
Utilizing Textual Reviews in Latent Factor Models for
Recommender Systems

Tatev Karen Aslanyan
Erasmus University Rotterdam
Rotterdam, the Netherlands
tatevkaren@gmail.com

Flavius Frasincar
Erasmus University Rotterdam
Rotterdam, the Netherlands

frasincar@ese.eur.nl

ABSTRACT
Most of the existing recommender systems are based only on the
rating data, and they ignore other sources of information that might
increase the quality of recommendations, such as textual reviews,
or user and item characteristics. Moreover, the majority of those
systems are applicable only on small datasets (with thousands of
observations) and are unable to handle large datasets (with mil-
lions of observations). We propose a recommender algorithm that
combines a rating modelling technique (i.e., Latent Factor Model)
with a topic modelling method based on textual reviews (i.e., La-
tent Dirichlet Allocation), and we extend the algorithm such that
it allows adding extra user- and item-specific information to the
system. We evaluate the performance of the algorithm using Ama-
zon.com datasets with different sizes, corresponding to 23 product
categories. After comparing the built model to four other models we
found that combining textual reviews with ratings leads to better
recommendations. Moreover, we found that adding extra user and
item features to the model increases its prediction accuracy, which
is especially true for medium and large datasets.
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1 INTRODUCTION
Throughout the last decade, the importance of theWeb as a medium
for business and electronic transactions has increased drastically,
forcing the IT to rapidly develop as well, making humans daily life
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much easier and more efficient. On its turn, this large development
in IT has increased the popularity of online shopping and services.
Making purchases online instead of buying products from physical
shops, which can be very time-consuming, is one of the major con-
sequences of IT development. However, this large increase in online
sales has not only led to an increase in the number of customers
but also an increase in the number of products and variety of these
products. Therefore, when making purchase decisions, users are
forced to process large amounts of information. According to [18]
this information overload has a big impact on the human decision
process and quality. Hence, it affects people’s online purchase ex-
perience significantly. Therefore, to overcome this problem, one
usually rely on suggestions from others, who have more experience
on the topic [2]. This idea is used in the recommender systems
aiming to employ various sources of information to recommend
products to the users by inferring their interests. Besides solving the
problem of information overload, the use of recommender systems
also results in increased sales, customer satisfaction and loyalty
[27], which explains increasing popularity of these systems. On
the one hand, the information overload motivates the use of rec-
ommender systems in order to make the users’ online purchases
more convenient. On the other hand, the increasing variety of ways
that users can discover, evaluate, and review online products mo-
tivates companies and researchers to create even more revealing
recommender algorithms, which will enable to sell more products.

The Web enables users to provide their personal feedback about
the product that they have purchased in the form of ratings and
textual reviews. Assuming that the past interests and preferences
are often good proxies of future choices, the previous interactions
between items and users can be used for predicting which items
might be interesting for a user in the future. Therefore, in order to
correctly recommend the users their desired products, one should
predict how the user will respond to a new product [1]. Recom-
mender systems are usually categorized as: Collaborative Filtering
systems based on ratings data [26], Content-Based systems based on
content (often textual) data [21], and Hybrid systems that combine
these two types of systems [7]. Most of the existing recommender
systems are of the first type (based only on ratings), and they ignore
the enormous information incorporated in the users’ review texts
[31]. Ignoring such an important source of information, that can
potentially increase the accuracy of recommendations, seems not
optimal. Moreover, adding extra user- and item-specific information,
not included in the ratings or textual reviews, to the recommender
system might also increase the quality of its recommendations
[6, 12, 34].

Figure 1 presents the percentage of items having less than 10
ratings and more than 30 words in their review text per product
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Figure 1: Percentage of ratings and reviews per item. Brown (dark grey for
black and white print) bars represent the percentage of items with less than
10 ratings per category. Green (light grey for black and white print) bars rep-
resent the percentage of items having on average more than 30 words per
product category.

category in the datasets of the largest e-commerce Amazaon.com
[23]. We observe that for almost all product categories it holds that
at least 80% of items have very few ratings (less than 10) while over
40% of items have long textual reviews (withmore than 30words per
review). Therefore, textual reviews can be considered as a potential
source of information that can used to complement the absent
ratings to increase the prediction accuracy of the recommender
system. In this paper, we propose a recommender algorithm that is
based on product ratings as well as textual reviews of customers,
and it allows adding extra user- and item-specific information in
order to make product recommendations. We focus on Latent Factor
Models (also called Matrix Factorization) for modeling the item
features and user preferences in a shared topic space and Topic
Models (more precisely Latent Dirichlet Allocation) for modelling
review features.

2 RELATEDWORK
Although, there exist a large amount of literature regarding rec-
ommender systems that are based on a single type of data, such
as ratings or textual reviews, there have been only few attempts
of combining user-item ratings and textual reviews to uncover the
latent rating and latent review dimensions [4, 11, 20, 22, 30]. [11]
combined the predictions of the Latent Factor Model (LFM) with the
predictions of the neighborhood model to generate more accurate
recommendations. A similar approach was taken in case of the
recommender system of ‘Bellkor’s Pragmatic Chaos’, the Netflix
Prize contest winner [17]. This system compares the watching and
searching habits of similar users, and then recommends movies
that share the characteristics with movies that are highly rated by
the current user. Since then, LFM became the most popular Col-
laborative Filtering (CF) technique used for both rating and item
recommendations [25].

