,n} = a is a set of two categories and b is
one category.

As opposed to Letham et al., who define the confidence of rule
“a → b” as the proportion of the sequences that have a and b (at
any point in the sequence) given that a is present, we define the
confidence of rule “a → b” as the proportion of the customers who
bought category a and also category b in the remaining part of the
sequence after category a:

Conf (a → b) = P̂(b |a) =
#(b bought after a)

#a
. (1)

This allows us to take into account the order of the purchases as
well as the dependency relationships between categories.

4.2 Base Model
Having defined the notation and the confidence rules, we now
introduce the base model. This model employs a scoring function f
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that, given a customer’s history at t and parameters λ�, µ, scores a
category b. The scoring function can be written as:

f (xi ,t ,b;λ�, µ) = λ�,b +
t∑
j=1

∑
a⊆zi , j

µa P̂(b |a), (2)

where parameter λ�,b gives a score for category b when no pur-
chase history is known and generally represents the “baseline” score
for b, and the term µa P̂(b |a) gives a score that b will be bought later
in the sequence a. Parameter µa can thus be regarded as a “correc-
tion” for the general confidence of rule “a → b”. The sum of these
two terms is the score of category b at time t for customer i .

To obtain the optimal parameters λ� and µ we use an empirical
loss function that averages the number of times that the predictions
are incorrect. Although the “incorrectness” criterion varies across
applications, in general one wants the loss function to be large if
the predictions are incorrect and vice versa. For instance, consider
a purchase at time t followed by a purchase {a, b, c, d, e} at t + 1.
When assigning the scores at t to each of the 18 categories in order
to predict the categories that will be bought at t + 1, we would like
categories a,b, c,d and e to be scored strictly higher than the rest of
the categories. To this end, we construct two sets of categories, Li ,t
and Ki ,t , where Li ,t is the set of (purchased) categories that should
be ranked strictly higher than the (other) categories in set Ki ,t .
Following this notation, we consider a prediction to be incorrect
when a category from setKi ,t is scored higher than a category from
set Li ,t . In our application we use the customer’s next purchase,
zi ,t+1, as Li ,t and the remaining categories, Z \ zi ,t+1, as Ki ,t .

R0−1(f ,X
m ;θ ) =

1
m

m∑
i=1

Ti−1∑
t=0

1
Ti

1
|Ki ,t |

1
|Li ,t |∑

l ∈Li ,t

∑
k ∈Ki ,t

1[f (xi ,t ,k ;θ )>f (xi ,t ,l ;θ )]

(3)

In order to smooth the loss function and for ease of derivation, we
replace the indicator function with an exponent term based on the
inequality 1[b>a] 6 eb−a and a regularization term of the squared
ℓ2−norm of the parameters θ (the vector consisting of λ� and µ)
that is outside of the summations. Having sums of exponential
terms will allow us to derive analytically the gradients of these
functions.

Rexp (f ,X
m ;θ ) =

1
m

m∑
i=1

Ti−1∑
t=0

1
Ti

1
|Ki ,t |

1
|Li ,t |∑

l ∈Li ,t

∑
k ∈Ki ,t

ef (xi ,t ,k ;θ )−f (xi ,t ,l ;θ ) + β | |θ | |22

(4)

According to Letham et al. this model generalizes well. However,
when predicting the next category that a customer will buy, this
model’s recommendations are too general; it fails to incorporate
the heterogeneity in purchasing behavior across individuals. In
Section 4.4 we discuss how we use this general model as the base
for personalized model that we propose.

