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Abstract

Sentiment analysis techniques are becoming more and more important as the
number of reviews on the World Wide Web keeps increasing. Aspect-based
sentiment analysis (ABSA) entails the automatic analysis of sentiments at
the highly fine-grained aspect level. One of the challenges of ABSA is to
identify the correct sentiment expressed towards every aspect in a sentence.
In this paper, a neural attention model is discussed and three extensions are
proposed to this model. First, the strengths and weaknesses of the highly
successful CABASC model are discussed, and three shortcomings are identi-
fied: the aspect-representation is poor, the current attention mechanism can be
extended for dealing with polysemy in natural language, and the design of the
aspect-specific sentence representation is upheld by a weak construction. We
propose the Extended CABASC (E-CABASC) model, which aims to solve all
three of these problems. The model incorporates a context-aware aspect rep-
resentation, a multi-dimensional attention mechanism, and an aspect-specific
sentence representation. The main contribution of this work is that it is shown
that attention models can be improved upon using some relatively simple
extensions, such as fusion gates and multi-dimensional attention, which can
be implemented in many state-of-the-art models. Additionally, an analysis of
the parameters and attention weights is provided.
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1 Introduction

Applications of Natural Language Processing (NLP) have never been studied
more intensively than in the last decade. One of the most prominent reasons
for this is the ever-increasing number of texts available on the World Wide
Web [14]. With this abundance of online documents, there is a need for the de-
velopment of NLP techniques that can be used to automatically process these
texts. Popular applications of NLP include information extraction, question
answering, text summarization, speech recognition, entity recognition, and
machine translation [20]. Yet, one of the most prominent branches of NLP is
the field of sentiment analysis [25, 29, 39]. This field of research uses NLP,
statistics, and machine learning techniques to extract the sentiment of a text.
With the rise of the social Web, people are sharing more and more opinions
online on a wide-ranging variety of topics. The constantly growing number
of online opinions allows consumers to make more informed decisions when
purchasing products or services. Additionally, these sentiments can also be
used to improve said products and services. A common medium used for
sharing sentiments online is through Web reviews. Yet, it is highly impracti-
cal to manually read and filter through the abundance of Web reviews for a
specific product. As such, there is a need for sentiment analysis techniques
that allow for the automatic extraction of sentiments from Web reviews.

Aspect-based sentiment analysis (ABSA), also known as feature-based
sentiment classification [13], considers one of the most fine-grained applica-
tions of sentiment analysis. Rather than classifying the polarity of a complete
Web review, like in classical sentiment analysis, the goal of ABSA is to iden-
tify the sentiment expressed for every aspect in the Web review. This task
can be performed at the review level and the sentence level. The focus of this
paper is on sentence-level ABSA. Consider the following Web review sample
sentence from the SemEval 2016 task 5 restaurant data set:

‘I liked the atmosphere very much but the food was not worth the price.’

The aspects in this sentence are given by ‘atmosphere’ and ‘food’. Positive
sentiment is expressed towards ‘atmosphere’, while negative sentiment is ex-
pressed towards ‘food’. As such, the polarity of the first aspect is positive,
whereas the polarity of the second aspect is negative.
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Due to the explosive growth of the World Wide Web, ABSA has garnered
more and more attention and has become a clearer and more defined field
over the years [11]. The applications of ABSA are numerous. The social
Web yields a tremendous amount of opinions on products, policies, people,
companies, and so on. These opinions will often be directed at certain as-
pects of the topics. From a company’s point of view, knowing the sentiment
expressed towards features of their products can help them to improve on
their production and marketing. For a service provider, being able to extract
the opinions of their customers on the specific aspects of their services can
be of great help to improve their business. ABSA is not only beneficial from
the company’s point of view, but also from the customer’s point of view.
Knowing the positive and negative aspects of a product or service can help
potential customers in their decision-making. For example, when considering
phone reviews, some customers may value screen quality more than battery
life.

The task of ABSA is defined by two sub-tasks: the extraction, or identifi-
cation, of the aspects, and the sentiment classification of the aspects. In this
paper, the focus is on the sentiment classification step of ABSA, also known
as aspect-based sentiment classification (ABSC). As for the aspect detection
step, one can use techniques like the one presented in [41]. A highly success-
ful model for ABSC is the content attention-based aspect-based sentiment
classification (CABASC) model [26]. The CABASC neural attention model
is chosen as a starting point because of its good performance in ABSA [26].
This neural attention model has the ability to represent text features without
feature engineering and the authors show that the model outperforms feature-
based classifiers [26]. However, three shortcomings of this model can be
identified. First, it can be argued that the aspects are not well represented, be-
cause a simple average of the aspect embeddings is taken. Second, the current
content attention mechanism can be extended by a construct that deals with
polysemy in natural language. Third, the CABASC model features a weak
design choice, because it combines two vector representations via addition.
As such, the research question of this paper is defined as follows:

How can the limitations of the CABASC model be addressed to obtain a
more effective method?

We propose the Extended-CABASC (E-CABASC) model, which extends
the CABASC model with solutions for each of the identified problems. The
proposed model contains a context-aware aspect representation, which is a
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better aspect representation. Furthermore, the new model contains a multi-
dimensional content attention mechanism that weights the sentence feature-
wise and deals with polysemy in natural language. Last, an aspect-specific
sentence representation is constructed by fusing two sentence representa-
tions via a dimension-wise fusion gate. It is shown that every extension
improves the model and that the resulting E-CABASC model outperforms
the CABASC model. Additionally, an analysis is provided of the attention
weights and the effect that the number of parameters has on the perfor-
mance of the CABASC and E-CABASC models. To summarize, the main
contributions of this work are as follows:

• Three general mechanisms are discussed that can be implemented in a
wide variety of models and are shown to individually improve model
performance.

• A parameter analysis is provided to evaluate the parameter efficiency of
attention models.

• An attention weights analysis is provided to compare the attention
mechanisms of the models.

The setup of this paper is as follows. In Section 2, related work is dis-
cussed. In Section 3, the CABASC model and several baseline models are
explained. In Section 4, the proposed E-CABASC model is presented. In
Section 5, the training settings of the models are discussed. In Section 6, the
results are presented and the model parameters are evaluated. Last, In Section
7, conclusions and recommendations for further research are given.