[30] have developed an algorithm called Collaborative Topic
Modeling, combining CF and probabilistic topic modeling, which
recommends scientific papers to an online community of users.
Authors found that the proposed recommender system, based on

both contents of articles and users’ ratings, performs better than the
recommender system based on standard Matrix Factorization (MF)
methods. Among all the Hybrid recommender systems, one of the
most known systems combining ratings with textual reviews for
making recommendations is the Hidden Factors and Topics (HFT)
algorithm proposed in [22]. HFT combines latent rating dimensions
learned by LFM, with latent review topics learned by the topic
modeling technique Latent Dirichlet Allocation (LDA), in order
to make rating predictions. [22] stated that, the HFT algorithm
results in highly interpretative textual labels for the hidden rating
dimensions helping to ‘justify’ ratings with review text, and in
increased prediction accuracy of the recommender system. Another
example of a recommender algorithm that combines ratings with
textual reviews has been introduced in [20], called Ratings Meet
Reviews (RMR). The proposed method is a probabilistic generative
model combining the topic modeling technique LDA with the MF
method for ratings. The main difference between HFT and RMR
is the way the authors combine the two models. More specifically,
HFT uses the MF method to model the ratings, whereas RMR uses a
mixture of Gaussian distributions. [20] found that RMR outperforms
the standard MF based approach and results in similar prediction
accuracy compared to HFT. The TopicMF algorithm introduced
by [4] is also an example of a recommender algorithm combining
ratings and reviews in order to make recommendations for the
users. TopicMF uses biased MF for modeling the ratings and uses
Non-negative Matrix Factorization (NMF) for modeling the latent
topics in the textual reviews. The main difference between this
algorithm and the earlier mentioned recommender algorithms is
that it uses NMF instead of LDA as the topic modeling approach.
The final example related to the model introduced in this study
is the Rating-Boosted Latent Topics (RBLT) algorithm introduced
by [29]. RBLT used LDA for extracting topics from the reviews
like HFT and RMR and it also uses MF for modeling the ratings
like HFT. The main difference between RBLT and HFT is that HFT
uses item-features in rating prediction and topic-distributions as a
regularization for these item-features, whereas the RBLT includes
the topic-distributions in the rating prediction procedure but not
in the regularization term. [29] found that adding textual reviews
to the CF system increases its prediction accuracy significantly.

One similarity that is shared by the previously surveyed papers is
that they propose to use textual reviews as well as ratings to model
item features and user preferences in a shared topic space and
consequently bring them into LFM to generate recommendations.
Our research will also be focused on utilizing recommender systems
with the MF approach by using product ratings as well as textual
reviews of customers.

There have been also few attempts of building a recommender
system that allows adding user- or item-specific characteristics,
not present in the rating or review data [6], [12], [34]. [6] and
[12] introduced CF recommender systems that also allow adding
user- and item-specific features on the top of the ratings. As extra
user and item information [12] used the browsing data. The CF
system extension in [12] has been done by adding extra rows and
columns to the user-item rating matrix. However, all these extended
recommenders that allow adding user or item features to the system,
are based only on ratings. To our knowledge, there are no studies
of recommender systems combining ratings and textual reviews
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that also allow adding extra user or item information to the system.
Another limitation of the existing literature is that most of the
proposed recommender systems are modeled and implemented
on a dataset consisting of very few product categories or a small
number of observations.

To address the previously identified limitations we propose a rec-
ommender algorithm called LDA-LFM, which combines the topic-
modeling technique LDA with the rating-modeling method LFM
and allows adding (latent) extra user- and item-specific features to
make recommendations. LDA-LFM is a generalization of the HFT
model proposed by [22], but it will use an alternative approach for
model regularization and will allow adding extra user- and item-
specific features to the recommender system. These extra features
will behave as additional factors in MF driving the ratings following
the approach proposed in [12], while these extra features do not
appear in the topic modelling method LDA. This system is applied
on both small and large datasets, with or without a large number
of product categories.

3 RATING AND REVIEWMODELS
In this section, we introduce all models and techniques used to
build and evaluate the proposed LDA-LFM model. We describe the
technical details and optimization approach of LFM and the topic
modeling technique LDA used in this study.

3.1 Latent Factor Model for Recommendations
In CF recommender systems, the Latent Factor Model (LFM), also
called Matrix Factorization, has become very popular especially
after the earlier mentioned Netflix Prize Contest [14, 15]. Usually,
the rating matrix contains lots of missing elements, thus suffers
from the sparsity problem. In order to overcome this problem, LFM
uses the idea of dimensionality reduction to estimate and fill in
all missing entries of the sparse user-item rating matrix. The goal
of dimensionality reduction is to rotate the axis system such that
the pairwise correlations between dimensions can be removed and
a large sparse matrix can be decomposed into smaller and dense
matrices. Accordingly, the reduced, rotated, and complete data
matrix representation can be efficiently estimated from a sparse
data matrix. The key idea of the Matrix Factorization method is
that any m x n sparse matrix R with rank k < min{m,n} can be
approximated by rank-k matrices in the following way [28]:

R ≈ PQT (1)

where P and Q are m x k and n x k matrices, respectively. So, the
user-item sparse matrix R is approximately equal to the product of
P and Q matrices, such that the vectors of R can be represented by
the rows of matrix P and columns of matrix Q. Stated differently,
in LFM, sparse ratings matrix R is decomposed into the product of
two low-rank rectangular matrices P, the user matrix, and Q, the
item matrix, where both P and Q have the same rank k. Each row of
matrix P and each column of matrix Q are referred as latent factors.
Let us define by pu the uth row of user matrix P, the user factor
representing the affinity of user u towards the rating matrix R, and
by qi the ith row of item matrix Q, the item factor representing
the affinity of ith item towards the rating matrix R. Since, some
users have a tendency to give higher ratings while other users

are more prone to provide lower ratings, and that some products
have a tendency to be highly rated compared to other products,
baseline predictions (biases) should also be taken into account. [16]
referred to biases as the observed variation in rating values due to
the effects associated with either items or users independent of any
interaction. Correspondingly, the estimate of each rating of the uth
user about ith item, denoted by rui , can be expressed as follows:

r̂ui = α + bi + bu + q
T
i pu (2)

where α represents the global average of all ratings (an offset pa-
rameter), bu and bi represent the user and item biases, respectively.
Accordingly, the error which arises in this estimation is defined
as eui = rui - r̂ui and in order to learn the latent factors pu and qi
the following optimization problem should be solved, where we
minimize the regularized squared error [17]:

arg min
Θ̂

1
| T |

∑
u ,i ∈T

(eui )
2 + λΩ(Θ)

arg min
Θ̂

1
| T |

∑
u ,i ∈T

(rui − r̂ui )
2 + λΩ(Θ)

arg min
Θ̂

1
| T |

∑
u ,i ∈T

(rui − (α + bi + bu + q
T
i pu ))

2 + λΩ(Θ)