4.3 Optimization of the Base Model
The optimization of the loss function (4) is performed by stochastic
gradient descent (SGD), an iterative maximization/minimization
algorithm that stochastically approximates gradient descent (GD).
SGD is computationally more advantageous than GD when opti-
mizing loss functions that can be expressed as the sum of derivable
individual loss functions, as is our case:

Rexp (f ,X
m ;θ ) =

1
m

m∑
i=1

Ri ,exp (f ,Xi ;θ ),

where Ri ,exp (f ,Xi ;θ ) is customer i’s loss function.
When the number of training sequencesm is large, the compu-

tation of the loss function Rexp (f ,X
m ;θ ) can become long. SGD

takes into account each customer sequentially by using a single
training sequence at a time instead of all of them, thus reducing
the computational time. The algorithm is as follows:

(1) Set initial values for the parameters;
(2) Shuffle the training data;
(3) Compute θ i+1 := θ i − η∇Ri ,exp (f ,Xi ;θ i ),

where ∇Ri ,exp (f ,Xi ;θ i ) is the vector of first-order partial
derivatives w.r.t. the parameter vector θ , η is the learning
rate, for all customers i in the training data

(4) Repeat steps 2 to 3 until
| Rexp (f ,X

m ;θn ) − Rexp (f ,X
m ;θn+1) |< ϵ ,

where n represents the nth iteration across all users and ϵ
is a chosen threshold value.

Being able to derive the partial derivatives analytically instead
of having to approximate them at each iteration is one of the main
advantages of defining the loss function as the sum of exponential
terms. The following are the partial derivatives required to perform
stochastic gradient descent in the application of the base model:

∂Ri (f ,Xi ;θ )
∂λ�, j

=

Ti−1∑
t=0

1
Ti

1
|Ki ,t |

1
|Li ,t |∑

l ∈Li ,t

∑
k ∈Ki ,t

ef (xi ,t ,k ;θ )−f (xi ,t ,l ;θ )(1[k=j] − 1[l=j])

+ 2βλ�, j ,
(5)

∂Ri (f ,Xi ;θ )
∂µ j

=

Ti−1∑
t=0

1
Ti

1
|Ki ,t |

1
|Li ,t |∑

l ∈Li ,t

∑
k ∈Ki ,t

(
ef (xi ,t ,k ;θ )−f (xi ,t ,l ;θ )

t∑
p=1

∑
j⊆zi ,p

P̂(k |j) − P̂(l |j)

)
+ 2βµ j .

(6)

4.4 Individually-Optimized SEP Model
We propose to tailor and extend the base model in order to account
for the peculiarities of the problem at hand. In order to capture
the heterogeneity in purchasing behaviour across customers, we
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introduce individual-specific parameters in the model. In such way,
each customer has a model fitted only for his purchase history, that
is, the model is now optimized for each customer independently.
The fact that this model can be applied independently to each
customer makes the problem easy to parallelize, thus reducing the
computational burden. Note that the definitions of sets Li ,t and
Ki ,t as well as the notation in Section 4.1 remain unchanged.

4.4.1 Individual Confidence Matrix. As a first approach to applying
the SEP model individually (per customer), we only use the infor-
mation of each individual to construct the corresponding individual
confidence matrices. As in this case the training sequence consists
of only one customer, it is necessary to introduce the individual
confidence of a rule, Confi (a → b). Thus, for person i we define
the confidence of rule “a → b” as:

Confi (a → b) = P̂i (b |a) =
# transitions from a to b

# all possible transitions from a
,

where the term transition refers to the occurrence of category b in
the remaining part of the sequence after category a.

Having defined the new confidence measure, we now introduce
the individual scoring function fI with individual parameters and
individual confidence rules:

fI (xi ,t ,b;λi ,�,ζ i ) = λi ,�,b +
t∑
j=1

∑
a⊆zi , j

ζi ,a P̂i (b |a). (7)

The loss function to minimize is:

Rexp,I (fI ,Xi ;θ i ) =
Ti−1∑
t=0

1
Ti

1
|Ki ,t |

1
|Li ,t |∑

l ∈Li ,t

∑
k ∈Ki ,t

efI (xi ,t ,k ;θ i )−fI (xi ,t ,l ;θ i )

+ β | |θ i | |
2
2,

(8)

where θ i is a parameter vector consisting of λi ,� and ζ i .
Although this approach of creating an individual transition ma-

trix for each customer increases the personalization of recommen-
dations, its main drawback is the inability to recommend categories
that were not bought previously. While this may not be a serious
issue for customers with many purchases, many new customers will
have too few purchases in order to construct a reliable individual
confidence matrix.