2 Related Work

There are many different approaches to ABSC. A clear distinction can be
made between standard feature-based models, which rely on input such as
syntactic information, and neural network models. Neural network models for
ABSC do not rely on external input features but solely rely on low-level fea-
tures from the text representation. Popular supervised feature-based machine
learning methods for the ABSC task include support vector machines [22],
maximum entropy [5], naive Bayes [32], and even ensembles of these models
[43]. Classifiers of this kind are often trained on sparse, high-dimensional
feature vectors, requiring hand-crafted feature engineering work which relies
on massive linguistic sources. The performance of these methods depends
heavily on the quality of the input features. Using different features results
in different performances of the method. Contrary to this, neural networks
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are trained on dense vector representations of text, yielding excellent results
for various NLP tasks. The number of works published on deep learning for
NLP tasks has been rapidly growing in the last few years [57]. Along with
the success of neural network applications for NLP tasks in general, neural
network models have been successfully applied to the task of ABSC, fre-
quently outperforming feature-based sentiment classifiers. A variety of deep
learning models, like recursive, convolutional, and capsule neural networks,
can be used for sentiment analysis [10, 54, 9]. An overview of different deep
learning algorithms along with applications for sentiment analysis is given by
[59].

Convolutional neural network (CNN) models are sometimes used for
ABSC [7, 54]. CNN models are particularly powerful in capturing high-level
representations of images but are now used for NLP as well. An advantage of
these types of networks is that computation time is much lower compared
to, for example, long short-term memory (LSTM) models because it has
fewer parameters to learn. In practice, however, LSTM based networks are
more often used for ABSC because of their recurrent nature and ability to
capture long-term dependencies [17]. Other approaches combine a CNN and
recurrent neural network (RNN), producing a convolutional recurrent neural
network (CRNN) [19].

Recursive neural network (RecNN) models can be used for ABSC as well.
These types of networks take as input the entire sequence of text encoded by
vectors and process the input sequence via a binary tree. [10] adopts an adap-
tive recursive neural network (AdaRNN) for ABSC. In [33], the AdaRNN
is adapted by taking into account both the dependency tree and the con-
stituent tree of the sentence. One disadvantage of these methods might be
that the methods require grammatical parsing, which might be ineffective on
non-standard texts [6].

An important development in ABSC with neural networks is the applica-
tion of attention-based memory networks [3, 4]. [46] proposes the memory
network (MemNet) model, which computes attention weights for each con-
text word. First, the context is stored in a memory, after which the importance
of each word in the context is quantified by generating a probability dis-
tribution over all words in the sequence. The MemNet model further adds
some computational layers to the network which results in an aspect-specific
sentence representation based on a deep memory representation. This ap-
proach is computationally faster than LSTM networks. In [46], it is shown
that a memory-based network with 9 layers is 15 times faster than an LSTM,
because of the complex operations within each LSTM unit along the input
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sequence. After the proposal of the MemNet model, many other researchers
have adopted the idea of external memory. The content attention mecha-
nism of the CABASC model described in this paper also uses this idea. In
[47], the memory network is adapted via a more advanced mechanism to
compute the attention weights. Rather than a simple dot-product or a small
feed-forward network, the authors propose a dyadic memory network. This
network uses neural tensor compositions or holographic compositions, which
uses complex-valued computations based on a fast Fourier transform for
learning the attention weights. This advanced attention mechanism is able
to capture rich interactions between the aspect and its context.

An extension to the attention mechanism is multi-dimensional attention
[42]. Multi-dimensional attention allows the model to properly define the im-
portance of each feature. While this technique has shown promising results in
other fields [3], to our knowledge, it has not yet been properly explored in the
field of sentiment analysis. As such, the effectiveness of a multi-dimensional
attention mechanism for ABSC is investigated in this paper.

Many developments in ABSC with neural networks consider LSTM net-
works, because of their great ability to represent sequential information. [45]
proposes the target-dependent (TD)-LSTM and the target-connection (TC)-
LSTM. These models aim to model the connection between the target words
and the sentence context by using a left LSTM to model context preceding
the target and a right LSTM for modeling context following the target. One
drawback of the TD-LSTM and TC-LSTM is that if an important context
word is far away from the target, the information contained in that word might
be lost while it is propagated word by word to the target [6]. To overcome
this problem for the TD-LSTM, [6] proposes a recurrent attention network
on memory (RAN) model. This model uses a bidirectional LSTM to obtain
a memory, which is then weighted according to its importance towards the
target. This solves the problem of the TD-LSTM because context words are
weighted according to their relative position to the target, which explicitly
links a target to certain important context words.

In [50], an attention-based aspect embedding (ATAE)-LSTM is proposed,
which takes into account target information as well. As such, this model
takes the aspect embedding into account twice. First, the word embedding
of every context word is extended with the aspect embedding. Second, the
hidden states that are produced by the LSTM are extended with the aspect
embedding. The resulting model performs well in cases when a sentence
contains multiple aspects. In [27], the interactive attention network (IAN) is
proposed, which is an attention-based LSTM. Contrary to many other models,
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this model does not only use an LSTM for the context, but it uses an LSTM
for the target as well such that the model interactively learns attentions for
both the contexts and the targets. The authors define that the model is inter-
active in the sense that the target and the context are related and make up the
attention weights together. Similar co-attention models have been explored
extensively recently [12, 58, 56, 55].

While the attention mechanism has mostly been used as an extension to
recurrent and convolutional neural networks, transformer-based architectures
[49] that solely rely on the attention mechanism have been proposed lately.
These models rely on a specific attention mechanism known as self-attention
[24]. Transformer-based models, such as BERT [8], are able to accurately
capture the linguistic structure and have produced state-of-the-art results for
a variety of NLP tasks. As such, the use of BERT for ABSC has become more
popular recently [44, 52, 2]. In [21], the BERT model for ABSC is extended
by using adversarial training [15]. Nevertheless, traditional self-attention has
also shown limitations when modeling natural language [16].

3 Content Attention-Based Model

In this section, the CABASC model and three baseline models are discussed.
In Section 4, the proposed E-CABASC model is discussed. This model fea-
tures three extensions as compared to the standard CABASC model. After,
the training details of the used neural networks are discussed. The follow-
ing notation is used for all methods. A sentence of length N is denoted as
S = {s1, ...si, ..., si+L, ...sN}, where sj denotes word j and where the aspect
is given by L words, Sa = {si, ..., si+L}. We assume that all sentences have
length N . Shorter sentences are padded with zeros to length N for com-
putational efficiency. If a sentence contains more than one aspect, separate
instances are considered for each aspect, where each instance consists of the
same sentence with a different aspect. The goal of all models discussed in
this paper is to model the sentiment expressed in sentence S towards aspect
Sa. The set of sentiment categories is denoted as C. This contains the three
sentiment categories ‘negative’, ‘neutral’, and ‘positive’, which are encoded
as 0, 1, and 2, respectively.

