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ABSTRACT
Sentences containing several different polarity aspects cause one
of the main problems in sentiment analysis. Depending on an
aspect, the same context words can have different effects on its
sentiment value. Additionally, the polarity can be influenced by
the domain-specific knowledge, showing the necessity to
incorporate it into the sentiment classification. In this paper we
present a hybrid solution for sentence-level aspect-based
sentiment analysis using A Lexicalised Domain Ontology and
Neural Attention (ALDONA) model to handle the problems
mentioned above. To measure the influence of each word in a
given sentence on an aspect’s polarity, we introduce the
bidirectional context attention mechanism. Moreover, the
classification module is designed to handle the sentence’s complex
structure. Finally, the manually created lexicalised domain
ontology (represented in OWL) is integrated to exploit the
field-specific knowledge. Computational results obtained on a
benchmark data set based on Web reviews have shown ALDONA’s
ability to outperform several state-of-the-art models and stress its
contribution to aspect-based sentiment classification.
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Donatas Meškelė and Flavius Frasincar. 2019. ALDONA: A Hybrid Solution
for Sentence-Level Aspect-Based Sentiment Analysis Using a Lexicalised
Domain Ontology and a Neural Attention Model. In The 34th ACM/SIGAPP
Symposium on Applied Computing (SAC ’19), April 8–12, 2019, Limassol,
Cyprus. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3297280.
3297525

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SAC ’19, April 8–12, 2019, Limassol, Cyprus
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5933-7/19/04. . . $15.00
https://doi.org/10.1145/3297280.3297525

1 INTRODUCTION
As one of the core natural language processing (NLP) problems,
sentiment analysis (SA) has been broadly assessed using different
approaches, such as aspect extraction [6, 26], opinion identification
[9], and aspect-based sentiment classification [24, 25, 32]. However,
since each of these sub-tasks requires deep analysis, we solely
focus on improving accuracy of the latter. Sentiment classification
is usually performed using one of the three main methods:
knowledge-based, machine learning/neural networks, or hybrid.

A hybrid sentiment classifier consolidates the knowledge-based
and statistical (machine learning/neural networks) approaches,
providing a powerful tool for sentiment analysis [4, 29, 30]. A
hybrid two-step aspect-based sentiment classification method
employing a lexicalised domain ontology and using the support
vector machine (SVM) as a backup mechanism has been presented
by [29]. Considering the obtained promising results, this paper
exploits the proposed idea. However, due to the increased potential
of neural networks [5, 15, 19], we replace SVM with a more
powerful neural attention model. Inspired by [19, 33], we propose
the bidirectional context attention mechanism and the
classification module to boost the accuracy of aspect-based
sentiment classification. As a result, we introduce A Lexicalised
Domain Ontology and Neural Attention (ALDONA) model. Split
into the two-step procedure, ALDONA initially utilises the
field-specific knowledge to determine the polarity of a given
aspect. If the sentiment value is not obtained (due to some missing
concepts, properties, or polarity categories) or more than one
polarity category is predicted, the neural attention model is
employed. Field-specific knowledge is captured using a lexicalised
domain ontology introduced by [29]. While there are several
methods to create an ontology [1], the manually created ontology
approach is chosen to ensure that all relations among entities and
their properties are correctly defined. The ontology classification
algorithm is constructed to be able to differentiate among three
sentiment types, namely, generic, category-dependent, and
context-dependent. Based on its type, a sentiment can be classified
into Positive and Negative classes. The Neutral class is omitted, as
it is not well represented in data sets.

The neural attention model (also referred as Deep Bidirectional
Gated Recurrent Unit (DBGRU)) is split into word embeddings, the
bidirectional context attention mechanism, sentence-level content
attention mechanism, and the classification module. The former
part converts sentences and their aspects to their embedded forms,
the second block assigns weights for each word in a sentence based
on the word ordering, correlations among aspects and their context
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words, as well as the past and future information. The third block
summarises the obtained information in the weighted embedding
sentence vector. The classification module captures the meaning of
the whole sentence by explicitly defining relationships among an
aspect and weighted sentence representations.