4.4.2 General Confidence Matrix. To account for the general pur-
chasing patterns at an aggregate level, the confidence rules P̂G (b |a)
are now calculated using all customers’ purchasing histories. Thus,
we rewrite the scoring function as:

fG (xi ,t ,b;λi ,�, µi ) = λi ,�,b +
t∑
j=1

∑
a⊆zi , j

µi ,a P̂G (b |a), (9)

where parameters λi ,b ,� can be interpreted as those of the base
model. µi ,a can be interpreted as a parameter to “correct” the gen-
eral trend of P̂(b |a) to the person i . The loss function for the indi-
vidual model is constructed in the same way as in the base model,
although the set of training sequences now consists of only one
sequence – the individual’s purchase history.

Rexp,G (fG ,Xi ;θ i ) =
Ti−1∑
t=0

1
Ti

1
|Ki ,t |

1
|Li ,t |∑

l ∈Li ,t

∑
k ∈Ki ,t

efG (xi ,t ,k ;θ i )−fG (xi ,t ,l ;θ i )

+ β | |θ i | |
2
2,

(10)

where θ i is a parameter vector consisting of λi ,� and ζ i .
In order to optimize this loss function we employ gradient de-

scent as described in Section 4.5.
However, by calculating the confidence rules using only aggre-

gate information of all the customers, some individual patterns may
be masked. In order to account for this, we suggest a mixed model.

4.4.3 Mixed Confidence Matrix. A combination of both the indi-
vidual and the general confidence matrices should incorporate the
advantages of both previous approaches and allow the algorithm to
recommend new categories for customers who have few purchases.
A linear combination of both approaches results in the scoring
function:

fM (xi ,t ,b;λi ,�, µi ,ζ i ) = λi ,�,b

+

t∑
j=1

∑
a⊆zi , j

(
µi ,a P̂G (b |a)

+ ζi ,a P̂i (b |a)
)
.

(11)

The loss function to minimize can now be written as:

Rexp,M (fM ,Xi ;θ i ) =
Ti−1∑
t=0

1
Ti

1
|Ki ,t |

1
|Li ,t |∑

l ∈Li ,t

∑
k ∈Ki ,t

efM (xi ,t ,k ;θ i )−fM (xi ,t ,l ;θ i )

+ β | |θ i | |
2
2,

(12)

where θ i is a parameter vector consisting of λi ,�, µi and ζ i .

4.5 Optimization of the Individual Model
To optimize the individually-applied SEP models with different
confidence matrices we use gradient descent, an iterative mini-
mization/maximization algorithm. This algorithm uses the partial
derivatives of the loss function in question and iteratively updates
the parameter values until an approximate minimum is reached.
The algorithm for person i is as follows:

(1) Set initial values for the parameters;
(2) Compute θ i ,n+1 = θ i ,n − η∇Rexp, ·(f ·,Xi ;θ i ,n ),

where η is learning rate and n is the iterator;
(3) Repeat step 2 until

| Rexp, ·(f ·,Xi ;θ i ,n ) − Rexp, ·(f ·,Xi ;θ i ,n+1) |< ϵ .

