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Abstract

Consumers are increasingly using the Web to find product information and make online purchases.

This is reflected by the ongoing growth of worldwide e-commerce sales figures. Entity resolution is

an important task that supports many services that have arisen from this growth, such as Web shop

aggregators. In this paper, we propose a scalable framework for multi-source entity resolution. Our

blocking approach employs model words to produce blocks that make our solution highly effective

and efficient for the considered domains. An in-depth evaluation, performed using millions of

experiments and three large datasets (on consumer electronics and software products), shows that

our model words-based approach outperforms other approaches in most cases. Furthermore, we

also evaluate our approach with an imperfect similarity function and find that model words-based

blocking schemes provide the best blocks with respect to the F1-measure.
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1. Introduction

Over the last few years we have experienced a tremendous growth of online shopping. According

to a recent report from Forrester Research, e-commerce spending in the United States will hit

approximately $414 billion in 2018 [1], which is 11% of the estimated total retail sales in the same

year. To keep up with this growth, various online aggregation services have arisen that allow

the user to search for products and their reviews across multiple Web shops. One of the main

tasks of such a multi-data fusion service is entity resolution [2], which is followed, in specialized

contexts, by sentiment aggregation [3, 4, 5]. Entity resolution can be described as the process
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of matching entity descriptions, between two or more data sources that describe the very same

real-world entities [6]. Performing this task on the Web is harder than in traditional, relational

databases. For example, on the Web, we have to deal with highly heterogeneous data and loosely

defined schema’s. Furthermore, with Web data there are usually many more data sources than with

relational databases, e.g., an online aggregation application needs to aggregate information from

many different shops [7]. To the best of our knowledge, these characteristics make our approach

unique with respect to other solutions present in the literature.

Various approaches for product entity resolution on the Web have been studied [8, 9, 10]. The

focus of the current work is to investigate how the scalability of such entity resolution approaches

can be improved using blocking schemes. Blocking schemes are used to reduce the number of pair-

wise similarities that need to be computed, by assigning each product to one or more ‘blocks’ (i.e.,

clusters) and only computing the pair-wise similarity for pairs of products that have at least one

block in common [11]. Differently than in our previous work [12, 13] where we investigated the

use of Locality-Sensitive Hashing [14] on a segment of product descriptions for detecting potential

duplicates, in this paper, we investigate which blocking schemes work best with product description

data on the Web for some specific domains and which part of a product description is the most

valuable for the blocking process (i.e., the title or the description). We also focus on multi-source

entity resolution, since existing methods in duplicates detection [15] suffer from the similarity

transitivity problem. For example, A and B can be considered similar, as well as A and C, but

B and C not. Our solution to this problem is an adaptation of hierarchical clustering using single

linkage. Furthermore, we perform an in-depth analysis of the trade-off between blocking schemes

that result in computing very few pair-wise similarities (more efficient approaches) versus ones with

very high recall (more effective approaches).

The novelty of this study stems from several aspects. First, we propose a scalable framework for

entity resolution operating on multiple sources at the same time (i.e., multiple Web shops). To our

knowledge being able to combine blocks using logical operators is a specific feature of our frame-

work. Second, we propose to use model words, previously employed for similarity matching [10], to

create effective and efficient blocking schemes for the considered domains. Third, our findings give

insight in which blocking schemes work well with product description data on the Web. Last, using

millions of experiments, we perform an in-depth evaluation of our blocking approach, under the
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assumption of a perfect matching function, but, different from related blocking scheme studies [16],

also using a non-perfect, but well-performing, matching function [10].

The structure of the paper is as follows. First, we discuss the related work in Section 2. In

Section 3, we describe a scalable framework for multiple-source entity resolution. Next, in Section 4,

we evaluate the performance of our blocking approaches and benchmark against a state-of-the-art

solution that does not apply blocking. Last, in Section 5, we conclude and identify possible further

research.

2. Related Work

Entity resolution is a well-studied research topic [17, 18, 19]. [15] and [20] give an overview for

this field and its scalability issues. In the literature, we can find several proposed solutions to scale

entity resolution approaches, blocking schemes being the most commonly employed approaches [20].

