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ABSTRACT
Many high performance machine learning models for Aspect-Based
Sentiment Classification (ABSC) produce black box models, and
therefore barely explain how they classify a certain sentiment value
towards an aspect. In this paper, we propose explanation mod-
els, that inspect the internal dynamics of a state-of-the-art neural
attention model, the LCR-Rot-hop, by using a technique called Di-
agnostic Classification. Our diagnostic classifier is a simple neural
network, which evaluates whether the internal layers of the LCR-
Rot-hop model encode useful word information for classification,
i.e., the part of speech, the sentiment value, the presence of as-
pect relation, and the aspect-related sentiment value of words. We
conclude that the lower layers in the LCR-Rot-hop model encode
the part of speech and the sentiment value, whereas the higher
layers represent the presence of a relation with the aspect and the
aspect-related sentiment value of words.
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1 INTRODUCTION
Aspect-based Sentiment Classification (ABSC) is a subtopic of the
Textual Classification task whose main aim is the assignment of
sentiment orientations (positive, negative, or neutral) at the aspect-
level of the entity of interest. In the recent years, many models
have been designed for ABSC, among which machine learning
together with its deep learning subset have proved to be the most
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effective. However, the performance of machine learning models
for the ABSC is usually traded off for a high level of uncertainty
and vagueness in the logic of models [7]. The reason behind the
unsuccess in clarifying the model’s inner working [14] is especially
by the large numbers of parameters that need to be optimised. In
addition to the benefits to businesses, the regulation of General
Data Protection Regulation (GDPR) [16] has shown us that it has
become a societal need to make machine learning models more
understandable, and to transform black boxes into transparent,
white boxes.

In this paper, we use a state-of-the-art ABSC model, the Left-
Center-Right Rotatory Attention model with multiple hops (LCR-
Rot-hop), proposed by Wallaart and Frasincar [17]. Given the LCR-
Rot-hop model, it is unclear which input information gets encoded
while processing an opinion, and whether the model has any under-
standing about which word(s) determine(s) the sentiment polarity
towards an aspect. Therefore, our research aim is to shed light on
the inner working of the LCR-Rot-hop model by means of Diagnos-
tic Classification [5]. Precisely, we use Diagnostic Classification to
examine whether the internal layers of the LCR-Rot-hop model en-
code for each word of an opinion the part of speech, the presence of
aspect relation, the sentiment value, and the aspect-related sentiment
value information that it is useful for the current classification task.
By means of the LCR-Rot-hop model, we provide a methodology
to understand the inner information process specific to the ABSC
problem that can be easily applied to any other neural network
designed for this purpose. Our implementation can be found at
https://github.com/lhmeijer/ABSCEM.

The structure of this paper is as follows. In Section 2, we discuss
the relevant literature of ABSC using neural networks, and of Diag-
nostic Classification. Section 3 gives an overview of the used dataset.
Section 4 gives a description of the LCR-Rot-hop model, and our
proposed diagnostic classifiers, which we evaluate in Section 5. In
Section 6 we present our conclusion and future work.

2 RELATEDWORK
The following Section 2.1 and Section 2.2 review the literature
dedicated to ABSC and Diagnostic Classification, respectively.

2.1 Aspect-Based Sentiment Classification
Since a writer could express multiple opinions towards different
specific aspects in one document or sentence, only looking at a
document or a sentence level as in Sentiment Classification is often
insufficient [7]. Therefore, we focus on ABSC, a finer-grained sen-
timent classification, which computes the sentiment for an aspect
of an entity of interest, at the sentence level [12].

https://doi.org/10.1145/3412841.3441957
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NowadaysMachine Learning approaches are popular ABSCmod-
els. Frequently, these models are based on neural networks, such as
Long Short-Term Memory (LSTM) networks [4] and neural atten-
tion models [8]. Tang et al. [15] proposed a target-dependent LSTM
(TD-LSTM) approach, which models the relatedness of an aspect
with its context words, and selects the relevant parts from the con-
text to deduce the sentiment value towards the aspect. Liu et al. [8]
developed the Content Attention Based Aspect-Based Sentiment
Classification (CABASC) model, which consists of two attention
modeling mechanisms, one at the sentence level and one at the
context level. While the sentence level content attention mecha-
nism considers the whole meaning of the full sentence, the context
attention mechanism takes the correlations between the words and
the aspect into account.