The partial derivatives for this algorithm in our application are:



SAC ’22, April 25–29, 2022, Virtual Event, Czech Republic Laura Rekasiute, Alvaro Jose Jimenez Palenzuela, Nijole Salnaite, Ramon Carrera Cuenca, and Flavius Frasincar

∂Rexp, ·(f ·,Xi ;θ i )
∂λi ,�, j

=

Ti−1∑
t=0

1
Ti

1
|Ki ,t |

1
|Li ,t |∑

l ∈Li ,t

∑
k ∈Ki ,t

ef·(xi ,t ,k ;θ i )−f·(xi ,t ,l ;θ i )(1[k=j]−

1[l=j]) + 2βλi ,�, j ,
(13)

∂Rexp, ·(f ·,Xi ;θ i )
∂µi , j

=

Ti−1∑
t=0

1
Ti

1
|Ki ,t |

1
|Li ,t |∑

l ∈Li ,t

∑
k ∈Ki ,t

(
ef·(xi ,t ,k ;θ i )−f·(xi ,t ,l ;θ i )

t∑
p=1

∑
j⊆zi ,p

P̂G (k |j) − P̂G (l |j)

)
+ 2βµi , j ,

(14)

∂Rexp, ·(f ·,Xi ;θ i )
∂ζi , j

=

Ti−1∑
t=0

1
Ti

1
|Ki ,t |

1
|Li ,t |∑

l ∈Li ,t

∑
k ∈Ki ,t

(
ef·(xi ,t ,k ;θ i )−f·(xi ,t ,l ;θ i )

t∑
p=1

∑
j⊆zi ,p

P̂i (k |j) − P̂i (l |j)

)
+ 2βζi , j .

(15)

4.6 Baselines
In this paper we use the max confidence algorithm and the item-
based collaborative filtering algorithm as baselines. The first algo-
rithm uses confidence rulesConf (a → b) = #(b and a)

#a , wherea is an
itemset and b is an item in the sequence. The right-hand sides of the
confidence rules, i.e., the potential future items b in the sequence,
are ranked and a list is constructed with these ranked items by
descending confidence. This ranked list is used to make predictions
and its output gives the recommendations of particular items to
the user. Another procedure that can be used for recommendations
is the item-based collaborative filtering, which is based on cosine
similarity. This method computes the similarities between items
based on the ratings that people give to these items. The cosine
similarity is intended for settings in which a user i applies a rating
Ri ,b to item b. In our application, the rating reduces to Ri ,b = 1 if
sequence i contains item b and 0 otherwise. For each item b the
binary vector of ratings Rb = [R1,b , ...,Rm,b ] is constructed and
then the cosine similarity between every pair of items a and b can
be expressed as

sim(a,b) =
Ra · Rb

| |Ra | |2 | |Rb | |2
.

For each item b, the k most similar items are found and they are
defined as the neighborhood of b, Nbhd(b;k). In our case we used
k = 3. In order to make a prediction from a partial sequence xI ,t ,

each item b is scored by adding the similarities of all of the observed
items that occur both in the sequence and in the neighborhood
Nbhd(b;k), and then normalizing it:

fsim (xi ,t ,b;k) :=

∑
a∈

⋃t
j=1 zi , j

⋂
Nbhd (b;k) sim(a,b)∑

a∈Nbhd (b;k) sim(a,b)
.

5 EVALUATION
Prior to the evaluation of the models, it is important to define how
their goodness of fit will be assessed, i.e., the accuracy measure.
When predicting which categories will be bought in the following
purchase, we first rank them according to how likely it is that they
will be bought next (we refer to categories by letters due to privacy
concerns). After this, we check if any of the first 3 categories in the
ranked list were actually bought in the following purchase. We refer
to the proportion of times in which at least one of the predicted
categories was bought next as Top-3 accuracies.

Before implementing the model that we propose in this paper,
we try a few naïve approaches and regard their accuracies as bench-
marks. The three most bought categories across all customers are I,
R, and H. If we predict that customers will buy these categories in
their next purchase, we obtain a Top-3 accuracy of 36.75%. Alter-
natively, if we predict that each customer will buy the categories
which he/she bought the most before, we obtain a Top-3 accuracy
of 46.65%, respectively. We thus observe that individual customers’
purchase histories contain valuable information for predicting. The
general procedure for the evaluation of each model is as follows.
First, we construct association rules with each of the 18 product
categories b by taking a as a previously visited category and we
compute the confidence of these association rules. Then, each of the
18 product categories is scored and these scores are ranked to make
the predictions. Last, we compute the Top-3 accuracies by checking
whether the predicted categories match the ones that were actually
bought.