Based on their focus, blocking schemes can be categorized into two broad categories [11], i.e.,

methods focusing on block building and methods focusing on block transformations.

Block building methods focus on producing blocks such that the number of detected duplicates

is high and the number of required comparisons is low. A straightforward way of blocking in

situations where a schema is available, is to simply group the entities based on the values of

selected key(s) [20]. For example, persons stored in a database might be grouped based on postal

code, greatly reducing the number of comparisons. With Web data, there is usually no predefined

schema, so it is not possible to preselect particular ‘keys’ of entity descriptions. Instead, what is

often done, is to extract all values, usually accompanied with a particular filter (e.g., a stop words

filter) to reduce the number of comparisons [11, 20, 21, 22].

In the literature, we can find various approaches that build on the basic approach of representing

every entity by one or more keys and creating groups based on their value equality, where pair-

wise comparisons are only made within these groups [21, 22]. Suffix array approaches [23] employ

suffixes of the extracted values (of fixed lengths), where entities that share a suffix of a value are

placed in the corresponding block. Bigrams and q-gram blocking [16, 24] work in a similar way,

only instead of using suffixes, these methods create clusters of entities that share at least one bi-

or q-gram of a value. The Sorted Neighborhood approach [25] sorts all extracted values and uses a

sliding window of configurable size to create clusters iteratively (at each time moving the window
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one position down the sorted list). Canopy clustering [26] involves the use of a cheap approximate

distance measure to divide the data in overlapping subsets.

Usually the above presented methods perform better when combined with a block transfor-

mation step. Block transformation methods aim to improve the effectiveness and/or efficiency by

analyzing the produced blocks and transforming them into new ones. One approach that falls into

this category is the iterative blocking approach [27, 28].

Some approaches focus on scaling existing block building techniques, such as [29]. The authors

of this work propose a map-reduce algorithm for executing the sorted neighborhood approach using

multiple passes. In this work, we do not aim to parallelize existing approaches in order to be able

to handle larger datasets. Instead, we are interested in blocking schemes that are highly scalable

by design. This means that the blocking operation must have linear time complexity in terms of

the number of input descriptions. In particular, we focus on methods that output blocks based

on solely a single input description, i.e., we do not focus on methods that require the knowledge

of the whole dataset. The reason for this is that this makes the approach easily parallelizable, as

the block generation can be distributed across nodes in a cluster and the pairs (and corresponding

blocks) can be efficiently collected (either offline or directly using a hash-based reduce phase). In

order to keep the evaluation fair, we therefore disregard methods such as the Sorted Neighborhood

approach [25] and Canopy clustering [26]. Furthermore, a common drawback of all the previously

discussed methods is that they do not focus on product descriptions. For our proposed approach,

we experiment with a token extraction technique (i.e., model words) that proved to work well

for similarity computations between product descriptions [10]. Last, different from the discussed

solutions, which focus on the two-source entity resolution problem, we address in this paper the

multi-source entity resolution problem (i.e., handle descriptions of multiple Web shops at the same

time).

3. Product Entity Resolution

The proposed framework in this study entails three main steps, highlighted in Figure 1. First,

in Section 3.1, a blocking scheme is applied in order to reduce the number of pair-wise similarities

that have to be computed. Second, in Section 3.2, a product similarity function is applied to the

relevant product pairs, i.e, the pairs that have at least one block in common. Third and last, in
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Section 3.3, a clustering procedure is applied to identify duplicates.
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Figure 1: An overview of the high-level steps in our entity resolution framework.

There are three assumptions that we make in this work. First, the input is a collection of

product descriptions from at least two Web shops. These product descriptions are represented

by a title and a set of key/value pairs representing features of the product. Unlike in traditional

database blocking literature, the key/value pairs do not follow any predefined schema, i.e., Web

shops can use completely different vocabularies for describing the same set of features. Second, the

entity resolution task concerns itself with multiple sources. Here we assume that we know the source

of a product description and that within each source (e.g., a Web shop) there are no duplicates.