The computational results have shown that ALDONA has made
a meaningful contribution to aspect-based sentiment classification
by outperforming several state-of-the-art models, such as the
ontology classification model (Ont) [29], content attention model
(BaseA) [19], sentence-level content attention model (BaseB) [19],
sentence-level position attention model (BaseC) [19], and Content
Attention Based Aspect based Sentiment Classification model
(CABASC) [19]. CABASC is a state-of-the-art aspect-based
sentiment analysis model that proved to be superior to many of
the previously designed neural models for the task [19]. The other
baseline models employ the context attention module [19]
combined with unidirectional long short-term memory module
(CTX-LSTM), bidirectional long short-term memory module
(CTX-BLSTM), or bidirectional gated recurrent unit (CTX-BGRU).

The paper is structured as follows. In Sec. 2 some related
literature is discussed. Then in Sec. 3 the proposed model,
ALDONA, is presented in detail. The data is described in Sec. 4 and
performance of the proposed model is compared with other
models in Sec. 5. Conclusion and future research are presented in
Sec. 6. The source code of all implemented models is provided at
https://github.com/donmesh/ALDONA.

2 RELATED LITERATURE
Sentiment analysis (SA) has been broadly presented in [18]. Due to
its complexity, the task is usually considered as a combination of
sub-problems such as aspect extraction [6, 26], opinion
identification [9], and aspect-based sentiment classification
[24, 25, 32]. The latter sub-task is elaborately presented by the
authors of [28] and is the main focus in our research.

Sentiment classification is usually approached by one of the
main classification methods: knowledge-based, machine
learning/neural network, or hybrid combining the former two.
Knowledge-driven sentiment classification incorporates the
domain specific knowledge inferred from a given ontology. By
respecting the set of design criteria proposed by [11], ontologies
can be created manually [29, 30], semi-automatically [8], or fully
automatically [3]. The defined ontology concepts, their properties,
and relations among them can be used to infer new relations by
means of the ontology reasoner (e.g., if pizza is savoury food and
savoury food is food, then pizza is food). Carefully designed and
broadly-spanning ontologies have been shown to produce
promising results in aspect-based sentiment classification [8, 29].

On the other hand, machine learning classification depends on
statistical relations derived from given feature vectors. While the
bag-of-words (BoW) with the support vector machine (SVM) is one
of the simplest, yet surprisingly effective methods [12, 21, 22], it
has some drawbacks. The main weaknesses are the disregarded
word ordering and the ignored semantics of words [17]. Moreover,
the performance of classical machine learning models is highly
dependent on the manual feature engineering. Because of this

expensive process, neural attention mechanisms have been
employed in the recent research [16].

The relative aspect-context position mechanism has been
presented by [32]. However, the assumption that context words
which are closer to a given aspect are more important than context
words which are further away is not the general truth and thus can
lead to lower generalisation ability. Due to the promising results in
the language sequence optimisation, the recurrent neural network
(RNN) has been incorporated in the context attention mechanisms
[27, 31, 33]. Extracting information from the left and right context
words with respect to a given aspect [31], as well as exploiting
syntax and semantics of a given sentence by means of the
bidirectional gated neural network [33], have proved to be highly
useful.

Hybrid models, combining field-specific knowledge with
statistical relations, have been effectively used for sentiment
analysis [4, 30]. Authors of [29] propose a lexicalised domain
ontology classification algorithm backed up with the support
vector machine (SVM). In the first phase the knowledge-based
classifier assigns a given sentiment to either a Positive or Negative
class depending on its inferred type (generic sentiments,
category-dependent sentiments, or context-dependent sentiments).
In case both or none of the classes are selected, the SVM
bag-of-words classification is performed in the second stage. Due
to the auspicious results, the proposed idea is exploited in this
paper. Nonetheless, the main emphasis is put on the second phase,
as a result of the high potential of neural networks [5, 15] and
their gated representations [19, 33]. In this research we propose
the bidirectional context attention mechanism and the
classification module to cope with sentence complexity. By
combining them with knowledge derived from the lexicalised
domain ontology we introduce the Lexicalised Domain Ontology
and Neural Attention model (ALDONA).

3 METHODOLOGY
By making use of the lexicalised domain ontology (represented in
the Web Ontology Language (OWL)), the bidirectional context
attention mechanism, sentence-level content attention mechanism,
and the classification module, ALDONA incorporates the
field-specific knowledge, word ordering, correlations among
aspects and their context words, as well as the past and future
information to determine the sentiment value of a given aspect.