Zheng and Xia [18] suggested a Left-Center-Right separated
neural network with a rotatory attention mechanism (LCR-Rot)
to effectively represent an aspect composed of multiple words,
and to utilize the interaction between the aspect and its context.
Additionally, Wallaart and Frasincar [17] proposed the LCR-Rot-
hop model as an extension of the the work of Zheng and Xia [18].
The LCR-Rot-hop model iterates the rotatory attention mechanism
to better indicate the relation between the aspect and the context of
an opinion. Given that the LCR-Rot-hop model is a state-of-the-art
approach to ABSCwith higher rates of effectiveness than TD-LSTM,
LCR-Rot, and CABASC models, we only consider this model for
our diagnostic analysis.

2.2 Diagnostic Classification
Although, neural networks are good at predicting the sentiment
value of an opinion, they are not highly transparent predictors.
Therefore, Hupkes et al. [5] proposed a Diagnostic Classifier that
attempts to predict information from the (hidden) states of a neural
network. If this information is predicted accurately, it indicates that
the information is indeed computed or represented by the network
at the level of the given hidden states.

The idea of a diagnostic classifier is based on a prediction task
proposed by Adi et al. [1]. They trained a classifier to predict specific
sentence properties (e.g., number of words, word context, and word
order) based on the vector representations obtained from LSTM
autoencoders or simple continuous bag-of-words representations.
Adi et al. stated that a property of a sentence is not encoded in
the representation, if we cannot train a classifier to predict this
property.

Initially, Hupkes et al. [5] proposed a diagnostic classifier to study
how recurrent neural networks process hierarchical structures by
using an arithmetic language, but Hupkes et al. mainly showed that
diagnostic classification is a useful technique for opening up the
black box of neural networks. For instance, Jumelet and Hupkes
[6] used the diagnostic classification to predict whether a word
in a sentence is inside the licensing scope. Jumelet and Hupkes
concluded that their neural language model is able to encode this
information.

Belinkov et al. [2] evaluated the representation quality of neural
machine translation models on part-of-speech and morphological
tagging in various languages by using a neural classifier. Belinkov

et al. [2] concluded that lower layers of the neural machine trans-
lation models are better at capturing morphology than the higher
layers.

3 SPECIFICATION OF THE DATA
In this paper, we use the widely employed SemEval-2016 Task
5 Subtask 1 dataset [11] to train, and evaluate the LCR-Rot-hop
model. The SemEval-2016 dataset consists of hundreds of restaurant
reviews. Each review is divided into various sentences, and each
sentence has one or multiple opinions.

Figure 1 presents a review in the XML markup language. This
sentence includes three opinions. For each opinion, a polarity
(sentiment value) is specified, which expresses the sentiment of the
reviewer towards the predefined aspect or target. Moreover, an
aspect category is stated, which classifies the target.

<Review rid="404464">
<sentences >
<sentence id="404464:0">
<text>Thalia is a beautiful restaurant with
beautiful people serving you , but the food
doesn 't quite match up.</text>
<Opinions >
<Opinion target="people"
category="SERVICE#GENERAL" polarity="positive"
from="48" to="54"/>
<Opinion target="food" category="FOOD#QUALITY"
polarity="negative" from="76" to="80"/>
<Opinion target="Thalia"
category="AMBIENCE#GENERAL" polarity="positive"
from="0" to="6"/>
</Opinions >
</sentence >
</sentences >
</Review >

Figure 1: A sentence from the SemEval-2016 dataset

Since the model relies on the presence of explicitly stated opin-
ions, we remove all implicitly stated opinions from the dataset.
Moreover, we replace all long dashes (−) by a short dash (-), and all
textual apostrophes (’) by a digital typesetting (') to encode these
similar characters in the same way. We use the Stanford CoreNLP
package [9] to tokenize and lemmatize all the words within a sen-
tence.

To symbolise the meaning of a word, such that we can use it as
input in our model, we represent a lemmatized word as a point in a
300 dimensional semantic space. We use the pre-trained algorithm
GloVe [10] to obtain these vector representations (embeddings). If
words do not appear in the GloVe vocabulary, we randomly initialise
these words by using a normal distribution N (0, 0.052) [17].

4 METHOD
Below, we first give an overview of the LCR-Rot-hop model in
Section 4.1, and then present the diagnostic classification in Section
4.2.
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4.1 Neural Rotatory Attention model with
multiple hops

According to the LCR-Rot-hop model [17], we initially split the
sentences in a left, a center (target), and a right part depending
on the position of the target. The left part consists of L words, the
right part has R words, and the target phrase consists of T words
belonging to the aspect.