Ω(Θ) = ∥qi ∥
2
2 + ∥pu ∥

2
2 + ∥bi ∥

2
2 + ∥bu ∥

2
2

(3)

T represents the corpus of all ratings (in the training set), Θ = {α ,
bu , bi , pu , qi } is the parameter space of the model. The objective
function in Equation 3 can be seen as quadratic loss function which
quantifies the loss of accuracy when an element of rating matrix
R is approximated by low-rank factorization. ∥.∥2

2 represents the
squared Frobenius norm, also called the L2 norm. We use regular-
ization to prevent model overfitting, which is required especially
when the dataset used for fitting the model contains a large number
of features, like it is in our case. The constant λ from Equation 3,
which is often referred as the regularization constant, determines
the level of regularization and controls how hard unnecessary fea-
tures in the model are penalized. Determining the value of λ is a
trade-off between prediction variance and bias. One popular way
of determining the optimal value is Grid Search.

One of the most popular ways of solving the optimization prob-
lem defined in Equation 3 is Stochastic Gradient Descent (SGD)
[16, 22, 32, 33]. Other typical methods which can be considered as
possible alternatives to the SGD method, like the Limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [35] or Orthant-Wise
Limited-memory Quasi-Newton (OWL-QN) [3], work very slowly
when the model is fitted on a large training dataset and performing
it by one machine is sometimes intractable. SGD addresses these
issues because it scales well with both big data and with the size of
the model, therefore it is preferred in this analysis. However, even
though the method itself is simple and fast, it is known as a “bad
optimizer" because it is prone to finding local optimum instead of
a global optimum. A popular technique designed to improve the
performance of SGD method is the Adaptive Moment Estimation
(Adam) introduced by [13]. Adam is the extended version of the
SGD (with momentum). The main difference compared to the SGD
(with momentum), which uses a single learning rate for all parame-
ter updates, is that Adam algorithm defines different learning rates
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for different parameters. The algorithm calculates the individual
adaptive learning rates for each parameter based on the estimates
of the first two moments of the gradients.

3.2 Latent Dirichlet Allocation
Each text review provided by a user, represented as a bag of words,
contains valuable information, which can potentially increase the
prediction accuracy of the recommender system. For this reason, the
textual reviews should be modeled and analyzed. Latent Dirichlet
Allocation (LDA) introduced by [5] is one of the most popular text
mining methods in the context of recommender systems. Therefore,
we will use LDA as a topic modeling technique in this analysis in
order to uncover the hidden dimensions in the user review texts.

There are three main entities defined in this method: words,
documents, and corpora. The entity word is defined as a basic unit
of a discrete data from a vocabulary, wd , j where j ∈ {1,2,...,Nd },
which indicates the index of the word in document d. These words
are represented in the form of a vector where the jth element of this
vector takes value 1 and remaining all elements take value 0. The
entity document is a sequence of N words denoted by d ∈ T such
that Nd represents the number of words in document d. Finally, the
entity corpus is defined as a collection of documents denoted by
T = (d1,d2,...,dM ), where M is the number of all documents in the
corpus. For simplicity we will use indices to identify documents.

LDA makes a few important assumptions regarding the model.
Firstly, it assumes that words carry strong semantic information
and that documents discussing similar topics will use similar words.
Therefore, latent topics are discovered by identifying a bag of words
in a corpus that frequently occur together in a document. Secondly,
LDA assumes that documents are probability distributions of latent
topics and topics are probability distributions of words. So, every
document consists of a certain amount of topics and each of these
topics is a distribution of words. Therefore, the model assumes
that there are in total K latent topics. Then, LDA assigns to each
document d a K-dimensional topic distribution θd drawn from
a Dirichlet distribution represented in the form of a stochastic
vector, such that the kth entry of it, θd ,k , represents the fraction
of words in document d which discuss kth topic. Stated differently,
the likelihood that words in document d will be about topic k is
equal to θd ,k . Furthermore, each topic k is a distribution of words
represented by ϕk such that each word has a particular likelihood
of being used in the topic k.
Let us denote by zd , j the topic assigned to the jth word in document
d. Then the LDA model is defined as follows:

• θd ∼ DIR(γ ) with d ∈ {1,...,M}
• ϕk ∼ DIR(ν ) with k ∈ {1,...,K}
• zd , j ∼ Multinomial(θd )
• wd , j ∼ Multinomial(ϕzd , j )

where γ represents the parameter of the Dirichlet distribution for
document-topic distribution θd and ν is the parameter of the Dirich-
let distribution for word-topic distribution ϕk . zd , j represents the
topic assigned to the jth word in document d. We assume that
the total number of words in vocabulary is V. Moreover, we de-
note the likelihood function of zd , j conditional on topic mixture of
document d, θd , p(zd , j | θd ) as follows:

p(zd , j | θd ) = θd ,zd , j (4)

Consequently, the probability of jth word in document d, wd , j ,
conditional on the chosen topic zj denoted by p(wd , j | zd , j ,ν ) is
defined as follows:

p(wd , j | zd , j ,ν ) = ϕzd , j ,wd , j (5)

Furthermore, using the definition of the Dirichlet probability distri-
bution, the conditional topic distribution is defined as follows:

p(θ | γ ) =
Γ(
∑D
d=1 γd )∏D

d=1 Γ(γd )
θ
γ1−1
1 . . . θ

γd−1
d (6)

where θd > 0 and Γ(·) represents the Gamma function. Conse-
quently, the joint distribution of a topic θ , K topics z, and N words
w is defined as follows:

p(θ, z,w | γ ,ν ) = p(θ | γ )
N∏
j=1

p(zj | θ )p(w j | zj ,ν ) (7)

where N =
∑M
d=1 Nd . Using the properties of discrete and continu-

ous random variables’ distributions, the marginal distribution of
document d is defined as follows:

p(w | γ ,ν ) =

∫
p(θ | γ )

N∏
j=1

∑
zj

p(zj | θd )p(w j | zj ,ν )dθd (8)

Consequently, using Equations 4, 5 and 8 the likelihood of a text
corpus T conditional on the word distribution ϕ, topic distribution
θd and topic assignments z is defined as follows:

p(T | γ ,ν, z) =
∏
d ∈T

( ∫
p(θd | γ )