In order to test the models we split each customer’s purchase
history into two parts: all purchases except the last one (as training
data), and the last purchase (as test data) to verify whether our mod-
els perform well. We randomly select 20,000 customers to evaluate
the models, which we find to be sufficient to make a comparison
of their accuracies. In Appendix A.1 we plot the accuracies of the
models for different sample sizes. We use Amazon’s AWS cloud
computing services to run some of the models and to perform the
robustness analysis. Furthermore, we take advantage of the fact
that the application of the individually-applied SEP models is an
embarrassingly parallel problem.

We use a two-step approach to estimate the models: first, the
confidence matrix (or matrices in the case of the individual-specific
model) is constructed. For the base model, the confidence matrix
is constructed with the training sequences of 5,000 customers for
which the model is optimized. For the general and the individ-
ual models, the general confidence matrices are calculated using
training sequences of 20,000 randomly chosen customers.

Secondly, the model is fitted by optimizing the parameters. A
maximum of 10 previous baskets are used for optimization as more
baskets do not increase the accuracy. For the base model, optimized
on 5,000 customers, we use stochastic gradient descent with all
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initial parameters 0.1, learning rate η = 0.2, and regularization
parameter β = 0.1. On the other hand, for the individual-specific
models the parameters are optimized through gradient descent.
The initial parameters, the learning rate, and the regularization
parameter remain the same across the performed experiments and
we set ϵ = 10−5 as the convergence criterion.

5.1 Base Model
The confidence matrix for the base model reveals the general tran-
sition patterns between categories. By inspecting the heatmap in
Figure 2 we can observe that the likelihood of buying a certain
category again is higher than switching to other categories. It can
also be observed that the transition to I is relatively very likely to
happen from any other category. This is in line with the fact that I
is the most bought category.

Figure 2: Confidence matrix (a in rows, b in columns)

To test the accuracy of the base model we ran the optimization
algorithm on only 10 random samples of 5,000 customers each due
to the time it takes to optimize this model (all customers and their
associated sequences in the training data need to be visited). All
samples were run with learning rate of 0.2 and β = 0.1. The model
achieved a mean accuracy of 40% (Figure 3). However, we argue
that due to the lengthy optimization process this algorithm is not
suitable for large customer databases. Furthermore, we observe in
Figure 4 that the algorithm never recommends certain categories
such as D and E. Moreover, the four most popular categories, R, I, G,
and C are recommended the most. We thus see that the base model
does capture the general trend; however, it lacks personalization.

5.2 Individual Model
5.2.1 Individual Confidence Matrix. The model with an individual
confidence matrix yields an average accuracy of 47.7% on 1,000
random samples each of 5,000 customers. The main drawback of
this approach is the little amount of information available for those
customers with few purchases, as can be observed in Figure 5. For
those customers that have made many purchases, the number of
distinct categories bought is larger, thus it is easier for the model to
capture individual preferences and make better recommendations.

Figure 3: Accuracies of the models and the baselines (1,000
random samples, 10 random samples for the base model)

Figure 4: Categories predicted using the base model

Figure 5: Accuracy for customers with different number of
purchases

5.2.2 General Confidence Matrix. The individual-specific model us-
ing the general confidence matrix yields a Top-3 accuracy of 50.3%,
calculated by taking 1,000 random samples of 5,000 customers. The
accuracy of this model is thus better than that of the base model.
By optimizing the parameters for each customer separately we are
able to capture his/her buying patterns better while still referring
to the general confidence matrix to account for the general trend.
In Figure 6 we can see how the general confidence matrix looks for
a randomly chosen customer. As the customer has never bought
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some of the categories, some of the transitions have scores closer
to zero (represented in the heatmap in white).