In a two-source ER setting this would be referred to as ‘Clean-Clean Entity Resolution’ (Clean-

Clean ER) task [11]. Third, because most product datasets are of such size that after computing

the similarities, an efficient, non-distributed clustering procedure can be employed to uncover the

duplicate entries, we focus on the scalability of the pair-wise computations. The reason for this

is that, even with moderately sized datasets, the number of pair-wise similarities that need to be

computed increases quadratically.

3.1. Blocking Schemes

We define a blocking scheme as a function that provides a many-to-many mapping between a

product description and a block . A block is an entity which is represented by (a part of) a value

from the entity description.
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Figure 2: A more in-depth look into the details of our blocking approach. Shaded squares represent product

descriptions. T1, T2, . . . , Tn represent tokens extracted from a source.

The set of possible blocks is determined by the employed blocking scheme. In our approach, a

blocking scheme consists of three components:

• the source selector ;

• the text tokenizer ;

• and an optional block transformer.

Figure 2 shows the details of our blocking framework. First, the source selector component

determines from which part of the product description blocks are extracted. Second, the tokenizer

component takes as input, from the source selector component, one or more strings, and outputs

the union of the extracted blocks from each of these strings. Third, and last, the optional block

transformer component transforms the produced blocks B into a new set of block B′, with the goal

of optimizing the efficiency of the previously produced blocks.

As previously mentioned, we assume that the product descriptions consist of a title and a set

of key/value pairs. In this study, we therefore consider a title source and a key/value pairs source,

where the latter will be referred to as the description source for brevity. The description source
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selector refers solely to the values of the key/value pairs; in our study we ignore the keys of the

product descriptions. The reason for this is that these are usually not very discriminative, i.e.,

descriptions across Web shops have many keys in common. On the other extreme, the ones that

are not that common, occur rather infrequently and are therefore not very useful.

For the text tokenizers we first consider the word tokenizer. This tokenizer first cleans the input

string(s) by removing all punctuation characters (e.g., apostrophe, brackets, colons, comma’s, etc.)

and the dollar sign character, which might prevent some words from being tokenized properly.

Second, the resulting string(s) are cleaned by lowercasing all letters. In the literature, this kind

of tokenizer is very common in unstructured datasets, where the schema is unknown and the used

values are highly heterogeneous [11]. For example, the title “Philips 4000 Series, 29” - Best Buy”

would result in the following extracted blocks: philips, 4000, series, 29", best, buy. Besides the

regular word tokenizer we also consider the q-gram (in particular, trigram) tokenizer [16, 24] and

suffix array tokenizers [23]. These tokenizers use a scheme that performs the tokenizing technique

on words extracted from the input string.

The titles of product descriptions can contain a lot of information for products with many

technical specifications. For example, for TV’s, the titles often contain terms like 1080p and

100hz. We refer to such terms as model words and they are defined as words that have at least

one digit character and at least one character that is not a digit. The following are examples of

extracted model words:

• Philips 4000 Series 29" Class LED 720p 60Hz HDTV 29PFL4508F7

yields model words 720p, 60hz, 29pfl4508f7, 29"

• Panasonic - 42" Class / Plasma / 720p / 600Hz / HDTV

yields model words 720p, 42", 600hz

It has been shown that these model words can be effectively used to obtain high accuracy entity

resolution [10]. We therefore propose the model words tokenizer that extracts these model words

from the input string(s). For the previous example (“Philips 4000 Series, 29” - Best Buy”), this

would mean that we only extract the following block: 29".

Last, for our approach, we consider the use of a combinations block transformer. This trans-

former takes as input the blocks from a tokenizer and outputs all the k combinations (sets of k

elements) of these blocks. Again, with the previous example and a particular tokenizer, a k = 2
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combinations block transformer would yield all pairs of the blocks that the tokenizer outputted.

With k = 3, it would yield all triplets of the blocks that the tokenizer outputted. This means that

for the example Panasonic - 42" Class / Plasma / 720p / 600Hz / HDTV with model words

720p, 42" and 600hz, a k = 2 combinations block transformer would yield {720p, 42"}, {720p,

600hz} and {42", 600hz}. This transformation will result in a reduction of the total number of

similarity-pairs that need to be computed, i.e, the longer the combination, the fewer products will

match the combination.