First, the CABASC model [26] is introduced. This neural attention model
produces excellent performances for ABSC, obtaining a higher accuracy than
many other attention models. The model performs particularly well due to its
context attention mechanism. This mechanism takes into account the correla-
tions between the context words and the target word, resulting in a customized
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Figure 1: CABASC Framework.

attention-based aspect-specific memory. Furthermore, the model takes into
account sentence-level information. A general overview of the CABASC
framework is displayed in Figure 1. The example sentence contains the two
aspects ‘space’ and ‘keyboard’. Only one aspect is processed at a time, which
is why the aspect in the example is given by ‘space’.

The model consists of four different components: the input component,
the attention extraction component, the classifier component, and the out-
put component. The input component takes as input the sentence and the
aspect and embeds these into a sentence embedding and an aspect embed-
ding. The attention extraction component generates a memory of the context
words, computes attention weights for every context word, and outputs an
aspect-specific sentence representation. The classifier component applies a
non-linear transformation to the aspect-specific sentence representation to
increase the flexibility of the model. The result is passed through a linear
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layer and the softmax function. This generates a probability distribution over
all sentiment categories. Last, the output component classifies the sentiment
expressed towards the aspect based on the highest probability.

CABASC can be seen as a combination of several models that extend each
other. To properly define and explain these extensions, two separate models
are defined which are called baseline model A and baseline model B. Baseline
model A is the simplest model, baseline model B extends baseline model
A, and, lastly, CABASC further extends baseline model B. This section first
discusses the word embedding component of the models, after which the two
baseline models and the CABASC model are presented.

3.1 Word Embedding

The first step in the analysis is to embed the text data into vectors of real
numbers. The collective name for mapping text to vectors is called word
embedding. One solution for this is to represent every word by a one-hot
encoding vector [34]. However, one-hot representations do not capture the
complex linguistic characteristics of the words. Some effective word em-
bedding solutions that map words to dense vector representations are the
continuous bag-of-words model (CBOW) [31], the skip-gram model [31],
and global vectors for word representation (GloVe) [35].

The different word embedding methods tend to perform similarly for dif-
ferent NLP tasks. [35] argues that the solution provided through the CBOW
model and the skip-gram model are sub-optimal because they do not exploit
all statistical information regarding co-occurrences of words. Also, the au-
thors argue that GloVe performs best as compared to all other related models
for similarity tasks and Named Entity Recognition. Given the excellent results
of GloVe, this technique is used for the embeddings. The 300-dimensional
GloVe vectors are used, with a vocabulary size of 1.9M1.

Let L ∈ Rd×|V | denote a word embedding matrix of the vocabulary
generated by GloVe or another unsupervised method. Here d denotes the
dimension of a word vector and |V | denotes the size of vocabulary V . The
words in sentence S are mapped to a real-valued sentence embedding matrix
E = [e1, ..., eN ], where word sj is mapped to vector ej using L. Note that
the sentence embedding matrix contains the aspect-terms. Let va denote the
d× 1 embedding of aspect term Sa. If the aspect consists of multiple words,
for example ‘battery life’, then va is computed as the mean over these em-

1 Available at: https://nlp.stanford.edu/projects/glove/
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beddings [26, 46]. Words that are not present in the vocabulary are initialized
with a vector containing d zeros.

3.2 Baseline Model A

The first model under consideration is baseline model A. This model gen-
erates importance weights for all context words in the sentence, after which
the result is processed through a non-linear and a linear layer. The different
components of the model are defined as follows. The input component of
the model takes as input a sentence and an aspect and maps these to word
vectors. This results in sentence embedding matrix E and aspect embedding
vector va. The attention extraction component computes an attention weight
for every context word. A schematic overview of the attention extraction
component of baseline model A is displayed in Figure 2.

Figure 2: Attention Extractor Baseline Model A.

First, a long-term memory M = [m1, ...,mN ] is constructed, which is a
d×N matrix equal to E. The memory module stores the sentence represen-
tation such that the complete context is used for prediction. The next module
determines attention weights for each word in the context.

The content attention module determines the contribution of each word
in the sentence towards the polarity of the aspect using an attention mech-
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anism. First, the importance of each context word j is computed using a
feed-forward neural network with as input the aspect representation va and
the context word representation mj . By including the aspect representation in
the computation of the attention weights, the model ensures that the attention
weights are aspect-specific. This means that a sentence with multiple aspects
generates a different set of attentions weights depending on the aspect. After
this, the computed values are transformed to a distribution between zero and
one through a softmax function.

For all words j in the sentence an importance score cj is computed
through a feed-forward neural network with two inputs mj and va (FwNN2)
as follows:

cj
1×1

= w1
1×m

tanh(W2
m×d

mj
d×1

+W3
m×d

va
d×1

+ b1
m×1

), (1)

where the model parameters are given by the 1×m weight vector w1, m× d
weight matrices W2 and W3, andm×1 bias vector b1. All the feed-forward
networks share their parameters. The attention weights are processed through
a softmax, where attention weight αj is computed as follows:

αj =
exp(cj)∑N
i=1 exp(ci)

∈ [0, 1]. (2)

The output of the attention extraction component is given by the aspect-
specific sentence representation vas, which is a weighted memory represen-
tation computed as follows:

vas
d×1

= M
d×N

α
N×1

, (3)

where vas is a d× 1 vector and where α is an N × 1 vector that contains the
individual attention weights for all words in the sentence.

The classifier component transforms the aspect-specific sentence rep-
resentation vas to a probability distribution over all possible sentiment
categories. First, the depth of the model is increased by processing vas

through a non-linear layer. This increases the flexibility of the model such that
more abstract information from the aspect-specific sentence representation
can be obtained. This transformed sentence representation is computed by a
standard feed-forward network with 1 input (FwNN1) as follows:

vts
m×1

= tanh(W4
m×d

vas
d×1

+ b2
m×1

), (4)
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where vts is the resulting m× 1 vector, W4 is an m× d weight matrix, and
b2 a m × 1 bias vector. In this way, the features in vas are combined and
m different representations are constructed such that every element in vts is
a weighted sum of all features of vas. The transformed sentence representa-
tion is processed through a linear layer and a softmax layer to a probability
distribution over all sentiment categories c ∈ C, as follows:

prob
|C|×1

= softmax( W5
|C|×m

vts
m×1

+ b3
|C|×1

), (5)

where W5 denotes a |C|×m weight matrix, b3 denotes a |C|×1 bias vector,
and |C| denotes the number of possible sentiment categories. The softmax
function has the same functional form as in Equation 2 and transforms the
input values to a probability distribution with values between 0 and 1. The
resulting conditional probability distribution is given by a |C|×1 vector. The
output component predicts the sentiment as expressed towards the aspect by
choosing the sentiment value with the highest probability.