The model starts with three bi-directional Long-Short-Term-
Memory (Bi-LSTM) networks for each of the three parts of the input
sentence (left context, target content, and right context). These
Bi-LSTMs use, as input, the embeddings of the words in the left
context [el1, ..., e

l
L], the embeddings of the words in the target phrase

[et1, ..., e
t
T ], and the embeddings of the words in the right context

[er1 , ..., e
r
R ] to compute the corresponding hidden states [hl1, ...,h

l
L]

for the left context, [ht1, ...,h
t
T ] for the target phrase, and [h

r
1, ...,h

r
R ]

for the right context.
To capture the most sentiment indicative words in a sentence,

we apply a rotatory attention mechanism to all hidden states. First,
we use an attention scoring function for both the left f (hli , r

tp ) and
right f (hri , r

tp ) contexts to represent the most sentiment indicative
words in the left and right contexts, respectively. Both the attention
scoring functions are defined with respect to their hidden states,
and the average target representation r tp , calculated by feeding
the target hidden states into an average pooling layer. Given the
symmetry of the rotatory attention mechanism, we present the
computational process only for one context. As a result the attention
scoring function for the left context is defined as follows:

f (hli , r
tp ) = tanh(hli ×W l

c × r tp + blc ) (1)

whereW l
c is a weight matrix, and blc is a bias term. We feed these

context attention scores f (hli , r
tp ) and f (hri , r

tp ) into a softmax
function for normalization. With the normalised attention scores α li
and αri , we compute the left r l and right r r context representations.
Considering the left context again, the r l vector is computed as:

r l =
L∑
i=1

α li × hli (2)

Second, we use these context representations r l and r r , and an
attention scoring function for both the left-aware target phrase
f (hti , r

l ) and the right-aware target phrase f (hti , r
r ) to represent the

most sentiment indicative words in the target phrase. The attention
scoring function defined with respect to the left context is:

f (hti , r
l ) = tanh(hti ×W l

t × r l + blt ) (3)

whereW l
t is a weight matrix and blt is a bias term. These target

attention scores f (hti , r ) are as well fed into a softmax function to
obtain the normalised attention scores α tli and α tri . We use these
scores to compute the left-aware target r tl and right-aware target
r tr representations. Similar to the r l vector defined above (eq. 2),
the r tl representation is computed as:

r tl =
T∑
i=1

α
tl
i × hti (4)

Next, we repeat the above mentioned steps of applying the rotatory
attention mechanism by feeding the left- and right-aware target
representations into the left and right attention functions, respec-
tively, instead of the average target representation (r tp ), and we
compute again all context and target representations. Moreover, the
rotatory attention mechanism is repeated over multiple iterations
to better represent the relation between the aspect and its context.

At the end of the iterative rotatory attention mechanism, we
concatenate the left-context representation r l , the two side-target
representations, r tl and r tr , and the right-context representation
r r , to obtain the sentence representation s . Further, the new repre-
sentation of the input sentence is converted by a dense layer with
a softmax activation function to compute the sentiment prediction
vector with a score for each of the three sentiment values: positive,
negative, and neutral.

The LCR-Rotmodel is trained in a supervisedmanner byminimis-
ing the cross-entropy loss function with an L2-norm regularisation
term. To update the weights and biases we use stochastic gradi-
ent descent with momentum, and to prevent overfitting we apply
the dropout technique to all hidden layers. For a more in-depth
discussion of the training process, we refer to [17].

4.2 Diagnostic Classification
Diagnostic Classification is based on the idea that if a model is
keeping track of certain information, we should be able to extract
this information from the internal layers of the model. We propose
several diagnostic classifiers to examine whether the internal layers
of the LCR-Rot-hop model are keeping track of the part of speech
information, the presence of a relation with the aspect, the sentiment
value, and the sentiment value related to the aspect, all information
deemed useful at the word level for ABSC. If the diagnostic classi-
fiers are able to predict accurately, it indicates that the considered
information is indeed encoded by the layers of the LCR-Rot-hop
model.