Figure 6: Matrix µi ,a P̂(b |a) of a randomly chosen customer i

5.2.3 Mixed Confidence Matrix. Finally, the combination of the
two previous approaches –the mixed model– yields a 50.7% mean
accuracy in predicting the next category on 1,000 samples of 5,000
customers. As expected, this method combines the advantages of
both the individual and the general confidence matrices. Moreover,
the recommended categories include more categories other than
the most popular ones.

Figure 7 depicts the predicted categories for the three SEPmodels
(individual, general, and mixed) for individuals. Differently than Fig-
ure 4 that reveals that only some of the categories are predicted by
the base model, Figure 7 shows that all the categories are predicted
by the SEP model, providing thus for a better coverage.

By comparing our models with the baseline algorithms from
Section 4.6 we observe that the max-confidence algorithm yields
an accuracy of 46.9%. That is 4 percentage points lower than that of
the mixed model. The second algorithm, item-based collaborative
filtering, achieves a mean accuracy of 43.7%, thus it is 7 points lower
than the mixed model. Hence, the mixed model outperforms both
baselines by incorporating both individual and general information
into the model.

Table 1 displays the mean accuracies of the models as well as the
baseline algorithms together with their standard errors. The accura-
cies were calculated by taking 1,000 samples of 5,000 customers for
the individually optimized models and for the baseline algorithms.
For the base model – which is optimized on all customers and is
very computationally expensive – only 10 random samples of 5,000
customers were taken.

The statistical significance of the differences between the mean
accuracies is tested by means of pairwise t-tests. TheH0 hypothesis
of the difference between the means being zero is rejected if the
p-value is smaller than 0.05. In Table 2 the p-values of such tests are
presented. All the p-values are smaller than 0.05, which allows us
to state that the mean accuracies of these models are significantly
different.

Table 1: Mean accuracies of the models and baseline algo-
rithms

Mean (Std. error) Std. dev.
Base 0.3894 (0.0091) 0.0287
Individual 0.4779 (0.0002) 0.0058
General 0.5034 (0.0002) 0.0059
Mixed 0.5073 (0.0002) 0.0056
Item-to-item filtering 0.4371 (0.0003) 0.0088
Max confidence 0.4691 (0.0002) 0.0063

Table 2: 10-sample two tailed paired t-testp-values (note that
for the base model the test is unpaired)

Base Individual General Mixed Item-based
filtering

Max
confidence

Base - < 0.001 < 0.001 0.001 0.035 < 0.001

Individual < 0.001 - < 0.001 < 0.001 0.001 0.015
General < 0.001 < 0.001 - 0.006 < 0.001 < 0.001

Mixed 0.001 < 0.001 0.006 - < 0.001 < 0.001

Item-based
filtering 0.035 0.001 < 0.001 < 0.001 - 0.003

Max
confidence < 0.001 0.015 < 0.001 < 0.001 0.003 -

5.3 Robustness Analysis
To conclude the analysis of our model, we perform a robustness
analysis of the mixed model by evaluating it for different initial
parameters, learning rates, and betas.

First, we explore how the accuracies change when varying the
initial parameters. Note that the mixed model has three types of
parameters: λi ,�, µi and ζ i . Figure 8a shows a heatmap of the
accuracies obtained by fixing λi = 0.2 and varying µi and ζ i
from 0 to 0.4. Note that the subindices are omitted for the sake of
readability. It is clearly observed that µ and ζ must be greater than
0 when choosing the initial parameters. The heatmap in Figure 8b
shows the same as the previous one but leaves out µ = 0 and ζ = 0,
making it easier to interpret the differences in accuracy when using
initial parameters µ and ζ between 0.1 and 0.4. We now observe a
clear pattern: the combinations under and on the diagonal yield the
best accuracy, although the maximum difference is smaller than 2
percentage points. In conclusion, the initial parameters should be
such that µ,ζ > 0 and µ ≤ ζ in order to achieve the best predictive
accuracy. The heatmaps for λ = 0 and λ = 0.1, which are very
similar to the one shown here, can be found in the Appendix A.2.