3.3 Baseline Model B

The model described above considers the contribution of each word towards
the aspect polarity. However, the model does not take into account the mean-
ing of a sentence as a whole. The second baseline model B considers an
improvement over baseline model A to deal with this problem. The atten-
tion extractor of model A is extended by taking into account sentence-level
information for the computation of the attention weights, and sentence-
level information is added to the final weighted sentence representation. A
schematic overview of the attention extraction component of baseline model
B is displayed in Figure 3.
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Figure 3: Attention Extractor Baseline Model B.

The content attention module is extended by adding the complete sen-
tence representation of S to the model to obtain the sentence-level CAM
(SAM). The feed-forward layer in Equation 1 is augmented to a feed-forward
network with three inputs (FwNN3), formally denoted as follows:

cj
1×1

= w6
1×m

tanh(W7
m×d

mj
d×1

+W8
m×d

va
d×1

+W9
m×d

vs
d×1

+ b4
m×1

), (6)

where the dimensions of w6, W7, W8, and b4 are equal to the dimensions
of w1, W2, W3, and b4, respectively, and where W9 denotes an m × d
weight matrix. The sentence-level representation of sentence S is denoted as
the d×1 vector vs, which is computed as the average of the embedded words
in the sentence. [1] investigates the effects of different sentence embeddings
on prediction tasks and finds that the average of the word embeddings serves
as an effective sentence representation. All attention weights are then com-
puted following Equation 6, after which the d × 1 aspect-specific sentence
representation with sentence information vss is computed as follows:

vss
d×1

= M
d×N

α
N×1

, (7)

where M denotes the memory and where α denotes theN×1 vector of atten-
tion weights. The output of the attention extraction component is computed
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Figure 4: CABASC Context Attention Mechanism.

as follows:
vas
d×1

= vss
d×1

+ vs
d×1

, (8)

where vas denotes a d × 1 vector with the aspect-specific sentence rep-
resentation that contains the output of the sentence-level content attention
module. The interpretation of this addition is as follows. The first element of
vas combines the first feature of the aspect-specific sentence representation
vss and the sentence-level representation vs. The result is processed through
the classifier in the same way as for model A, so that the desired output is
reached.

3.4 CABASC Model

This section describes the CABASC model. It extends the previously defined
baseline model B. The CABASC model hypothesizes that the correlation
between context words and the aspect can be used to improve the memory,
which is why a context attention-based memory module (CAM) is defined.
A schematic overview of the CAM module of the CABASC model is dis-
played in Figure 4. The context attention mechanism is defined as follows.
First, the sentence S is divided into a left context and a right context. The left
context is denoted as Sl = {s1, ...si, ..., si+L} and consists of the words left
of the aspect and the aspect itself. Similarly, the right context is defined as
Sr = {si, ..., si+L, ...sN}. Their corresponding embeddings are denoted as
El = [e1, ..., ei, ..., ei+L] and Er = [ei, ..., ei+L, ..., eN ].
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The correlation between the context words and the aspect is modeled by
two Gated Recurrent Unit (GRU) neural networks. A left GRUl models the
correlations of the context preceding the aspect and a right GRUr models the
correlations of the context following the aspect. GRUl runs from right to left
with input El, while GRUr runs from left to right with input Er. A GRU
consists of an update gate, a reset gate, a candidate hidden state, and a hidden
state. At time step t, these four components can be defined by Equations 9,
10, 11, and 12, respectively.

zt
m×1

= σ(Wz
m×d

et
d×1

+ Uz
m×m

ht−1
m×1

+ bz
m×1

), (9)

rt
m×1

= σ(Wr
m×d

et
d×1

+ Ur
m×m

ht−1
m×1

+ br
m×1

), (10)

h̃t
m×1

= tanh(Wh
m×d

et
d×1

+ Uh
m×m

( rt
m×1

� ht−1
m×1

) + bh
m×1

), (11)

ht
m×1

= ( 1
m×1

− zt
m×1

)� ht−1
m×1

+ zt
m×1

� h̃t
m×1

, (12)

where Wr, Wz , and Wh are m × d weight matrices, Ur, Uz , and Uh

are m × m parameter matrices, bz , br, and bh are m × 1 bias vectors,
σ denotes the sigmoid logistic function, et denotes the word embedding
of the word at step t, where t denotes the position in the sentence, and
� denotes element-wise multiplication. The output of the left GRUl is
given by Hl = {hi+L, ...,hi, ...,h1} and the right GRUr produces Hr =
{hi, ...,hi+L, ...,hN}. The attention weights for the left context are com-
puted by a small feed-forward network. Formally, the attention weight for
word k in the left context is computed as:

βkl
1×1

= σ(w10
1×m

hk
m×1

+ b5
1×1

) + bl
1×1

, (13)

where w10 denotes a 1×mweight vector, b5 a scalar bias, and bl a basic atten-
tion weight, which is regarded as a super parameter. This super parameter is a
fixed constant that defines the minimum weight that each word receives from
the context attention mechanism. The resulting reversed left attention list is
given by βl = {β1l, ..., βil, ..., βi+L,l}. Similarly, a set of right attentions is
computed, where the attention weight of context word g, in the right context
is computed as:

βgr
1×1

= σ(w11
1×m

hg
m×1

+ b6
1×1

) + br
1×1

, (14)

where w11 denotes a 1 × m weight vector, b6 a scalar bias, and br a basic
attention weight, which is a super parameter. The full set of attentions weights
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is obtained by concatenating the left and right attention weights, resulting in
β = {β1l, ..., βi, ...βi+L, ..., βNr}, where βi, ...βi+L are the average of the
left and right attention weights, computed as follows:

βa =
(βal + βar)

2
, (15)

for a = i, ..., i+L. Finally, every memory slice in weighted memory Mw =
[mw1, ...,mwN ] is computed as follows:

mwj
d×1

= yj
d×1

�mj
d×1

, (16)

for j = 1..., N and where 1 × d vector yj is obtained by tiling βj , d times,
and � denotes element-wise multiplication.