The above discussed components, i.e., the source selector, the text tokenizer, and the optional

block transformer components, form together a blocking scheme. Once these three components

have been chosen, the blocks are generated per given product description. The corresponding

product is then mapped to each of the generated blocks.

3.1.1. Blocking Schemes Aggregators

Similar to the transformers for the blocks, on the level of blocking schemes, we consider aggrega-

tions of blocking schemes that might improve the effectiveness and/or efficiency. For this purpose,

we consider two type of aggregations: (1) the union of the output blocks, focusing on improving

effectiveness, and (2) the conjunction of the output blocks, moving the focus on improving the

efficiency of the outputted blocks.

The union aggregator blocking scheme takes two blocking schemes and outputs mappings that

are given by either of the two blocking schemes. For example, if blocking scheme x maps entity

p1 to block b1 and blocking scheme y maps entity p1 to block b2, then this blocking scheme would

map p1 to both b1 and b2.

The conjunction aggregator blocking scheme takes two blocking schemes, say s1 and s2, and

combines their outputs in the following way. First, the mappings are computed using s1. Then,

for each of the blocks in the mapping, the entities mapped to the block are fetched. The blocking

scheme s2 is called on these entities, yielding a new set of mappings. The final outputted mappings

are a conjunction of the blocks from s1 and the blocks from s2.

Finally, we also consider the all pairs blocking scheme, which is actually a scheme that does

not perform blocking at all, it considers all pairs. The other approaches are evaluated w.r.t. the

percentage of pairs computed compared to the all pairs method.

8



3.1.2. Blocking Schemes Identifiers

Throughout this paper we adhere to a blocking scheme naming convention that represents

a combination of the previously discussed components. A blocking scheme is represented in the

form of $source.$tokenizer$transformer, where the $transformer is optional (words that start

with a dollar sign represent a variable). For $source, we use t for the title source and d for the

description source (recall that for the description source, keys are ignored, such that only the

key-related values are used). We use wo for the word tokenizer, 3q for the qgram (trigram) tok-

enizer, sx for the suffix array tokenizer, and mw for the model words tokenizer. For example, t.mw

would represent a blocking scheme that extracts model words from the title and d.wo a block-

ing scheme that extracts words from the description source. Additionally, when a combinations

block transformer is applied, we append k to the name of the tokenizer. For example, d.mw3

represents the blocking scheme that extracts model words from the description source and forms

triples of these to output blocks. The union and conjunction block transformers are represented

like a $operator b, where a and b are blocking schemes and $operator can be either + (for union

transformations) or x (for conjunction transformations). For example, t.mw3 x d.mw2 represents

the conjunctive combination of two blocking schemes that extract model words triples from the title

and model word pairs from the description. This means that this model will output only blocks

that are both outputted by the two blocking schemes. If the title source would be "Hisense 42"

1080p 60Hz LCD HDTV LTDN42V68US - Newegg.com" and the description would contain, among

others, the key/value pairs "Response Time": "5ms", "Recommended Resolution": "1080p",

t.mw3 x d.mw2 would yield ({"42"", "1080p", "60Hz"}, {"5ms", "1080p"}). As thus can be seen,

model words are only regarded if they are in the title as well as the description, which illustrates

the increased efficiency of the conjunction aggregator.

3.2. Similarity Computation

The approach we employ in this paper for computing the similarities is the state-of-the-art

MSM approach, proposed by [10]. MSM is able to compute similarities for products that are

represented in a semi-structured data model, e.g., tabular Web product information.

Algorithm 1 shows a high-level overview of how the product similarity is computed. In Algo-

rithm 2 we see the function KeySim(a, b), which is used to compute the similarity between product

descriptions a and b based solely on the product attributes. This function is used by Algorithm 1
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on line 2 to compute the final product description similarity. The similarity function of MSM takes

as input two product descriptions and outputs a similarity between 0 and 1. The main idea of

the approach is to first compute a similarity based on the keys of two product descriptions (i.e.,

attributes). Then, with the remaining, unmatched keys, we compute a similarity based on the pro-

posed model words. Last, we compute a title similarity and combine the three similarities into one

final weighted average similarity. For the titleSim() function we employ a cosine-based similarity.