Following the analysis of the model for different initial parame-
ters, we set different learning rates and beta values when evaluating
themodel and compare the respective accuracies in Figure 9. The dif-
ferences in accuracy when changing the learning rate are relatively
small, although we observe that choosing a lower learning rate is
marginally better. We also observe that the mixed model’s accuracy
does not depend on the value of the β regularization parameter.
Nevertheless, this parameter has been shown to be useful in certain
cases to avoid overfitting and when the objective functions are
ill-posed [4].
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Figure 7: Predicted categories for the individually-applied SEP models

(a) µ, ζ from 0 to 0.4 (b) µ, ζ from 0.1 to 0.4

Figure 8: Top-3 accuracy heatmaps for λ = 0.2 and different
µ and ζ

Figure 9: Accuracies of the mixed model for different regu-
larization parameters β and learning rates η

6 CONCLUSION
In this paper we proposed a method to address the problem of
sequential event prediction (SEP) in the context of predicting the
next product category that a certain customer will buy in a Web
shop. We constructed association rules that establish dependency
relationships between categories and used them as the building
blocks of our model. We showed that by applying the SEP model
per customer and thus obtaining customer-specific parameters we
can achieve a better accuracy than by having parameters that are
common to all customers. The model with individual confidence
matrices yielded an accuracy of 47.7%, the one with general confi-
dence matrices, 50.3%, and the mixed model, 50.7%. Furthermore,
we showed that our approach outperforms the max confidence
and the item-based collaborative filtering models by 4 and 7 per-
centage points, respectively. By using both individual and general
confidence matrices in the so-called mixed model, we were able to
incorporate both individual and general consumption behavior in
the model and achieved an accuracy of 50.7%.

Last, we suggest some directions for further research. For in-
stance, association rules relating multiple items (on the left-hand
side) could be used to capture complex relationships in the data,
as described in Section 4.1. Our work could also be extended by
constructing a mixed-clustered model where an individual confi-
dence and a cluster confidence matrix are combined. This cluster
confidence matrix would be computed by only taking into account
those customers that are similar to each other. In this way, both
the sequential and the demographic data of the customers can be
incorporated in a model. As a preliminary study, we performed
an early-stage exploration of such an approach by clustering only
according to the most bought category and we found an increase
in accuracy. Letham uses similarity-weighted confidence rules to
a similar end [6]. Hence, a theoretical framework for combining
clustering and modeling sequential events seems to be a promising
continuation of our work.
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A ADDITIONAL PLOTS
The appendixes present accuracies of the individually-applied SEP
models and the accuracy heatmaps for additional λ values.

A.1 Accuracy and Sample Sizes
Figure 10 shows the accuracies of the individually-applied (mixed,
general and individual) SEP models, each for 2,000 samples of dif-
ferent sizes.

A.2 Top-3 Accuracy Heatmaps for λ = 0, 0.1
Figure 11 and Figure 12 show the top-3 accuracies for λ = 0 and
λ = 0.1 when varying µ and ζ from 0 to 0.4 and zooming in the
interesting ranges of these two last parameters.

Figure 10: Accuracies of the individually-applied SEP mod-
els taking 2,000 random samples of different sizes (mixed
model in black, generalmodel in red [dark gray in black and
white printing] and individual model in green [light gray in
black and white printing])

(a) Heatmap: λ = 0 (b) Heatmap: λ = 0.1

Figure 11: Top-3 accuracy heatmaps for different λ and with
µ, ζ from 0 to 0.4

(a) Heatmap: λ = 0 (b) Heatmap: λ = 0.1

Figure 12: Top-3 accuracy heatmaps for different λ and with
µ, ζ from 0.1 to 0.4
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