4 Extended CABASC Model

The authors of the CABASC model show that the model achieves outstanding
performance on various data sets. With two well-defined mechanisms, the
content attention mechanism and the context attention mechanism (the last
presented one), the model can discriminate between the importance of differ-
ent context words. First, the context attention mechanism plays an important
role in identifying the relations between the context words and the aspect by
taking into account the recurrence in the text. After this, the content attention
mechanism generates a probability distribution over all context words, where
more important context words receive a higher attention weight.

While the model contains two important and well-defined mechanisms,
it also has some limitations. In this section, three shortcomings of the
model are identified and solutions are proposed. Three extensions to the
CABASC model are introduced, resulting in the CABASC-A, CABASC-B,
and CABASC-C models. Each of these three models features an extension
that deals with one of the identified shortcomings of the CABASC model.
The three new models do not built upon each other, but extend the CABASC
model in a particular way and are regarded as separate models. With this
setup, the effects of each of the newly proposed mechanisms as compared to
the standard CABASC model can be identified. Last, all three extensions are
combined into the Extended-CABASC (E-CABASC) model.

Section 4.1 discusses the CABASC-A model, which extends the
CABASC model with a context-aware aspect representation to replace the
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simple average of the word embeddings. Section 4.2 discusses the CABASC-
B model, which extends the CABASC model by modifying the content
attention mechanism into a multi-dimensional content attention mechanism.
Section 4.3 discusses the CABASC-C model, which extends the standard
CABASC model with a dimension-wise fusion gate to generate the aspect-
specific sentence representation. Last, in Section 4.4, the E-CABASC model
is presented, which features all extensions simultaneously.

4.1 CABASC-A Model

In the last few years, many researchers have adopted the idea of an aspect-
specific sentence representation, as a solution to sentences with multiple
aspects [26, 46]. For example, [45] proposes the target-dependent LSTM,
where the aspect embedding is concatenated to the word embeddings. The
CABASC model generates an aspect-specific sentence representation by
splitting the context into a left context and a right context, which both contain
the aspect. Also, the aspect embedding is incorporated in the content attention
mechanism. For this, the average of the word embeddings is used in cases
where the aspect consists of multiple words. However, we argue that the
aspect phrases are not well represented in the CABASC model. Consider the
following example sentence:

The chicken and falafel platters were nondescript combinations with fresh
leaf salad.

This sentence contains two aspects, being ‘chicken and falafel platters’ and
‘fresh leaf salad’. Taking the average of the word embeddings of these aspects
might result in a false representation that has nothing to do with its original
meaning. Remarkable is the fact that most researchers do not consider this
problem and simply use the average aspect embedding for the aspect repre-
sentation [26, 46]. 26% and 28% of the aspects consist of multiple words
for the 2014 restaurant data set and the 2016 restaurant data set, respectively.
Thus, a significant proportion of targets may not be well-represented in many
models proposed in the literature, including the CABASC model.

Contrary to the mainstream, the model proposed in [60] contains a rich
aspect representation. The authors show that this increases the performance
of the model by 3-5%. Their model features a context-aware aspect represen-
tation, where the aspect is modeled with a bi-directional LSTM and depends
on the left and right contexts. Inspired by this idea and the shortcoming of
the current aspect representation in the CABASC model, we propose to re-
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place the aspect representation va with a context-aware aspect representation
vca. This approach is different from the one presented in [60] because a bi-
directional LSTM is not used in this work. In this way, the number of model
parameters is greatly reduced.

A sentence of length N is denoted as S = {s1, ...si, ..., si+L, ...sN},
where sj denotes word j and where the aspect is given by L words, Sa =
{si, ..., si+L}. Following the notation of the CABASC model, the word em-
beddings of Sa are given by Ea = [ei, ..., ei+L]. This is copied to memory
Ma such that Ea = Ma. Importance scores for every word in the aspect are
computed using a bi-linear scoring function. The reason for this is that it in-
troduces only one weighting matrix, resulting in fewer parameters compared
to an additive scoring function. An importance score caj of word j in aspect
Sa is computed for every word j in the aspect as follows:

caj
1×1

= tanh( eTj
1×d

W12
d×d

vs
d×1

+ b7
1×1

), (17)

where vs denotes the average sentence embedding, W12 denotes a d × d
weight matrix, and b7 denotes a scalar bias. The importance score depends
on the aspect word itself and the average sentence representation vs. With
this construction, the attention mechanism is context-aware because the atten-
tion mechanism takes into account the context of the aspect. The importance
scores for every word in Sa are processed through a softmax as follows:

αa
j =

exp(caj )∑N
i=1 exp(cai )

∈ [0, 1], (18)

where αa
j denotes the attention weight of word j in aspect Sa. If the aspect

consists of a single word, the attention weight receives a weight of 1 by
definition. If the aspect consists of multiple words, each word is weighted
such that the sum of all attention weights equals 1. The context-aware aspect
representation vca is computed as follows:

vca
d×1

= Ma

d×L

αa

L×1

, (19)

where Ma is the vector representation of the aspect, and αa contains all atten-
tion scores αa

j . Here, L denotes the length of the aspect. The advantage of the
above approach is two-fold. First, the aspect representation is context-aware,
in the sense that the context influences the aspect representation. Second, the
attention mechanism generates a weighted aspect representation, which is a
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richer representation than a simple average. The context-aware aspect repre-
sentation vca directly replaces the aspect representation va and is processed
in exactly the same way as va in the CABASC model.

4.2 CABASC-B Model

The second extension that we propose considers a change to the con-
tent attention mechanism. The CABASC model contains a content at-
tention mechanism that produces attention scores α that weight every
context word by its importance towards the aspect. The currently de-
fined mechanism works as follows. Given a sequence of words S =
{s1, ...si, ..., si+L, ...sN} encoded in a d × N (weighted) memory ma-
trix Mw = [mw1, ...,mwi, ...,mw,i+L, ...,mwN ], an importance score is
calculated for every memory slice mwj in Mw as follows:

cj
1×1

= w6
1×m

tanh(W7
m×d

mwj
d×1

+W8
m×d

va
d×1

+W9
m×d

vs
d×1

+ b4
m×1

). (20)

The scores cj are processed using a softmax function as follows:

αj =
exp(cj)∑N
i=1 exp(ci)

∈ [0, 1]. (21)

After this, the aspect-specific sentence representation is computed as follows:

vas
d×1

= M
d×N

α
N×1

. (22)

This content attention mechanism produces an aspect-specific sentence
representation vas, which is a weighted sum of all words in the sentence. One
particular feature of this attention mechanism is that it weights the entire word
embedding of a word j by a single weight αj while not discriminating be-
tween different features of the word. This shortcoming can be directly derived
from how the sentence representation is computed, as shown in Equation 22.
As a result, the current content attention mechanism does not discriminate
between important and less important features of a word. As a solution to this,
the content attention mechanism is extended to a multi-dimensional content
attention mechanism.