The keySim() and valSim() functions are based on the q-gram similarity measure. Furthermore,

the keysMatch() function uses the keySim() function to compute the similarity between two keys,

and if the similarity is larger than a threshold, the keys match. For more details we refer the reader

to [10].

3.3. Clustering

After the similarities between the relevant entity pairs have been computed, we apply a clus-

tering step to discover the duplicate entities. The reason for this is that we have multiple sources

and the similarity function is not transitive. In other words, if one has A sim B, B sim C, then this

does not imply A sim C. Using a clustering approach, these transitive similarities can be taken

into account.

As part of our framework, the clustering method takes as input the product description sim-

ilarities and outputs clusters of products in which its members are considered to be duplicates.

Because our approach supports multiple sources and we assume that within each source there are

no duplicates, the algorithm should not cluster products that are originating from the same Web

shop.

The MSM similarity [10] is used in an approach where an adaptation of hierarchical clustering

is employed. The main idea of this clustering approach is to use single linkage in all cases except

for those where a infinite distance is encountered, in which case complete linkage is applied instead.

These infinite distances are assigned to product description pairs originating from the same Web

shop, thus applying complete linkage in these cases yields an infinite distance measure. Therefore,

it is unlikely that the modified linkage criterion in this approach will assign such descriptions into

the same cluster.
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ALGORITHM 1: MSM Similarity.

Required functions/parameters:

• KeySim(a, b) computes the similarity between two product descriptions a and b based solely on

the product attributes (described in Algorithm 2);

• titleSim(ta, tb) gives the similarity between title ta and tb;

• mw(W ) extracts the model words for a given set of words W ;

• mwSim(mwa,mwb) computes the similarity between model words mwa and mwb;

• µ is the weight for the title similarity.

// Computes similarity between product descriptions a and b

1 def ProdSim(a, b, µ):

2 (m, I, J, keySim∗) := KeySim(a, b);

// m is the number of key matching keys between a and b

// I is the set of keys from a that do not match

// J is the set of keys from b that do not match

// keySim∗ is in [0, 1] and represents the similarity between the keys of a and b

// extract model words from set of keys that do not match

3 Imw := mw(I);

4 Jmw := mw(J);

5 mwSim := mwSim(Imw, Jmw) ; // similarity between the extracted model words

6 titleSim := titleSim(a.title, b.title) ; // similarity between the titles

7 if titleSim = 0 then

8 θ1 := m/min(|a.keys|, |b.keys|);

9 θ2 := 1− θ1;

10 else

11 θ1 := (1− µ) ·
m

min(|a.keys|, |b.keys|)
;

12 θ2 := 1− µ− θ1;

13 end

// final similarity, consisting of keySim∗, mwSim, and titleSim

14 sim∗ := θ1 · keySim∗ + θ2 ·mwSim+ µ ∗ titleSim

15 return sim∗
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ALGORITHM 2: MSM Key Similarity.

Required functions:

• clean(w) removes punctuation characters at end of word w;

• keysMatch(ka, kb) determines whether keys ka and kb match (i.e., represent the same attribute);

• keySim(ka, kb) gives the similarity between keys ka and kb;

• valSim(ka, kb) gives the similarity between the values of keys ka and kb.

// Computes the similarity between two descriptions using only the attributes

1 def KeySim(a, b):

2 m := 0 // number of matches

3 w := 0 // weight of matches

4 I := a.keys and J := b.keys // keys without a match

5 sim := 0;

6 foreach ki,a in a.keys do

7 ki,a := clean(ki,a);

8 foreach kj,b in b.keys do

9 kj,b := clean(kj,b);

10 if keysMatch(ki,a, kj,b) then

11 I := I \ ki,a;

12 J := J \ kj,b;

13 keySim := keySim(ki,a, kj,b);

14 valueSim := valSim(ki,a, kj,b);

15 sim := sim+ keySim ∗ valueSim;

16 m := m+ 1;

17 w := w + keySim;

18 end

19 end

20 end

21 keySim∗ := 0;

22 if w > 0 then

23 keySim∗ :=
sim

w
;

24 end

25 return (m, I, J, keySim∗)
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4. Evaluation

For the evaluation of our framework, we use three datasets:

• 4shops - this dataset consists of 1,624 descriptions of televisions, obtained from Amazon.com,

Newegg.com, BestBuy.com, and TheNerds.net;

• abt-buy - this dataset consists of 2,175 descriptions of various electronics products;

• amz-ggl - this dataset consists of 4,591 descriptions of various software products.