Since our diagnostic classifiers try to predict from the internal
layers of the LCR-Rot-hop model, we first train the LCR-Rot-hop
model on the SemEval-2016 training dataset to obtain the internal
layers of all words in the opinions of the training and test dataset.
For each word i , we obtain its embedding (ei ); its hidden state
(hi ); and its j ∈ {1, ...,n} context representations (ri j ), where j
represents the hop number. Since the context representation r is
computed as a single value for a group of words (eq. 2), the ri j
vector representation at the word-level is defined as follows:

ri j = αi j × hi (5)

where αi j is either the left attention score (α li j ) or the right attention
score (αri j ) for the j iteration of the rotatory attention mechanism. In
order to predict from the hidden layers (ei ,hi , ri1, ..., rin ) the part-
of-speech, the presence of a relation with the aspect, the sentiment
value, and the sentiment value in relation to the aspect, we define
below the information that makes up the class labels.

To predict the part-of-speech tags, we categorise the words as:
noun, verb, adjective (adj.), or adverb (adv.). If a word is none of
those four, we categorize it as remaining part-of-speech (rem.). We
simply extract these labels from each individual word by using
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the Stanford CoreNLP package [9]. Table 1 represents the num-
ber of words per part-of-speech class. The diagnostic classifiers are
trained only on the correctly predicted instances of the training
data because it does not make sense to use the incorrectly predicted
training data that might cause the learning of inconsequential pat-
terns. Therefore, we choose to not present the distribution per
classes of the words in the training instances that are incorrectly
predicted by the LCR-Rot-hop in Tables 1-4.

Table 1: Number of words per part-of-speech class.

Noun Verb Adj. Adv. Rem.

Correctly predicted training set 4586 3631 2058 4661 14148
Correctly predicted test set 1211 1099 569 2338 4848
Incorrectly predicted test set 278 182 129 264 908

To predict the presence of a relation with the aspect, we label
a word as “Yes” if it is related to the aspect, and as “No”, if it is
not related to the aspect. We determine the existence of a relation
by using the Stanford CoreNLP Dependency Parser [9], and the
ontology described by Schouten and Frasincar [13] that connects
aspects to words. A word is related to the aspect in the opinion if
there exists a dependency between them, or if they are connected
according to the ontology. The number of words per presence of a
relation class is given in Table 2.

Table 2: Number of words per presence of a relation class.

Yes No

Correctly predicted training set 6220 22864
Correctly predicted test set 2070 7995
Incorrectly predicted test set 364 1397

To predict the sentiment value, we assign eachword to the class la-
bel “Positive”, if the word has a positive sentiment value, “Negative”,
if the word has a negative sentiment value, and “No Sentiment”, if
we cannot define the sentiment value. Table 3 represents the classes’
frequencies in the data sets. We specify the sentiment value of a
word by using the ontology described by Schouten and Frasincar
[13], and NLTK SentiWordNet [3]. The ontology classifies a word
positive (negative), if the word has a superclass Positive (Negative).
If the ontology is not able to classify the sentiment value, we use
SentiWordNet [3] that defines the sentiment score of the word’s
most frequently used form. A word has a positive sentiment value,
if the positive sentiment score is larger than the negative sentiment
score, and vice versa. We classify the word as “No Sentiment”, if
both the ontology and SentiWordNet are not able to identify the
sentiment value. Table 3 lists the number of words per sentiment
value class.

Table 3: Number of words per sentiment value class.

Positive Negative No Sentiment

Correctly predicted training set 5583 1774 21727
Correctly predicted test set 1677 489 7899
Incorrectly predicted test set 264 120 1377

Figure 2: Diagnostic classifier applied for the detection of
part-of-speech of the words “Lovely" and “here"

To predict the sentiment value of a word related to the aspect in
the opinion, we classify a word as “Positive” if it has both a positive
sentiment value and a relation towards the aspect, as “Negative” if
it has both a negative sentiment value and a relation towards the
aspect, and as “No Aspect Sentiment” if the sentiment value or the
relation are undefined. We specify the sentiment value in the same
way, as we did for predicting the sentiment value, and we determine
the existence of a relation in the same way, as we did for predicting
the presence of a relation. Table 4 gives the number of words per
aspect-related sentiment value class.

Table 4: Number of words per aspect-related sentiment value
class.

Pos. Neg. No Aspect Sentiment

Correctly predicted training set 1425 439 27220
Correctly predicted test set 450 91 9524
Incorrectly predicted test set 57 38 1666

Since the number of words per class label for any information is
rather unequally distributed, we run the LCR-Rot-hop and select
sub-samples from the correctly predicted opinions of the SemEval-
2016 training set to train the diagnostic classifiers. We randomly
draw min(qc ,qmean ) words per class, where qc is the number of
word with class label c , and qmean is the mean of all qc ’s except
from the class that has the greatest number of words. The reason
behind this configuration is the need to reduce the differences
between the classes in terms of size.