[42] proposes the multi-dimensional attention mechanism, where words
are weighted at the feature level. Rather than computing a single scalar score
for word j, a feature-wise score vector is computed for word j as follows:

c∗j
d×1

= W13
d×m

tanh(W7
m×d

mj
d×1

+W8
m×d

va
d×1

+W9
m×d

vs
d×1

+ b4
m×1

)+ b8
d×1

, (23)
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where W13 replaces weight vector w6 in Equation 20 by a d × m weight
matrix and where b8 is an additional d×1 bias term. The resulting importance
scores are now given by the d × 1 vector c∗j , where element c∗jk of vector c∗j
defines the weight of feature k of word j. The attention weight of feature k
of word j is then computed as follows:

α∗jk =
exp(c∗jk)∑N
i=1 exp(c∗ik)

∈ [0, 1], (24)

for k = 1, ..., d and j = 1, ..., N . This softmax operation normalizes every
feature in the sentence such that the attention weights of all features k for
a word in sentence S add up to one. Let d × 1 vector α∗j denote the vector
that contains the attention weights of word j. The aspect-specific sentence
representation of Mw can be computed as follows:

vss
d×1

=
N∑
j=1

α∗j
d×1

�mwj
d×1

. (25)

vss is the result of element-wise multiplication (denoted by �) of the atten-
tion weights and the features, summed over all words in the sentence. vss is
then processed in the same way as in the CABASC model.

An additional feature of multi-dimensional attention is that it deals with
polysemy in natural language. Standard word embeddings suffer from the
problem that the different word senses of a word with multiple meanings are
not identified. The standard attention mechanism identifies the importance of
a word by considering the aspect and the full sentence representation. Multi-
dimensional attention deals even better with polysemy in natural language,
because the importance of a word is weighted at the feature level. Since the
attention mechanism takes into account the aspect-representation va and the
average sentence representation vs, the features which describe the word best
in the context are selected.

4.3 CABASC-C Model

The last modification of the CABASC model that is introduced in this work
considers a more advanced and suitable mechanism to compute the aspect-
specific sentence representation vas. The aspect-specific sentence represen-
tation of the CABASC model is computed as follows. First, a sentence-level
weighted memory representation is obtained:
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vss
d×1

= M
d×N

α
N×1

. (26)

After this, the average sentence embedding vs is added to the sentence
representation:

vas
d×1

= vss
d×1

+ vs
d×1

, (27)

which results in the aspect-specific sentence representation vas. The choice of
adding vss and vs seems quite arbitrary. A clear disadvantage of this choice is
that the sentence-level weighted memory representation vss and the average
sentence embedding vs are equally weighted. We argue that this is a very
poor choice because the sentence-level weighted memory representation vss

is a very detailed representation of the sentence after it has been processed
through the context attention mechanism and the content attention mecha-
nism. On the other hand, the average sentence embedding is a simple average
that is not weighted in any way. Still, both representations receive the same
weight and are considered to be equally important.

It is for this reason that we propose to combine the two vectors using
a gated neural network that fuses the two representations, rather than via a
simple addition. The dimension-wise fusion is inspired by [42] and can be
defined by the following two equations:

F
d×1

= σ(W14
d×d

vss
d×1

+W15
d×d

vs
d×1

+ b9
d×1

), (28)

vas
d×1

= F
d×1

� vss
d×1

+ ( 1
d×1

− F
d×1

)� vs
d×1

, (29)

where W14 and W15 are d × d weight matrices, and b9 is a d × 1 bias
vector. σ denotes the logistic sigmoid function and � denotes element-wise
multiplication. The fusion gate F computes a score that is scaled between 0
and 1 by the sigmoid function, which denotes the relative importance of the
features of vss as compared to the features of vs. Following Equation 28, one
can see that the importance of feature k depends on all other features, hence
the term dimension-wise fusion.

4.4 E-CABASC Model

This section summarizes the Extended CABASC model. This new model
extends the CABASC model with the three previously discussed extensions.
Figure 5 displays an overview of the E-CABASC model. All extensions are
colored red (light grey in black and white printing).
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Figure 5: Extended CABASC Framework.

The framework is identical to the standard CABASC framework, except
for the context-aware aspect representation, the multi-dimensional content
attention mechanism, and the fusion gate. The CABASC-A extension re-
places the aspect representation with a context-aware aspect representation.
The CABASC-B extension uses multi-dimensional attention. The CABASC-
C attention uses a fusion gate to select the importance of the aspect-specific
sentence representation and the complete sentence representation.

5 Training Settings Neural Networks

This section describes the training details of the neural attention models.
Every model is trained by minimizing the cross-entropy loss-function:

L = −
∑

(s,a)∈T

∑
c∈C

P g
c (s, a)log(Pc(s, a)), (30)
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where T denotes the set of all the sentence-aspect pairs (s, a) in the training
sample, C denotes the set of all sentiment categories c, Pc(s, a) denotes the
probability of predicting sentiment category c for sentence-aspect pair (s, a),
and where P g

c (s, a) is equal to 1 if c is the correct sentiment and 0 if not.
This loss function minimizes the difference between the estimated probability
distribution and the true labels (g denotes the gold standard).

The parameters of the model are optimized using back-propagation with
the Gradient Descent Optimizer. Hyper-parameters are tuned using a valida-
tion set with a random 20% sample of the training data. To avoid over-fitting,
the dropout technique is used. We perform a grid search over the follow-
ing parameter values: learning rate of 0.001 or 0.01 and keep-probability
of 0.5 or 0.7, as suggested in [26]. The parameters that are found best on
the validation set are a learning rate of 0.001 and a keep-probability of 0.7.
Dropout is applied to all inputs in every network, including the biases. Al-
though performing drop-out on the biases is not common, this provided a
noticeable improvement to the performance of the networks. Similarly as in
[26], the super-parameters bl and br are set equal to 0.5. All initial parameter
values are randomized with a zero mean normal distribution with a variance
of 0.05, as suggested in [26]. The 300-dimensional pre-trained GloVe word
embeddings are used with a vocabulary size of 1.9M words. Words that are
not in the vocabulary are initialized with a zero vector, as suggested in [26].
During training, the network is updated via mini-batches of size 128 [18].
The number of neurons in baseline models A, B, C, and CABASC is set to d,
so m = d, as proposed in [26]. All models are implemented in Python using
Tensorflow for which the source code can be found online2.