These datasets are available online1. Two examples, the first one for consumer electronics (from

Newegg.com) and the second one for software products (from Amazon.com), are as follows:

• "title": "Toshiba - 32\" Class / LED / 720p / 60Hz / HDTV",

"Internet Connectable": "No",

"Remote Control Type": "Standard",

"Screen Size Class": "32\"",

"DVI Inputs": "0"

• "title": "ca international - arcserve lap/desktop oem 30pk",

"description": "oem arcserve backup v11.1 win 30u for laptops and desktops",

"manufacturer": "computer associates",

"price": "0"

First, in Section 4.1, we evaluate the effectiveness and efficiency of the proposed blocking

approach. Then, in Section 4.2, we analyze how the performance of the proposed entity resolution

algorithm is affected by the considered blocking schemes.

4.1. Blocking Evaluation

We evaluate our blocking approach using three measures that are commonly used in litera-

ture [11, 20, 21]. These measures are computed based on the pairs that need to be considered

1http://damirvandic.com/wp-content/uploads/2016/05/TVs-all-merged.zip and http://dbs.uni-leipzig.

de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
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as a result of a blocking scheme. First, we consider a measure of efficiency, which is referred in

literature as pairs quality (PQ). It is defined as

PQ =
found duplicates

executed comparisons

This can be considered as the precision measure from information retrieval. Second, we consider

a measure of effectiveness, also known as the pairs completeness (PC). Essentially, it is the recall

measure from information retrieval and it is defined as

PC =
found duplicates

total number of duplicates

Last, we consider the reduction rate (RR), defined as

RR = 1− executed comparisons with blocking

executed comparisons without blocking

This is the reduction in the percentage of pairs that need to be considered after applying a blocking

scheme, compared to the total number of pairs (without applying a blocking scheme). The total

number of pairs excludes pairs of product descriptions that are from the same Web shop, as we

assume that we are dealing with ‘Clean-Clean ER’ and that in most contexts, the source of the

product description is known.

4.1.1. Considered configurations

These are the configurations that we consider:

1. t.{wo,mw}{2..4} and t.{wo,mw} (8 combinations)

2. t.{3q,sx} (2 combinations)

3. d.{wo,mw}{2..4} and d.{wo,mw} (8 combinations)

4. d.{3q,sx} (2 combinations)

5. a + b where a and b are unique pairs from (1), (2), (3), and (4) (190 combinations)

6. a x b where a and b are unique pairs from (1) and (3), respectively (120 combinations)

The total number of considered configurations is therefore 330 (20+190+120).

For each of these methods, and the three considered datasets, we computed the previously

discussed measures on 40 bootstraps, where each bootstrap is a stratified random sample of the

14



4−shops abt−buy amz−ggl

●
●

●●
●

●●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

● ●●

●

●

● ●

●

●

●

●
●

●●

●

●

0.5

0.6

0.7

0.8

0.98 0.99 0.98 0.99 0.98 0.99
Reduction rate (RR)

P
ai

rs
 c

om
pl

et
en

es
s 

(P
C

)

scheme
● t.mw3

t.mw3_x_d.mw
t.mw3_x_d.wo
t.mw_x_d.wo

t.wo4
t.wo4_x_d.wo

t.wo3_x_d.mw3
t.wo3_x_d.mw4

t.wo3_x_d.wo

Figure 3: Scatter plots for the ‘low’ PC category blocking methods showing the trade-off between the reduction rate

(RR) and pairs completeness (PC), where each point represents one of the 40 bootstraps.

original data to obtain samples that are representative for the original data set (and to reduce

sampling error and variance). Next, we only kept methods that had an average PC higher than

0.50 and an average RR measure greater than 0.50 (measured across datasets). For these methods

we then compute the average PC and average RR for each dataset. Then, for each dataset, we

split the methods into three equally-sized groups (‘low’, ‘medium’, and ‘high’), which is based on

the average PC where ‘high’ represents the group having the highest PC measure. Finally, for each

group in each dataset, we select only the top 3 methods w.r.t. the RR.