3.1 Lexicalised Domain Ontology
The purpose of the lexicalised domain ontology is to define
relationships among various entities and their properties. By
means of a reasoner, not directly defined relationships can still be
obtained and used to infer the sentiment value of a given aspect.

The manually created ontology contains three main classes:
SentimentMention, SentimentValue, and AspectMention. The latter
class is responsible for modelling the mentions of aspects, the
SentimentValue defines the polarity of an aspect which can be
either positive (then the sentiment is a subclass of Positive) or
negative (then the sentiment is a subclass of Negative). As the edge
values between the Positive and Neutral, or Neutral and Negative
classes are not intuitively defined, the Neutral class has not been
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implemented in this ontology. The neutral sentiment is also not so
well represented in data sets, as usually people take a stand of
liking or disliking. The SentimentMention class models the
expressions of sentiments. It can differentiate three sentiment
types and apply specific rules on each of them.

Type-1: generic sentiments which always have the same
sentiment value independently of an aspect class they describe
(e.g., “awesome” is Positive). Type-2: category-dependent
sentiments which can be used when a specific category of aspects
is present (e.g., “delicious” is Positive and can be used to describe
SustenanceMention (food and drinks), but does not apply for
ServiceMention). Hence, type-2 sentiment will be inferred only if
the aspect class matches the sentiment class, and will be ignored
otherwise. Type-3: context-dependent sentiments which directly
depend on the aspect category (e.g., cold beer is Positive, while cold
pizza is Negative). If a certain aspect-sentiment combination does
not exist, a new subclass is created.

Since the ontology is lexicalised each concept has an annotation
of type lex attached to it. As the result, each concept in the
ontology might have multiple lexicalisations (e.g., the United
States of America can be referred as “the United States of
America”, “USA”, or “US”). Moreover, concepts which are
subclasses of the SentimentValue class have an antonym property
which is used when the concept is negated. Additionally to the
negation relations in the word dependency graph, for each word in
a sentence the three preceding words are inspected to check
whether or not they are present in a set of negating words, namely
{not, no, never, isn’t, aren’t, won’t, wasn’t, weren’t, haven’t, hasn’t,
don’t, doesn’t, can’t, couldn’t} [14]. The presence of these words
changes the sentiment dependency from the Positive subclass to
the Negative subclass and vice versa.

The sentiment value prediction procedure consists of two main
steps: analysing each word in a given sentence by verifying its type,
and determining whether or not it is negated. The types are ordered
and exclusive, meaning that the word dependency to the next type
will be examined only if the current type is not applicable (e.g.,
a specific word can only have type-2 if does not have type-1). If
the ontology reasoner is not able to infer the sentiment value, the
polarity is determined by the neural attention model introduced
below.

3.2 Neural Attention Model
The neural attention model (DBGRU) consists of four main parts:
word embeddings, the bidirectional context attention mechanism,
sentence-level content attention mechanism, and the classification
module. Each of them is built on top of each other and is introduced
in the following subsections.

3.2.1 Word Embeddings. Let S = {s1, s2, ..., sN } be an input
sentence of length N containing words sn , and
Sa = {si , si+1, ..., si+L} be an aspect of length L in that sentence,
where L ⩾ 1 represents the aspect being a phrase. The embedding
of a word sn is constructed as follows:

en = Lon ∈ Rd , (1)

where on ∈ R |V | is a one-hot vector, Ld×|V | is the embedding
matrix, d is the length of a numeric vector representing each word,

and V is a dictionary containing all known words. Hence, the
embedded sentence S is represented by:

E = [e1, e2, ..., eN ] ∈ Rd×N (2)

with the embedded aspect:

EA = [ei , ei+1, ..., ei+L] ∈ Rd×L . (3)

To extract the word ordering information we split the sentence
S into two parts such that the first part is from the beginning of the
sentence to the end of the aspect and the second part is from the
beginning of the aspect to the end of the sentence (here, the aspect
is represented by {si , ..., si+L}). We call those parts SLS and SRS :

SLS = {s1, ..., si−1, si , ..., si+L},
SRS = {si , ..., si+L , si+L+1, ..., sN },

(4)

and their embedded versions (obtained using Eq. 1):

ELS = [e1, ..., ei−1, ei , ..., ei+L],
ERS = [ei , ..., ei+L , ei+L+1, ..., eN ].