6 Results and Evaluation

This section evaluates the models discussed in this paper. The data used in
this paper considers the widely used restaurant data sets from the SemEval
2014 task 4 [37] and the SemEval 2016 task 5 [36]. Since the SemEval 2015
data is a subset of the SemEval 2016 data, the models have been evaluated
only on the 2016 data set only. The data sets consider data for sentence-level
ABSC. Subsection 6.1 discusses the main results of this paper. Subsection 6.2
provides an evaluation of the parameters of the proposed E-CABASC model.
Lastly, in Subsection 6.3, an evaluation is provided of the attention weights
of the CABASC and E-CABASC models.

2 https://github.com/jjvanderuitenbeek/CABASC-Model
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6.1 Main Results

In this section, the main results of the neural attention models are discussed.
First, the baseline A and B models and the CABASC model are compared.
Then, the results of the Extended CABASC (E-CABASC) model are eval-
uated. The separate components of this model are included in the models
CABASC-A, CABASC-B, and CABASC-C. Table 1 displays the accuracies
of the different models for the restaurant 2014 and restaurant 2016 data set.
Similar accuracies as in [26] are obtained for the baseline models and the
CABASC model on the 2014 data set. Minor differences are most likely due
to different pre-processing of the data, which is not specified by the authors.
The results for the 2016 data set were not reported in [26].

Table 1: Accuracies of Neural Attention Models.

Model Rest. 2014 Rest. 2016

Majority vote 65.0 74.3
Baseline model A 78.5 83.5
Baseline model B 78.9 84.0
CABASC 80.4 85.1
CABASC-A 80.7 85.3
CABASC-B 80.7 85.2
CABASC-C 80.6 85.3
E-CABASC 80.9 85.4

A few observations can be made from Table 1. As compared to the ma-
jority vote (positive), the overall results of the other models are better on the
2014 data set than on the 2016 data set. This is expected, since the 2014 data
set contains more training instances, making it easier to train deep learning
models. However, the relative number of positive labels in the test set is much
higher for the 2016 data set than the 2014 data set. Because of this, all models
perform much better on this data set in terms of absolute accuracy. Notable is
the fact that the number of training instances for 2016 is about half the number
of training instances for 2014, but much better results are achieved. This fact
is remarkable since generally the performance of neural networks tends to
increase when the number of training instances increases. However, since
the model predicts positive with the default initialization, the results must be
compared with the majority vote (positive). Looking at this difference, it can
be observed that the differences are much higher on the 2014 data set.
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Baseline model B yields around 0.4 percentage points improvement over
baseline model A. From this, it can be concluded that adding the sentence-
level information in baseline model B improves the model because the
information of the sentence as a whole contains information that is not cap-
tured in baseline model A. The CABASC model outperforms all baseline
models. The results affirm the effectiveness of the context attention mecha-
nism in the CABASC model as it causes an increase in accuracy of around
1.1-1.5 percentage points as compared to baseline model B. These results
indicate that modeling the correlation between context words and the aspect
via the context attention mechanism adds much value to the model because
an aspect-specific customized memory is created for every aspect in the sen-
tence. Experiments have been run with LSTM units instead of GRU units
in the CABASC model, but a minor decrease in accuracy of 0.1 percentage
points was observed. Hence, the choice of GRU units is justified.

It can be observed from Table 1 that all proposed extensions to the
CABASC model yield improvement on both data sets. The CABASC-A
model performs around 0.2-0.3 percentage points better than the CABASC
model, indicating the need for a rich aspect representation. Simply taking
the average over the word embeddings of multi-word aspects is not enough
and taking a weighted average based on the average sentence embedding im-
proves the results. The CABASC-B model yields an improvement of around
0.1-0.3 percentage points over the CABASC model. This result indicates
that multi-dimensional attention, where the words are weighted feature-wise
rather than per word, is a better attention mechanism for this task. It can
also be observed that the CABASC-C model yields an improvement of 0.2
percentage points over the CABASC model. It helps the model distinguish
better between the importance of the aspect-specific sentence representation
and the average sentence representation.

The improvements of the E-CABASC model compared to the standard
CABASC model are larger on the 2014 data set than on the 2016 data set. The
size of the data set most likely plays an important role in the effectiveness
of the extensions. Because the 2014 data set is much larger, better relative
results are reported. Since the extensions lead to more parameters, they are
less effective on small data sets. Yet, we conclude that the E-CABASC model
outperforms all other models in this paper for both data sets. These results
show the effectiveness of all three extensions.

As presented in [26], the CABASC model outperforms several notable
deep learning and attention models. For example, deep memory networks
[46] and interactive attention networks [27]. By extension, the E-CABASC
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model also outperforms all of these. Yet, other types of models have been
shown to provide even better results [4]. One example of this is the hybrid
deep learning models that combine deep learning models with knowledge
bases, such as dictionaries, ontologies, or discourse trees [4]. The usage of
such knowledge bases has been shown to provide improved performance,
but knowledge bases are not always available for every problem in every
language [4]. Another example is the transformer model [49]. This type of
model produces state-of-the-art results in most fields where deep learning is
popular, including ABSA [23]. Yet, transformer models use vast amounts of
training parameters, requiring significant amounts of memory and computa-
tion. The E-CABASC model has an advantage here, as explained in the next
subsection.

6.2 Parameter Evaluation

For a more in-depth analysis of the CABASC and E-CABASC models, in this
section, the number of parameters and the effect of the number of neurons in
the hidden layers are evaluated. Table 2 displays the number of parameters
for the baseline models, CABASC model, and E-CABASC model.

Table 2: Number of Parameters of Neural Attention Models.

Model Attention mechanism CAM Deep layers Fusion Total

Baseline A 180,600 - 91,203 - 271,803
Baseline B 270,600 - 91,203 - 361,803
CABASC 270,600 541,502 91,203 - 903,305
E-CABASC 450,601 541,502 91,203 180,300 1,263,606

It can be observed that the number of parameters for the models is rel-
atively small as compared to other ABSC models. For example, a standard
LSTM unit with biases and input embeddings of size 300 contains 721,200
parameters. A bi-directional LSTM model already has more parameters than
the CABASC and E-CABASC models. The highly popular transformer mod-
els can even use hundreds of millions of parameters [53]. This makes the
CABASC and E-CABASC models easier to train than other models.