Nd∏
j=1

∑
zd , j

θd ,zd , jϕzd , j ,wd , j

)
dθd

(9)
This expression can also be rewritten in terms of the topic distribu-
tion θd and word distribution ϕ, in the following way:

p(T | θ,ϕ, z) =
∏
d ∈T

Nd∏
j=1

θd ,zd , jϕzd , j ,wd , j (10)

where parameters θ and ϕ should be estimated, which we denote
by Φ, such that Φ = {θ,ϕ}. Then, the log-transformation of the
conditional corpus probability p(T | θ , ϕ, z) is defined as follows:

l(T | θ ,ϕ, z) =
∑
d ∈T

Nd∑
j=1

loд
(
θd ,zd , jϕzd , j ,wd , j

)
(11)

Typically, in order to estimate the LDA model parameters, Varia-
tional Bayesian (VB) methods or sampling approaches based on
Markov Chain Monte Carlo (MCMC) sampling are being used [5, 8].

Figure 2 visualizes the dependencies among the LDA model
parameters. High γ indicates that it is likely that each document
contains a mixture of most of the topics. Conversely, lowγ indicates
that each document contains only few of the topics. Furthermore,
high ν indicates that each topic contains most of the words of that
topic, whereas small ν means that each topic contains only small
amount of words. The parameters γ and ν are at the corpus level
which are both assumed to be sampled once in the process of corpus
generation. The random variable θd is the only variable at the
document level, sampled once per document. Finally, the variables
zd , j and wd , j are at the word level sampled once for each word per
document.
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Figure 2: LDA Visualization. K is the number of topics; M is the number of
documents; Nd is the length of document d; θd represents the topic distribu-
tion of document d which follows the Dirichlet distribution with parameter
γ ; ν is the corresponding parameter of the word probability distribution of
the topic k; wd , j is a word in document d and zd , j is that word’s topic.

3.3 LDA-LFM Model
The model that we design, called Latent Dirichlet Allocation-Latent
Factor Model (LDA-LFM), aims to combine two main core ideas of
two methods discussed in Sections 3.1 and 3.2 to to uncover both
hidden dimensions in ratings and textual reviews, respectively.

As it was mentioned earlier, one of the three entities on which
topic modeling is based on, is the document entity. Therefore, the
concept of ‘document’ in the LDA-LFM model should be defined
properly. There are different ways of defining this concept which
should be based on the textual reviews. One can simply consider
each text review of user u and item i as a document, denoted by
dui . On the other hand, one can define a document as a set of
all reviews corresponding to item i, denoted by di . Finally, the
set of all reviews provided by a user u as a document, denoted
by du . [22] found that the second definition, where the concept
of a document is defined as the set of all reviews of item i (di ),
leads to the best model performance. The motivation behind this
choice is that when users provide feedback about the products in
terms of textual reviews, they discuss more often the characteristics
of the product rather than discussing their personal preferences.
Therefore, we will define the concept of documents in LDA-LFM in
the similar way as in [22].

The idea behind the LDA-LFMmodel is to find the K-dimensional
topic distribution θi of each item using textual reviews of item i
which shows the extent to which each topic k is discussed across
all the reviews for item i. Consequently, these topic distributions
are used as item-factors in combination with user-factors in the
Latent Factor Model to fully predict all user-item ratings. In Section
3.1 we stated that parameter qi is the rating factor possessing the
properties of item i that can be reviewed by users, whereas in
Section 3.2 we stated that parameter θi is the topic distribution of
words that appear in those reviews. Assuming that, if an item i
has a certain property, then it will correspond to a particular topic
discussed in that item’s textual review, such that qi ,k and θi ,k are
positively correlated, we need to define the exact relation between
these two parameters. However, qi ,k and θi ,k cannot be considered
as being equal since the topic distribution θi is a stochastic vector
describing topic probabilities while latent item factor qi can take an
arbitrary value in RK . Stating that qi is a stochastic vector like θi
would result in a loss of power in the proposed model and changing
the structure of the topic distribution θi to make it more similar to

qi will lead to the loss of probabilistic power in the model. In order
to not encounter these problems, the transformation of qi to θi
should satisfy monotonicity, qi ∈ RK , and

∑
k θi ,k = 1 assumptions.

The following transformation satisfies all these criteria:

θi ,k =
exp(κqi ,k )∑K

k ′=1 exp(κqi ,k ′)
(12)

where the parameter κ controls for the reaching of the highest pos-
sible value of the transformation, often called ‘pickiness’ parameter.
Large value of κ indicates that users discuss only the most impor-
tant topic, whereas small κ indicates that users discuss all topics
equally. We define the transformation, in such a way that, when κ
→∞, θi → ι (unit vector with 1 for the largest value of qi ,k ), and,
when κ → 0, θi converges to a uniform distribution. To make sure
that the word distribution for topic k (ϕk ) is a stochastic vector, the
following transformation of ϕk is defined with an introduction of a
new variableψ :

ϕk ,w =
exp(ψk ,w )∑
w ′ exp(ψk ,w ′)

(13)

whereψk ∈ RV is used as a natural parameter for the topic distri-
bution ϕk ∈ RV , where V is the size of the vocabulary. Correspond-
ingly, it holds that

∑
nϕk ,n = 1. Then the objective function of the

LDA-LFM model is defined as follows:

f (T | Θ,Φ,κ, z) =
∑

u ,i ∈T

(ru ,i − r̂u ,i )
2 + λ(∥pu ∥

2
2 + ∥bi ∥

2
2 + ∥bu ∥

2
2)

− µl(T | θ,ϕ, z)
(14)

where Θ = {α , bu , bi , pu , qi } and Φ = {θ ,ϕ} represent the set of pa-
rameters of the LFM and LDA model, respectively. The first term of
Equation 14 represents the prediction error corresponding to LFM,
the second term represents the regularization of model parameters
bu , bi , pu and the third term represents the log-likelihood of the
corpus of ratings and users from Equation 11. The parameter µ ∈ R+
trades-off the importance of these two effects. We observe that in
the LDA-LFM model, the regularization of qi is different compared
to the standard Matrix Factorization case, the regularization term
does not contain the norm of qi . More specifically, the third term
of Equation 14 behaves as a regularization for qi [22].