(5)

3.2.2 Bidirectional Context Attention Mechanism. The main
deficiency of the unidirectional gated recurrent unit (proposed in
[19]) is the inefficient information processing. The method
accounts for the past information (information from words which
come before the current word) to determine the current word, but
does not incorporate the future information (information from
words which come after the current word). The following example
illustrates this issue:

processing direction −→ current
Very tasty food, service is awful.
Very tasty food, service is amazing.

Figure 1: Example of the information inefficiency when
the unidirectional recurrent network (RNN) is used. After
sequentially processing the first two words it is difficult to
determine what is the sentiment value of the current word
service. It has two different meanings, but in the current cell
they are identical.

Due to this inefficiency, the information obtained from these
two sentences is identical when the current word is “service”, as
the model incorporates only the phrase “Very tasty food”. The
inefficient information problem can be handled by the bidirectional
recurrent neural networks (BRNN) which exploit both past and
future information to determine the attention weight of the current
word. As the result, each word in a sentence is assessed from both
directions.

In order to present the bidirectional context attentionmechanism,
we briefly introduce the unidirectional gated recurrent unit (GRU)
[7]. The pipeline consists of the reset gate, update gate, newmemory
generation, and generation of the new hidden state. The influence
of the previous hidden state hn−1 on the newly generated memory
h̃n is determined by the reset gate rn . The new hidden state hn
is then constructed from the output of the update gate un (which
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processing direction −→ current ←− processing direction
Very tasty food, service is awful.
Very tasty food, service is amazing.

Figure 2: Example of the efficiently used information
by applying the bidirectional recurrent neural network
(BRNN). Words before the current cell and after the current
cell are known when the current cell is evaluated. This
allows to differentiate between these two sentences and
determine the polarity of service.

adjusts the effect of the previous hidden state hn−1 and the new
memory h̃n ). The mathematical GRU representation is given below:

rn = σ (Wr en +Urhn−1 + br ),
un = σ (Wuen +Uuhn−1 + bu ),

h̃n = tanh(When +Uh (rn ⊙ hn−1) + bh̃ ),

hn = un ⊙ hn−1 + (1 − un ) ⊙ h̃n ,

(6)

where ⊙ represents the element-wise multiplication, σ and tanh
are logistic sigmoid and hyperbolic tangent functions, en ∈ Rd
is a word embedding vector, rn ∈ Rd and un ∈ Rd are the reset
and update gates, and h̃n ∈ Rd and hn ∈ Rd are the new memory
and the new hidden state, respectively.Wr ∈ Rd×d , Ur ∈ Rd×d ,
Wu ∈ Rd×d , Uu ∈ Rd×d , Wh ∈ Rd×d , Uh ∈ Rd×d are weight
matrices and br ∈ Rd , bu ∈ Rd , bh̃ ∈ R

d are bias vectors. An
alternative to GRU is the long short-term memory model (LSTM)
[13], which introduces additional flexibility.

The final hidden state obtained by the bidirectional gated
recurrent unit (BGRU) is a combination of hidden states from both
forward and backward directions. The general mathematical
representation of the bidirectional recurrent neural network
(BRNN) is given by:

−→
hn = f (−→Θ | en ,

−−−→
hn−1),

←−
hn = f (←−Θ | en ,

←−−−
hn+1),

hn = д(
−→
hn ,
←−
hn ),

(7)

where
−→
hn and

←−
hn are hidden states obtained from the forward and

backward directions, en is the new input,
−→
Θ and

←−
Θ are parameters

to be optimised (here, two sets of weight matrices and bias vectors
described in Eq. 6), f (·) is the unidirectional recurrent neural
network (here, GRU) and д(·) is the activation function combining
−→
hn and

←−
hn . Here, hn is defined as follows:

hn = tanh(Wf w
−→
hn +Wbw

←−
hn + bbi ), (8)

whereWf w ∈ Rd×d andWbw ∈ Rd×d are weight matrices and
bbi ∈ Rd is a bias vector. We define the relationship between the
forward and backward hidden states by using hyperbolic tangent
as the activation function due to its high performance compared to
traditional logistic sigmoid [20].