As suggested in [26], m = d = 300 neurons were used in the hidden
layers of both CABASC and E-CABASC. To show that this is the optimal
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number of neurons, Table 3 displays the accuracies for different numbers of
neurons in the hidden layers of the CABASC model.

Table 3: Accuracy vs. Number of Neurons for CABASC.

No. of Neurons: m = 100 m = 200 m = 300

2014 data set 80.0 80.3 80.4
2016 data set 85.1 85.2 85.1

It can be observed that the number of neurons in the hidden layers affects
the performance of the model. Fine-tuning the number of neurons can make
a difference of around 0.5 percentage points for the accuracy. Choosing too
many neurons results in overfitting the data, so it is not always recommended
to choose the number of neurons equal to the dimensions of the word vectors.
However, in this case, it can be confirmed that the number of neurons is cho-
sen correctly for CABASC (m = d = 300). For fair comparison purposes,
this parameter was therefore also used for E-CABASC.

6.3 Attention

In this section we analyze the performance of the different attention mecha-
nisms of the neural attention models by considering some example cases. We
evaluate an example sentence for the CABASC model and the E-CABASC
model. The following figures display the attention weights and context atten-
tion weights. Figure 6 and Figure 7 display the content and context attention
weights obtained from the CABASC model.

Attention Weights CABASC

Figure 6: Content Attention Figure 7: Context Attention
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An interesting observation can be made from the visualized attention
weights. We observe that the most focused words are not given by sentiment
expressions anymore, but that other words are focused on as well. The most
probable cause for this is that the model is overfitting, such that the final
results in terms of accuracy are good, but not always completely interpretable.
Ideally, the focused words would have a clear interpretation, but this is not the
case in this example. Another observation that we make is that the sentiment
word ‘disappoint’ receives a very low attention. While this word carries a
lot of sentiment, we observe that the context attention mechanism of the
model learns that after the word ‘never’ the word ‘disappoints’ no longer
has a negative influence, giving it a low attention weight.

Figure 8 and Figure 9 display the content attention weights and context
attention weights for the E-CABASC model. To obtain the content attention
weight of a word of the E-CABASC model, we sum the weights of all features
of that word. The scale of the weights obtained by the E-CABASC model is
different than the scale of the weights obtained with the CABASC, because of
the multi-dimensional attention mechanism. In this case the attention weights
sum up to one per feature, which means that the sum of the multi-dimensional
attention weights sums up to 300, because of the 300-dimensional word
vectors.

Attention Weights E-CABASC

Figure 8: Content Attention Figure 9: Context Attention

Comparing the content attention weights obtained by the E-CABASC
model with the weights obtained by the CABASC model, we observe that
the content attention weights of the E-CABASC model have a more equal
distribution, indicating that the model does give every word some importance.
Similar to the CABASC model, the word ‘never’ receives a high attention
weight. Different from the CABASC model, the word ‘trust’ receives a higher
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attention weight than other words. This word is very important for determin-
ing the sentiment and the E-CABASC model identifies this better than the
CABASC model. Comparing the context attention weights of the CABASC
and E-CABASC model, we see the same pattern for both models. The word
‘disappoints’ receives a low weight, after the word ‘never’.

7 Conclusion

Since the explosive growth of the Word Wide Web, a large amount of in-
formation has become publicly available [14]. Sentiment analysis allows for
the automatic analysis of large numbers of opinions shared online through,
for example, Web reviews. ABSC considers sentiment analysis at a highly
fine-grained level. The goal of ABSC is to predict the sentiment expressed
towards every aspect in a sentence. In this paper, the CABASC model [26]
has been discussed, which is a highly successful neural attention model that
features a customized aspect-specific memory where every context word is
weighted with respect to its importance towards the sentiment of the aspect.

Three shortcomings of the CABASC model have been identified and
the Extended CABASC (E-CABASC) model has been proposed, which at-
tempts to solve these problems. The model incorporates a context-aware
aspect representation, which explicitly models the aspect using context
features. In addition, the content attention mechanism is adapted to a multi-
dimensional attention mechanism. Multi-dimensional attention weights the
sentence feature-wise and deals with polysemy in natural language bet-
ter than standard attention. Last, an aspect-specific sentence representation
is constructed by fusing two sentence representations using a dimension-
wise fusion gate that flexibly combines both representations. The resulting
E-CABASC model is shown to outperform the CABASC model.

One of the main contributions of this paper is that the three proposed
model extensions have been shown to all improve the model individually.
As such, we would recommend researching the implementation of the three
extensions into other attention models. The context-aware aspect representa-
tion and aspect-specific sentence representation can be implemented in most
ABSA models. Furthermore, the multi-dimensional attention mechanism is a
technique that can be applied in almost any attention model, even for differ-
ent problems outside the field of ABSA and NLP, such as computer vision
and time series analysis. These extensions can also be implemented in the
previously mentioned state-of-the-art hybrid and transformer models.
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Directions for future research with regards to the E-CABASC model in-
clude modeling all aspects in a sentence simultaneously. This could enhance
the model to optimally link words together. Also, we suggest to investigate
if the GloVe word embeddings are optimal for this problem or results can
be improved using different word embeddings like sentiment-oriented word
embeddings [28] or IWV embeddings [40]. Furthermore, in this paper we
ignored the implicit targets, because the attention model explicitly models
the aspect. An interesting direction to investigate is how implicit targets can
be modeled using proxy words in sentences and neural attention models. As
mentioned, the inclusion of knowledge bases in deep learning models is a
technique that is gaining popularity due to improvements in performance
[4, 51, 61, 48]. As such, another interesting subject to explore would be
combining the E-CABASC model with external knowledge bases.

We would further recommend that future research in ABSA focuses on
dealing with complex sentence structures and transition words. One of the
main challenges of ABSA is to correctly link sentiment expressions and as-
pects in sentences with multiple aspects and multiple sentiment expressions.
Two other complex linguistic phenomena that are important to consider for
future research are thwarting and sarcasm. These two concepts that introduce
contradictions of sentiments in texts pose significant challenges for sentiment
analysis models [38, 30]. Yet, sarcasm and thwarting are highly prevalent
on social media and any other platform on the Internet where opinions and
sentiments are expressed.
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