After composingmultiple training sets from the internal layers of
the randomly selected words, and their corresponding class labels,
we train the various diagnostic classifiers on their related training
set. Figure 2 gives an illustration of all 2 + n diagnostic classifiers,
which try to predict the part-of-speech of the words “Lovely” and
“here” from their various hidden layers (e,h, r1, ..., rn ). The words
“Lovely” and “here” represent the left and right contexts of the imag-
inary opinion “Lovely place here", where the “place" word is the
aspect. “Lovely” is an adjective, and should be predicted as 1, while
“here” has a remaining tag, and should be predicted as 4 (where the
class labels are ordered from 0 to 4). Since we select a sub-sample to
train the diagnostic classifiers on, a single run is insufficient to draw
a conclusion. Therefore we train our diagnostic classifiers on 10
subsets of the correctly predicted instances by LCR-Rot-hop from
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(a) Correctly predicted test set (b) Incorrectly predicted test set

Figure 3: Accuracies of predicting the part-of-speech

(a) Correctly predicted test set (b) Incorrectly predicted test set

Figure 4: Accuracies of predicting the presence of a relation with an aspect

the SemEval-2016 training set. The subsets are sampled with re-
placement. We later report the averages and standard deviations of
the accuracies obtained with 10 diagnostic classifiers, each trained
on one of the 10 considered subsets.

Inspired by the previous work [2], all our diagnostic classifiers
are simple neural networks with one hidden layer of 300 neurons
with a ReLU activation function. The output is determined by a
dense layer with a softmax function. We initialise the weights by a
uniform distribution U (−0.1, 0.1) and the biases by zero for each
layer. We use a learning rate of 0.0001 and a batch size of 20. The
number of epochs is 90 except for the diagnostic classifiers predict-
ing the part-of-speech. Since these classifiers tend to end up in a
saddle point after too many epochs, we set their number of epochs
to 20.

After we train all diagnostic classifiers on the internal layers
and class labels of the randomly selected words in the correctly
predicted opinions from the SemEval-2016 training dataset, we pre-
dict the class labels from the internal layers (ei ,hi , ri1, ..., rin ) of all
words in the SemEval-2016 test dataset, and verify the accuracy of
the diagnostic classifiers. If a diagnostic classifier predicts the class

labels with a high accuracy, we conclude that the corresponding
hidden layer is keeping track of the corresponding information.

5 EVALUATION
The following Section 5.1 and Section 5.2 present the performances
of the LCR-Rot-Hop neural network and diagnostic classifiers, re-
spectively.

5.1 Performance of the LCR-Rot-hop
Instead of using 3 hops like [17], we train the LCR-Rot-hop model
using 10 hops that allows us to better understand the information
detection process of the rotatory attention. The model runs using
150 epochs, and a learning rate of 0.05, an L2-norm regularisation
term of 0.00001, a momentum of 0.9, and a batch size of 20. Further-
more, during training 50% of neurons are randomly dropped out of
the network. Table 5 gives its accuracy results on the SemEval-2016
training and test data for a single run. Unlike the Wallaart and Fras-
incar’s work, we do not run the model in two steps, which means
that the LCR-Rot-hop model runs over the entire test set, without
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(a) Correctly predicted test set (b) Incorrectly predicted test set

Figure 5: Accuracies of predicting the sentiment value

(a) Correctly predicted test set (b) Incorrectly predicted test set

Figure 6: Accuracy of predicting the aspect-related sentiment value

Table 5: Accuracy results of the LCR-Rot-hop (with 10 hops)

Training set Test set

Freq. acc. (%) Freq. acc. (%)

Positive 1319 99.4 483 94.6
Neutral 72 95.8 32 25.0
Negative 488 95.9 135 69.6
Overall 1879 98.4 650 86.0

applying the ontology first. This is because we are interested to
measure the performance of the neural network only.