The left and right part embeddings, ELS and ERS respectively,
are separately fed to the bidirectional gated recurrent unit (BGRU)
introduced above. The produced outputs are:

HLS = [h1, ...,hil−1,hil , ...,hil+Ll ],
HRS = [hir , ...,hir+Lr ,hir+L+1, ...,hN ].

(9)

By exploiting this information and employing the multilayer
perceptron (MLP) we get bidirectional context attention weights
for each word in the sentence S :

βLS = [β1, ...,bil , ...,bil+Ll ],
βRS = [βir , ..., βir+Lr , ..., βN ],

βA = [ βil +βir2 , ...,
βil +Ll +βir +Lr

2 ],
βLC = [β1, ..., βi−1],
βRC = [βi+L+1, ..., βN ],
β = [βLC , βA, βRC ],

(10)

where in the first two steps attention weights βLS and βRS are
calculated for HLS and HRS , both containing their sentence parts,
as well as the aspect information. Their elements are computed as
follows:

βl = σ (W1hl + b1) + bl ,
βr = σ (W2hr + b2) + br ,

(11)

where βl ∈ βLS , βr ∈ βRS ,hl ∈ HLS andhr ∈ HRS ,W1 ∈ R1×d and
W2 ∈ R1×d are weight matrices, b1 ∈ R and b2 ∈ R are biases, and
bl ∈ R and br ∈ R are hyperparameters. The final aspect weight
βA is expressed as an average of the aspect information captured
by βLS and βRS . By eliminating the aspect information from these
two vectors we obtain βLC and βRC , weights for the left and right
context information, respectively. Concatenating all three parts (left
context, aspect, right context) together gives us the bidirectional
context attention weights β ∈ R1×N for the whole sentence S .

The obtained bidirectional context attention weights are used
to scale the importance of each word in the given sentence by
taking into account the word order information, aspect information,
correlation between each word and the aspect, and the past and
future information. Each memory slicemwn ∈ Rd of the weighted
memoryMw = [mw1 , ...,mwN ] is constructed as follows:

mwn = βt iled ⊙ en , (12)

where βt iled ∈ Rd is the element βn ∈ R replicated d times, and ⊙
represents the element-wise multiplication. The weighted memory
Mw is then fed into the sentence-level content attention module.

3.2.3 Sentence-Level Content Attention Mechanism. We make use
of the sentence-level content attention mechanism to explicitly
capture the aspect information and the meaning of the whole
sentence to ensure that the model differentiates between the
important and less relevant factors given a specific aspect.

In order to incorporate aspect information into the computation
of score cn for each word sn in the sentence S , we transform the
aspect into a vector representation va by taking an average of
all word embedding vectors in EA. A sentence representation vs
is created in the same manner by taking the average of all word
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embedding vectors en in the sentence S (it has been introduced as
an effective method in [2]):

va =
1
L

L∑
l=1

el , vs =
1
N

N∑
n=1

en . (13)

The computation of scores cn is given below:

cn =W3 tanh(W4mwn +W5va +W6vs + b3), (14)

where mwn ∈ Rd is the weighted memory slice of the word sn ,
va ∈ Rd and vs ∈ Rd are the aspect and sentence representations,
W3 ∈ R1×m ,W4 ∈ Rm×d ,W5 ∈ Rm×d ,W6 ∈ Rm×d are weight
matrices and b3 ∈ Rm is a bias vector.

Attention weights α = [α1, ...,αN ]T ∈ RN are constructed
by applying softmax function on the each score in the word score
vector c = [c1, ..., cN ]T ∈ RN . Each attention weight αn is obtained
as follows:

αn = exp(cn )/
N∑
j=1

exp(c j ). (15)

Then a weighted embedding sentence vectorvwe ∈ Rd is calculated
by:

vwe = Mwα , (16)

where α = [α1, ...,αN ]T ∈ RN ,Mw ∈ Rd×N .