3.4 LDA-LFM with Extra Features
As it was mentioned earlier, the proposed recommender system
should allow adding extra user- and item-specific features. A key
aspect in adding extra features to the system is to better describe
users and items, in order to better predict the preferences of those
users for different items. Examples of user features are user demo-
graphics such as age, living area, gender, occupation, etc. [9]. If
our goal is to build a movie recommender, then the genre, year
of its release, name of the director, can all be interpreted as item
characteristics, which can be added to system for making better
recommendations. [6], [12] and [34] introduced CF recommender
systems that allow adding user- and item-specific features on the
top of ratings. We will follow the approach of [6] and [12], who
proposed adding extra rows and columns to the user-item rating
matrix representing the extra features added to LFM. Figure 3 vi-
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Figure 3:Matrix Factorization ofUser-ItemRatingMatrixwith Extra Features.
Matrix R is the rating matrix. Matrices P and Q are the user factor and item
factor matrices, respectively. To bothmatrices P and Q are added by K* = 3 ex-
tra user-columns and item-rows. These extra K∗ columns/rows do not appear
in the LDA model while the first K ones do.

sualizes an example of the Matrix Factorization model extended
with three extra features. The main idea is to add the same amount
of both extra user- and item-specific features. This assumption is
necessary because LFM, which is used as rating modelling tech-
nique in the LDA-LFM model, requires matrix multiplication of
two matrices with dimensions NUsers x K and K x NItems. This
matrix multiplication is only possible when the number of columns
in user-factor matrix P is equal to the number of rows of item-factor
matrix Q. The extra features denoted by K∗ from Figure 3 do not
appear in the LDA model and represent non-review factors that
affect the review ratings.

3.5 LDA-LFM Model Fitting
Our goal is to find the solution to the optimization problem of
Equation 14, which is:

arg min
Θ,Φ,κ ,z

f (T | Θ,Φ,κ, z) (15)

where the corpus T is given. The LDA-LFM model defines the
following uterative stochastic optimization procedure of two steps:
for i in Niter

Solve arg min
Θ,Φ,κ

f (T | Θ,Φ,κ, z(t−1)) → Update Θ(t ),Φ(t ),κ(t )

Sample z
(t )
d , jwith p(z

(t )
d , j = k) = θd ,kϕ

(t )
k ,wd , j

end for
(16)

where Niter is the number of iterations, d ≡ du ,i represents the
review or set of reviews (document) of item i by user u.

In the first step of this optimization procedure from Equation 16
we fix the topic assignments for each word, i.e., the value of latent
variable z and we solve the objective function with respect to Θ, Φ
and κ. We use the Adam Optimizer for learning the rating related
model parameters Θ = {α , bu , bi , pu , qi }, but also the review related
parameters Φ = {θ , ϕ }, and κ. As it was mentioned earlier, θ ∈ Φ
and q ∈ Θ are linked through Equation 12. So, we do not use the
textual reviews in order to fit the document-topic distribution θ
using the LDA approach. Instead, we determine θ using q. Since,
we introduced a transformation of ϕ, to ensure that it is a stochastic
vector, instead of learning ϕ we learn the parameter ψ . Once we
learn the ψ , by using the transformation defined in Equation 13,

the topic-word distribution ϕ can be determined. Moreover, using
the same optimization approach, we also learn the parameter κ.

In the second step of this iterative procedure, using the updated
parameter values Φ = {θ , ϕ } determined in the first step by the
Adam Optimization, we randomly assign a topic k to each word,
with a probability that is proportional to the likelihood of the oc-
currence of that topic with that particular word [30]. That is, the
topic assignment probability of assigning kth topic to a word wu ,i , j
for user u, item i and in jth position p(zwu ,i , j = k) is proportional
to the product of topic probability for user u, item i (θu ,i ,k ), and
word probability used for that topic (ϕk ,wu ,i , j ). We assume that the
terms zwu ,i , j and zu ,i , j are equivalent (zwu ,i , j ≡ zu ,i , j ). We iterate
through all documents and word positions, d and j, respectively, in
order to update the corresponding topics assigned to those terms.
Finally, we repeat these two steps for Niter times and report the
prediction accuracy of the model corresponding to the last iteration.

4 EVALUATION
As a prediction accuracy measure we use the Mean Squared Error
(MSE) determined as follows:

MSE =

∑
(u ,i)∈T∗ (r̂u ,i − ru ,i )

2

| T ∗ |
(17)

where T ∗ represents the corpus of all ratings in the test set, ru ,i
represents the real rating from the test data for user u and item
i, and r̂u ,i is the corresponding predicted rating. MSE can take
only non-negative values. Moreover, a lower value of MSE is an
indication of better performing model.

It is worth to mention that the analysis is performed on a com-
modity machine with a Core i7 processor, 2.2 GHz frequency, and
252gb memory space using the programming language Python 3.7.

4.1 Data
In this research, we use a collection of datasets provided corre-
sponding to the 23 product categories supplied by one of the largest
e-commerce company in the world, Amazon.com. This data with-
out duplicates was prepared by Julian McAuley. It consists of 142.8
million product reviews and a metadata for 9.4 million products,
spanning a period of 18 years, from May 1996 to July 2014 [10, 23].
The chosen dataset is of 5-core type, that is, the data set excludes
all customers and products having less than 5 reviews. The review
dataset includes feedbacks of Amazon customers in the form of
ratings, textual reviews, and helpfulness score.Meanwhile, themeta-
data includes various characteristics of the product: price, brand,
descriptions, category information, image features and links of ‘also
viewed’ and ‘also bought’ products. The raw review data, after re-
moving duplicates and excluding users or items with less than 5
reviews, consists of 42.13 million reviews.