5.2 Performance of the diagnostic classifiers
Figures 3, 4, 5, and 6 illustrate the mean accuracies, and standard
deviations of predicting the part-of-speech, sentiment value, presence
of a relation with an aspect, and aspect-related sentiment value of the
words in the correctly and incorrectly predicted opinions in the test
data set. Since the standard deviations are rather small, the vertical
lines, which represent the standard deviations in the graphs, are
fairly short, and often not observable. We plot a colored line, for

the prediction performance for each class label over the test set.
We plot a grey line for the overall mean predicting performance
over the test set, and we plot a black line for the overall mean
prediction performance over the correctly predicted opinions from
the training set. The information is split over over the internal
representations of LCR-Rot-hop model: embeddings (e), hidden
states (h), and context representation (r ).

The performance of predicting the part-of-speech by its diagnos-
tic classifiers is illustrated by Figure 3. Given that the information
about the performance is split between the internal layers, it allows
us to notice the much higher accuracy of predicting the part-of-
speech from the embeddings than of predicting from the context
representations. Furthermore, the internal layers of the correctly
predicted test set determine the class label “Adjective” much better
than the same layers of the incorrectly predicted test set. The reason
behind this lies in the fact that the adjectives have usually sentiment
value, and affect the overall sentiment orientation.

The performance of predicting the presence of a relation with
the aspect by its diagnostic classifiers is illustrated by Figure 4.
Unlike the case of part-of-speech, we can predict the absence and
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the presence of a relation better from the context representations
than from the embeddings. This presumption is valid, especially
in predicting the absence of a relation. Remarkably, the internal
layers of the incorrectly predicted test set indicate much better
the absence of a relation than the internal layers of the correctly
predicted test set.

Figure 5 illustrates the performance of predicting the sentiment
value by its diagnostic classifiers. Analyzing the figure, we notice
that the classifiers applied at the level of internal layers are partic-
ularly good at predicting “No Sentiment”, and poor at predicting
“Negative”. Furthermore, from Figure 5 we see that it is easier to
extract the sentiment value from the embeddings than from the
context representations. Also, we notice that the correctly predicted
test set indicates better the words with the label “No Sentiment”
than the scenario with incorrect predictions. Knowing which words
in the opinion do not have a defined sentiment value, may be more
important for correctly predicting the sentiment value, than know-
ing the sentiment words.

Given Figure 6, we see that the context representation predicts
slightly better the aspect-related sentiment value than the embed-
dings. Also, the diagnostic classifiers identify more easily the words
with no sentiment value or unrelated to aspects. In addition, Figure
6 shows the label “Positive” from the internal layers of the correctly
predicted test set is predicted with a higher accuracy than from
the case with incorrect predictions. Probably, keeping track of pos-
itive words, which are related to the aspect, has a greater effect
on predicting the sentiment value correctly than keeping track of
negative words, since Table 5 shows us that the model predicts
positive opinions much more accurately than negative opinions.

Looking at all four figures, we see that we do not predict more
accurately from the context representation of the first round than
from the context representation of the tenth round, or vice versa.
Their prediction accuracies are in general about the same value.
Apparently, iterating the rotatory attention mechanism does not
contribute to an improvement or deterioration in the prediction
accuracies of the diagnostic classifiers. The context representa-
tions are keeping track of roughly the same information. While the
context representation are keeping track of roughly the same infor-
mation, the embeddings representations and hidden states bring
informational diversity.

6 CONCLUSION
In this paper, we propose various diagnostic classifiers in order
to examine whether the ABSC state-of-the-art neural attention
model LCR-Rot-hop encodes the part of speech, the presence of as-
pect relation, the sentiment value, and the aspect-related sentiment
value, deemed as useful information at the word level for the consid-
ered task. We conclude that the context representation determines
mostly the presence of a relation with an aspect, and the aspect-
related sentiment value, without having a relevant performance
difference among the 10 considered context representations. On
the other hand, the remaining two features part-of-speech, and sen-
timent value are better detected by the embedding representations.

As for future work, we advice to optimise the hyper-parameters
of the LCR-Rot-hop model, and the diagnostic classifiers. Moreover,
we suggest to better specify the sentiment value, and the presence of

a relation towards the aspect, since the ontology does not contain all
relevant words, and the sentiment score from NLTK SentiWordNet,
which is based on the most frequently used form, might not be the
correct sentiment score. Furthermore, we propose to compute the
prediction accuracy only over the words that indicate the sentiment
value of the opinion, instead of computing the prediction accuracy
over all words. In doing so, we can better understand how these
words affect the final sentiment classification of the LCR-Rot-hop
model. As well, we consider important to check the applicability of
our inferences also on other sentiment datasets that comprise not
only restaurant opinions.
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