3.2.4 Classification Module. In order to increase the classifier’s
ability to generalise and predict the correct sentiment value, we
introduce the classification module. We explicitly define the
relationship between the sentence representation vs and the
weighted embedding sentence vector vwe , as well as the explicit
relationship between the aspect representation va and the
weighted embedding sentence vector vwe . All relations are
modelled using hyperbolic tangent activation functions. The
obtained results are then combined into an output vector vo .

vsw = tanh(W7vs +W8vwe + b4),
vaw = tanh(W9va +W10vwe + b5),
vo = tanh(W11vsw +W12vaw + b6),

(17)

whereW7 ∈ Rd×d ,W8 ∈ Rd×d ,W9 ∈ Rd×d ,W10 ∈ Rd×d ,W11 ∈
Rk×d , andW12 ∈ Rk×d are weight matrices, b4 ∈ Rd , b5 ∈ Rd , and
b6 ∈ Rk are bias vectors, va ∈ Rd and vs ∈ Rd are the aspect and
sentence representations, andvwe ∈ Rd is the weighted embedding
sentence vector.

A linear layer is used to convert the output vector vo ∈ Rk into
a vector vL ∈ R |C | :

vL =W13vo + b7, (18)

where |C | is the number of possible aspect polarity categories,W13 ∈
R |C |×k is a weight matrix and b7 ∈ R |C | is a bias vector.

Finally, the linear layer output vL is fed into a softmax function
to generate aspect’s polarity probabilities p ∈ R |C | :

p = so f tmax(vL). (19)

Figure 3: Stage 1. Graphical representation of the Lexicalised
Domain Ontology classification algorithm.

Figure 4: Stage 2. Graphical representation of the neural
attention model (DBGRU).
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3.2.5 Regularization and Loss Function. In order to handle the
model’s complexity and prevent over-fitting, we employ the
dropout technique. We minimise the cross-entropy loss function
given below:

loss = −
∑
C

∑
S

yc,s ln(pc,s ), (20)

whereC is the set of polarity categories, S are the training examples,
pc,s ∈ [0, 1] is the estimated probability that a given aspect in
a sentence s belongs to a category c , and yc,s ∈ B is the true
probability that the aspect in the sentence s is in the category c .

4 DATA
The data used in this research was made available for SemEval
2016 Task 5 [24]. SemEval (Semantic Evaluation) is a yearly
computational semantic analysis competition organised by
SIGLEX, the Special Interest Group on the Lexicon of the
Association for Computational Linguistics. We make use of
“Subtask 1 Restaurant domain English Training data” and “Subtask
1 Restaurant domain English Gold Annotations data” (which
consist of Web restaurant reviews) as the training and test data
sets, respectively. Every review is split into sentences which
contains information about its attributes: target (the aspect itself),
category (category of the aspect), polarity (sentiment value of the
aspect), from and to (character-wise aspect position indication in a
given sentence). The data snippet is given in Figure 5.

<sentence id= " en_B lueR ibbonSush i_478218345 : 2 " >
< text> I t has g r e a t s u s h i and e x c e l l e n t s e r v i c e . < / text>
<Opinions>

<Opinion targe t = " s u s h i " category= "FOOD#QUALITY "
polar i ty = " p o s i t i v e " from= " 13 " to= " 18 " / >

<Opinion targe t = " s e r v i c e " category= " SERVICE#GENERAL"
polar i ty = " p o s i t i v e " from= " 35 " to= " 42 " / >

< /Opinions>
< / sentence>

Figure 5: Example data snippet.

The data is very skewed containing 70.19% and 74.34% positive
labels in the train and test sets, respectively (see Table 1). Moreover,
the data can be grouped in 12 aspect categories. Proportions of
these classes are shown in the pie charts in Figure 6 for the train
and test data sets, respectively.

Table 1: Polarity distribution in train and test data sets

Positive Neutral Negative Total
Freq. % Freq. % Freq. % Freq. %

Train data 1314 70.19 71 3.79 487 26.01 1872 100
Test data 478 74.34 32 4.98 133 20.68 643 100

All words are converted to lowercase, “&quot;”, “&apos;” and
“&amp;” are replaced with a double quote symbol ("), an
apostrophe (’), and the word and, respectively. All punctuation
signs, numbers and tabulation are removed as well. Furthermore,
reviews with several targets are treated as different entities.
Sentences containing implicit aspects (target=“NULL” ) are not
considered in this paper and are left for further investigation
without significantly changing the remaining data set. Sentences
without Opinions are also excluded, as they do not provide any

Figure 6: Aspect categories in train and test data sets.

aspect information. We make use of GloVe word embedding
vectors [23]: 1.9 million vocabulary size with 300-dimensional
vectors gives a solid base for our research. However, we eliminate
words without embedding vectors from train and test data sets.
Pure train and validation data sets are created by applying the
stratified random sampling, and by splitting the train data set into
75/25 proportions. Finally, the tokenization and lemmatization are
applied in order to infer the aspect types introduced in Subsec. 3.1.