Table 1 presents the general overview of the datasets of all prod-
uct categories. We observe that all datasets are highly sparse and
contain a very large amount of missing ratings. For almost all
datasets it holds that the average star rating is approximately equal
to 4. Moreover, the average number of words per review is at least
18 and at most 67. Finally, the smallest dataset, Musical Instruments,
consists of 0.5 million reviews and the largest dataset, Electronics,
consists of approximately 8 million reviews.
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Dataset NUsers NItems NReviews A. W. A. R. Sparsity
Electronics 4,201,696 476,002 7,824,482 43 4.012 0.00039
Clothing, Shoes and Jewelry 3,117,268 1,136,004 5,748,920 26 4.145 0.00016
Movies and TV 2,088,620 200,941 4,607,047 58 4.187 0.00110
Home and Kitchen 2,511,610 410,243 4,253,926 36 4.099 0.00041
CDs and Vinyl 1,578,597 486,360 3,749,004 67 4.403 0.00049
Cell Phones and Accessories 2,261,045 319,678 3,447,249 30 3.811 0.00048
Sports and Outdoors 3,117,268 1,136,004 3,268,695 34 4.145 0.00034
Kindle Store 1,406,890 430,530 3,205,467 42 4.232 0.00050
Health and Personal Care 1,851,132 252,331 2,982,326 33 4.110 0.00063
Apps for Android 1,323,884 61,275 2,638,173 18 3.996 0.00325
Toys and Games 1,342,911 327,698 2,252,771 33 4.150 0.00051
Beauty 1,210,271 249,274 2,023,070 31 4.149 0.00067
Tools and Home improvement 1,212,468 260,659 1,926,047 36 4.130 0.00061
Automotive 851,418 320,112 1,373,768 30 4.185 0.00051
Video Games 826,767 50,210 1,324,753 58 3.979 0.00051
Grocery and Gourmet Food 768,438 166,049 1,297,156 31 4.255 0.00102
Office Products 909,314 130,006 1,243,186 36 3.979 0.00105
Pet Supplies 740,985 103,288 1,235,316 37 4.111 0.00161
Patio, Lawn and Garden 714,791 105,984 993,490 37 4.006 0.00130
Baby 531,890 64,426 915,446 41 4.118 0.00270
Digital Music 478,235 266,414 836,006 41 4.540 0.00066
Amazon Instant Video 426,922 23,965 583,933 28 4.316 0.00571
Musical Instruments 339,231 83,046 500,176 45 4.244 0.00178

Table 1: Overview of datasets. The following statistics per dataset are reported: number of users (NUsers), number of items (NItems), number of reviews (NReviews),
average number of words in textual reviews after removing the stopwords (A.W.), average star rating (A. R.), and sparsity of the user-item ratingmatrix (Sparsity).

4.2 Data Preparation
In order to correctly evaluate the chosen model, we split the data
into three datasets: training, validation, and test sets. We fit the
model on the training data and find a set of optimal model param-
eters (hyperparmeter tuning) using the validation set. Finally, we
use the test set for predicting the ratings and calculating model
accuracy measures using the optimal set of parameters from the hy-
perparmeter tuning. For data separation we use the common 80/20
splitting rule. In order to have enough observations to correctly fit
the model, we put 80% of all observations in the training set, while
the remaining 20% we equally divided into the test and validation
sets. However, splitting the data into training, test and validation
sets, when some of the users and items appear only in the test set
and not in the training set, will result in a loss of information about
those users and items during the training of the model. Therefore,
after randomly splitting the data into train and test set, we make
sure that there is no user or item that is present in the test set but
not present in the training set by removing these.

For implementing the topic modeling technique LDA, the re-
view data should be cleaned. Therefore, we perform a few Natural
Language Processing (NLP) tasks on the textual reviews in review
tuples by using the Natural Language Tool Kit (NLTK) library of the
programming language Python. Firstly, we apply tokenization to
all review texts, which are provided as a group of sentences, and
transform them into a group of words. Secondly, we transform them
to lower case words and remove from these tokenized reviews the
common English stop words and one-letter words. Subsequently,
all special characters, digits, punctuation and single or multiple
spaces are removed. Next, we apply lemmatization to the processed
review text, for removing inflectional endings and holding the dic-
tionary (base) form of a word only, known as the lemma of the

word. Finally, we combine all those cleaned reviews corresponding
to the same item and create a corpus of documents, where each
document contains all reviews (represented in the form of a group
of words) corresponding to one item.

4.3 Parameter Initialization
Different methods introduced earlier contain various parameters
which should be initialized. We initialize the offset α by averaging
over all ratings in the training set. Vectors bi , bu and matrices
P, Q are initialized using the random normal distribution. The
fitting procedure of all models have been performed by the Adam
Optimization with the learning rate 0.01. As initial value for κ we
take the value 1, which will be updated by the Adam Optimization
while fitting the model. For each model we run 35 iterations based
on [4] (with 20 iterations), [15] (with 20-35 iterations), [24] (with 30
iterations) while updating model parameters in Θ, Φ, and κ in each
iteration. The prediction accuracy of the model is reported based
on the last model corresponding to 35th iteration, assuming that
the last model, after all the updates, is the best performing model.
As a common practice, for the LDA model we set both parameters
γ and ν equal to 0.1. Following the approach of [22] we perform
the analysis with the number of latent factors in the LFM model
(K) and number of topics in the LDA model (L) equal to 5.

LDA-LFM contains two regularization parameters, λ and µ. We
tune this set of two parameters using the Grid-Search method,
which fits the model for every specified combination of these two
parameters and evaluates each of these models using validation
set. As a result, the most accurate model specification, per product
category, is then used in the main model prediction applied to the
test dataset. Following the approach of [22], for λ we use values {0,
0.001, 0.01, 1, 10} as a possible values in the Grid-Search, while for
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regularization constant µ we use the values {1, 10, 100, 1000, 10,000}.
As it was mentioned in Section 3.3, we set the number of documents
in the LDA model equal to the number of items in the data, where
each document represents all reviews of an item in the training set.
We set the size of the vocabulary equal to 5000, by keeping most
5000 frequent words from the corpus of all documents built from
the item reviews present in training set.

4.4 Baseline Models
In order to test for the performance of the proposed LDA-LFM
model, we use four other models based on different algorithms.
Then we compare the prediction accuracy of the LDA-LFM model
with the performance of the following models:

Offset Model: the predicted rating for all users is the same and
is equal to the global average α .

Baseline Rating Model: the predicted rating r̂ui = α + r̄u + r̄i
with α representing the global average rating, r̄u the average differ-
ence between user ratings and the global average α , r̄i represents
the average difference between item ratings and the global average
α .

LFM: standard Latent Factor Model model corresponding to Equa-
tion 2.

LDAFirst: in this model the user feedback in the form of ratings
will be used as an input for the standard LFM, while the textual
reviews will be used as an input for the LDA model described in
Section 3.2. The key difference between this method and the pro-
posed method LDA-LFM is that, in LDAFirst the topic-distributions
θi are sampled from a Dirichlet distribution, where each document
is treated as the set of all reviews corresponding to item i, and they
are used to set the qi values, which stays constant while model-
ing the ratings. Thus we do not learn the qi parameter of LFM
during the iterative optimization procedure and we only update
the parameters bi , bu and pu using the Adam Optimization. In the
LDA-LFM model, we do not use the LDA method for determining
the topic-distributions θi . After that we sample the word topics, we
learn Φ = {θ , ϕ} using Adam Optimization as in Equation 16 (where
qi is dependent on θi by means of Equation 12). Since we start this
method by the LDA model and use its output (θi ) as an input for
the LFM method (qi ), we refer to this method as LDAFirst.

5 RESULTS
Firstly, we perform the analysis for the case when no extra features
are added to the LDA-LFM model, assuming that the number of
topics in the LDA model is equal to the number of latent factors in
the LFM model with K ∈ {5,10} [22]. Correspondingly, in order to
analyse the impact of adding extra latent features (user- and item
characteristics) on the performance of recommender system based
on the proposed LDA-LFM model, such that the number of topics
in LDA has value 5 and the number of latent factors with 4 different
values of extra features K∗ ∈ {1, 2, 3, 4}.

Table 2 presents the prediction per product category with the
number of topics equal to 5. We observe that for the majority of sup-
plied datasets it holds that the Offset and Baseline models perform
the worst, with large MSE values, compared to the LFM, LDAFirst,
and LDA-LFM models. Only for Video Games and Tools and Home
Improvements datasets the Offset method performs better than the
LFM and LDAFirst models. Moreover, we observe that compared to
the Offset and Baseline models, standard LFM improves the recom-
mender systems prediction accuracy for almost all datasets, except
datasets Patio, Lawn and Garden, Video Games, and Tools and Home
Improvement. This can be seen by the large difference between the
MSE values corresponding to LFM, and MSE values correspond-
ing to the Offset and Baseline models. We also observe that the
MSE’s corresponding to the LFM and LDAFirst models are very
close to each other for the majority of datasets. This means that
the LDAFirst model does not improve the prediction accuracy a
lot compared to the standard LFM model. LDAFirst slightly out-
performs LFM in case of the datasets Baby,Office Products Grocery
and Gourmet Food, Apps for Android, CDs and Vinyl. From Table 2
we observe that the LDA-LFM model outperforms all other mod-
els in almost all datasets, with its lowest MSE values. Last two
columns of Table 2 present the percentage decrease in the MSE
of the LDA-LFM model compared to the LFM and the LDAFirst
models, respectively. Both improvement columns consist mostly of
positive entries. We observe that the proposed LDA-LFM results
in at least 0.24% (Health and Personal Care) and at most 14.12%
(Kindle Store) improvement in prediction accuracy, compared to
the standard LFM. From Imp.[5]/[4] we observe that the proposed
LDA-LFM results in at least 0.28% (Electronics) and at most 14.12%
(Kindle Store) improvement, compared to the LDAFirst model. The
improvement columns in Table 2 contain also few negative values
which correspond solely to small datasets (Musical Instruments,
Amazon Instant Video, Patio, Lawn and Garden).

Table 2 also reports the average MSE over all datasets per model
in case of K = 10. We observe that average MSE’s per model with K
= 5 and K = 10 are similar.

Table 3 presents the prediction results in terms of MSE, per prod-
uct category with the number of topics equal to 5 and extra added
features. We observe that for almost all datasets there is at least one
LFM-LDA model with extra feature(s) with higher prediction accu-
racy (lower MSE value compared to the corresponding MSE value
in the K∗ = 0 model, i.e., without extra features). Moreover, for the
datasets Musical Instruments, Patio, Lawn and Garden, Automotive,
Toys and Games, Health and Personal Care, Sports and Outdoors, CDs
and Vinyls, Home and Kitchen and Movies and TV all four models
with different number of extra features are performing better com-
pared to the model without extra added features. However, there
are few datasets (Amazon Instant Video, Office Products, and Beauty)
for which it holds that adding extra features to the LDA-LFM model
either does not change or worsens the performance of the model.
We observe that all those datasets, for which adding extra features
is not efficient, are either very small or medium size datasets in the
set of all 23 Amazon datasets used in this study. The last row of
Table 3 presents the number of cases in which adding a particu-
lar amount of extra features leads to an increase in the prediction
accuracy of the model. We observe that in all four cases (adding
1, 2, 3, and 4 extra features), the number of datasets with better
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Dataset Offset[1] Base.[2] LFM[3] LDAFirst[4] LDA-LFM[5] Imp.[5]/[3] Imp.[5]/[4]
Electronics 2.909 2.345 1.789 1.789 1,780 0.28% 0.28%
Clothing, Shoes and Jewel. 2.275 2.122 1.456 1.457 1.445 0.76% 0.82%
Movies and TV 2.803 2.334 1.721 1.723 1.682 2.27% 2.38%
Home and Kitchen 2.535 2.249 1.841 1.841 1.787 2.93% 2.93%
CDs and Vinyl 2.508 2.083 1.746 1.740 1.523 12.77% 12.47%
Cell Phones and Access. 2.542 2.448 1.996 1.995 1.901 4.76% 4.71%
Sports and Outdoors 2.138 2.096 1.422 1.422 1.349 5.13% 5.13%
Kindle Store 2.516 2.145 1.814 1.813 1.581 14.12% 14.12%
Health and Personal Care 2.392 2.259 1.670 1.689 1.666 0.24% 1.36%
Apps for Android 2.984 2.397 2.190 2.188 2.006 8.40% 8.32%
Toys and Games 2.258 2.152 1.512 1.512 1.485 1.79% 1.79%
Beauty 2.371 2.256 1.675 1.674 1.646 1.73% 1.67%
Tools and Home Improve. 1.392 2.136 1.634 1.634 1.516 7.22% 7.22%
Automotive 2.081 2.064 1.511 1.511 1.410 6.68% 6.62%
Video Games 1.603 2.354 1.721 1.722 1.617 6.04% 6.10%
Grocery and Gourmat 2.020 2.129 1.520 1.519 1.491 1.91% 1.84%
Office Products 2.168 2.306 1.813 1.796 1.626 10.31% 9.47%
Pet Supplies 2.480 2.265 1.815 1.814 1.765 2.81% 2.70%
Patio, Lawn and Garden 1.970 2.235 1.780 1.781 1.738 2.36% -2.41%
Baby 1.934 2.194 1.717 1.715 1.693 1.40% 1.28%
Digital Music 1.261 1.555 1.030 1.030 1.052 -2.14% -2.14%
Amazon Instant Video 2.828 1.985 1.278 1.277 1.508 -18.09% -18.00%
Musical Instruments 1.735 1.921 1.165 1.165 1.208 -3.69% -3.69%
Average MSE K = 5 2.248 2.122 1.643 1.644 1.572
Average MSE K = 10 2.248 2.122 1.637 1.637 1.579