5 PERFORMANCE EVALUATION
Initially, we evaluate the lexicalised domain ontology classification
algorithm (Ont) proposed by [29]. As originally presented, the
model is able to differentiate only Positive and Negative sentiment
values. In case both or none of the labels are predicted for a given
sentiment, the major polarity class is assigned (here, Positive).

Several advanced neural network models used as benchmarks in
this evaluation have been introduced in [19]. Containing different
attention mechanisms, such as the content attention (BaseA),
sentence-level content attention (BaseB), sentence-level position
attention (BaseC), or sentence-level context attention (CABASC),
they provide the strong background for our evaluation. The last
three baseline models employ the context attention mechanism
[19] combined with unidirectional long short-term memory
module (CTX-LSTM), bidirectional long short-term memory
module (CTX-BLSTM), or bidirectional gated recurrent unit
(CTX-BGRU). Train and test accuracy obtained by these models, as
well as DBGRU and ALDONA are given in Table 2. Accuracy is
chosen as a common performance measure for SemEval tasks.

As expected, classification accuracy increases with complexity
of a model and can be explained by the larger number of neurons
involved in the optimisation process. Furthermore, the context
attention modules incorporating neural sequences ((B)RNN) tend
to show better performance compared to other attention modules.
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Table 2: Train and test classification accuracy obtained by
the models and expressed in percentages

Train accuracy Test accuracy
Ont 74.95 78.38
BaseA 77.40 83.05
BaseB 83.76 84.60
BaseC 84.29 85.23
CABASC 79.65 84.45
CTX-LSTM 82.43 84.60
CTX-BLSTM 84.99 84.60
CTX-BGRU 86.65 85.38
DBGRU 89.58 86.00
ALDONA 90.17 86.31

The hyperparameters, namely, br = bl = 0.5, d = 300,
learninд_rate = 0.001, and normally (N (0, 0.0025)) initialised
weight matrices used for all models were inherited from [19].
Although mentioned in [19], dropout_probability was not
explicitly defined. Based on ALDONA’s results shown on the
validation data set, we set it to 0.3. DBGRU and ALDONA specific
hyperparameters are set based on the grid search: m = 300 and
k = 150. Contrary to the used Stochastic Gradient Descent in [19],
for efficiency reasons we optimise all models using the Minibatch
Gradient Descent algorithm with batch_size = 128.

The choice of m = 300 can be explained by the fact that m
directly determines the complexity of word scores cn which are
then transformed to the attention weights α (Eq. 15). Thus, having
not enough hidden neurons (smallm) cannot capture all the relevant
information. On the other hand, excessively largem produces too
complex relations. The relatively small number of neurons k = 150
used to determine the output vector vo in Eq. 17 indicates that the
main information has been extracted by the previous layers and
not many new relations can be derived in the last linear layer. One
can note that this is different than [19], where k =m = 300, as the
authors did not allow a different dimension in this last layer for no
clear reasons.

6 CONCLUSION
In this article, we presented the 2-stage hybrid model for
sentence-level aspect-based sentiment classification called
ALDONA. ALDONA is constructed to extract the field-specific
information by means of the lexicalised domain ontology, as well
as to model statistical relations captured by the neural attention
model. Evaluation on the benchmark data set and comparison with
other advanced models have stressed the contribution made by our
research as well as created a new threshold for further
investigation.

Future studies could concentrate on replacing the manually
created lexicalised domain ontology by the semi- or fully
automatic algorithm. The potential positive effect on the
classification accuracy would be obtained due to broader test
coverage by the ontology. Another potential research topic
involves classification of implicit aspects which have not been
considered in this work. For this we plan to use the concept of
most similar words to the current aspect as introduced in [10].
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