Table 2: Prediction results in terms of MSE with K = 5 number topics. Imp.[5]/[3] reports the percentage improvement of the LDA-LFMmodel compared to the LFM
model, in terms of prediction accuracy. Imp.[5]/[4] shows the percentage improvement of the LDA-LFM model compared to the LDAFirst model. The average MSE
per model is also reported for the K = 10 case.

Dataset K∗= 0 K∗= 1 K∗= 2 K∗= 3 K∗= 4
Electronics 1.78019 1.78001 1.77651 1.77901 1.78199
Clothing, Shoes and Jewel. 1.44511 1.44510 1.44515 1.44510 1.44581
Movies and TV 1.68230 1.68204 1.69210 1.69199 1.68221
Home and Kitchen 1.78696 1.78694 1.78690 1.78710 1.78691
CDs and Vinyl 1.52294 1.52293 1.52278 1.52280 1.52270
Cell Phones and Access. 1.90113 1.90553 1.90540 1.90112 1.90154
Sports and Outdoors 1.34960 1.34959 1.34950 1.39512 1.39516
Kindle Store 1.58104 1.58118 1.58143 1.58100 1.58011
Health and Personal Care 1.66564 1.66558 1.66557 1.66555 1.66553
Apps for Android 2.00655 2.00617 2.00524 2.00644 2.00696
Toys and Games 1.48472 1.48455 1.48458 1.48442 1.48446
Beauty 1.64578 1.64584 1.64580 1.64578 1.64583
Tools and Home improve. 1.51640 1.51644 1.51637 1.51658 1.51656
Automotive 1.40996 1.40983 1.40977 1.40973 1.40984
Video Games 1.61691 1.61699 1.60912 1.60902 1.60936
Grocery and Gourmet 1.49049 1.49057 1.49046 1.49045 1.49084
Office Products 1.62635 1.62666 1.62673 1.62674 1.62668
Pet Supplies 1.76503 1.76502 1.76501 1.76500 1.76515
Patio, Lawn and Garden 1.73829 1.73810 1.73812 1.73811 1.73809
Baby 1.69345 1.69332 1.69358 1.69272 1.69372
Digital Music 1.05179 1.05165 1.05175 1.05185 1.05170
Amazon Instant Video 1.50755 1.50852 1.50949 1.50835 1.50885
Musical Instruments 1.20791 1.19803 1.19825 1.19818 1.19817
Number of Times Beneficial - 15 15 15 14

Table 3: Prediction results of the LDA-LFM model in terms of the MSE with K = 5 number topics. K∗ defines the number of extra factors added to the LDA-LFM
model. K∗ = 0 represents the case when no extra feature has been added to the model, results corresponding to the Table 2. K∗ = 1, K∗ = 2, K∗ = 3, and K∗ = 4
correspond to the LDA-LFM model predictions with 1, 2, 3, and 4 extra features, respectively.

performance are close to each other. More specifically about 15 out
of 23 datasets (from which around 9 cases corresponds to a medium
or a large dataset), adding extra features results in more accurate
recommendations.

6 CONCLUSION
Taking into account the current limitations in the existing literature,
in this paper, we utilize the LFM model by using both ratings and
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textual reviews of customers, such that it is applicable on both small
and large datasets and also allows adding user- and item-specific
data to it. We have shown how one can combine review-based LDA
for topic modeling, with rating-based LFM for rating predictions.
From the prediction results where we compared the prediction accu-
racy of the proposed LDA-LFM model to the prediction accuracy’s
of various baseline models applied on various datasets. We found
that adding textual reviews to the recommender system leads to an
increased prediction accuracy, which is especially true for medium
and large datasets. Then we introduced an approach of adding ex-
tra latent features to the user-item rating matrix of the proposed
LDA-LFM model, representing the user- and item-specific features
not present in the review data. We found that for the majority of
datasets (15 out of 23 datasets) it holds that, adding extra features
to the proposed recommender system increases the quality of its
recommendations, resulting in lower MSE, thus higher prediction
accuracy. This indicates that again the improvements are better
visible in medium and large datasets.

As future work we would like to investigate whether using sen-
timent analysis improves the quality of recommendations. Corre-
spondingly, one can extend our model so that it combines the rating
modeling, topic extraction, and sentiment analysis techniques for
making recommendations. For instance, sentiment analysis can
be used to classify whether a review is negative or positive. [36]
proposed a recommender system combining rating based CF sys-
tem with sentiment analysis for making recommendations. [19]
introduced the Joint Sentiment/Topic (JST) model which combines
the topic modeling method LDA with sentiment analysis in order to
detect a topic and a sentiment from text simultaneously. For future
work, we aim to combine the JST model with our model for poten-
tially better recommendations. In this way, we can exploit topics
that carry sentiment and are possibly better proxies for ratings.
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