Figures 3, 4, and 5 show the trade-off between the PC and RR measures for each group and

each dataset. Each dot in a graph represents the obtained performance for a particular bootstrap.

Furthermore, Tables 1, 2, and 3 show for each top method in each dataset the mean and standard

deviation for PC, RR, PQ, block count, and blocking duration. For the PC measure, we have used

paired t-tests with Bonferroni corrected p-values to determine if differences are statistically signif-

icant. For sake of brevity, in our discussions, we will only highlight the non-significant differences

(because most of the differences are significant).

What we first notice is that the suffix array tokenizers and trigram tokenizers do not appear in

the results as top-performing methods. This might suggest that traditional tokenizing techniques

are not efficient enough for Web data, such as the product descriptions in the three considered

datasets. Furthermore, from Figures 3, 4, and 5, we can see that for the ‘low’ group, the methods
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Figure 4: Scatter plots for the ‘medium’ PC category blocking methods showing the trade-off between the reduction

rate (RR) and pairs completeness (PC), where each point represents one of the 40 bootstraps.
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(RR) and pairs completeness (PC), where each point represents one of the 40 bootstraps.
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are all in the upper range w.r.t. the reduction rate (RR), with the lowest average being 0.98 for the

‘4-shops’ dataset. The average PC in this group varies between 0.52 and 0.78 across datasets. All

differences w.r.t. the PC measure are found to be statistically significant (across datasets), except

the difference between t.mw3 x d.wo and t.mw3, and t.wo3 x d.mw3 and t.mw x d.wo. Taking

into account, besides the PC and RR measures, the number of blocks and the duration, we would

argue that, for this group, t.mw3 provides the optimal balance between speed and recall.

For the ‘medium’ group we can see that there is more variation w.r.t. the reduction rate (RR),

ranging from an average of 0.86 to 0.99. For the PC measure, the variation is similar compared to

the ‘low’ group but the range is smaller, with averages going from 0.74 to 0.89. For this group, the

difference between the PC measure is for the following methods statistically insignificant (across

datasets):

• t.wo4 x d.mw and t.mw2 x d.mw

• t.wo2 x d.wo and t.mw2 x d.mw

• t.wo2 x d.wo and t.wo4 x d.mw

• t.wo3 and t.mw2 x d.mw

• t.wo3 and t.mw3 + d.mw2

• t.wo3 and t.wo2 x d.wo

• t.wo3 x d.wo and t.mw3 + d.mw2

• t.wo3 x d.wo and t.mw3 + d.mw2

• t.wo3 x d.wo and t.mw3 + d.mw2

We can also notice that t.wo4 x d.mw generates a large number of blocks. This is caused by the

fact that the word tokenizer produces many tokens and that the high number of combinations lead

to an exponential growth in the number of produced blocks. Looking at the average durations

for the ‘4-shops’ dataset, we can see that two schemes stand out because of their low duration:

t.mw2 + d.mw and t.mw3 + d.mw2. For this group, we notice that the model words tokenizer is

part of the best performing schemes for the ‘4-shops’ dataset. For the amz-ggl dataset, the word
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Table 1: Blocking evaluation results for the considered blocking methods in ‘low category’ (w.r.t to the PC measure).

For each measure, we aggregated the scores achieved over the 40 bootstraps. Each cell shows (1) the mean and (2)

the standard deviation. The best values per column for each dataset are given in bold font.

Scheme dataset PC RR PQ Block Blocking

count duration (ms)

t.mw3 x d.mw 4-shops 0.74 / 0.04 0.98 / 0.00 0.07 / 0.01 49,331.45 / 2,122.70 55.00 / 18.50

t.mw3 x d.wo 4-shops 0.77 / 0.04 0.98 / 0.00 0.05 / 0.00 134,687.58 / 5,640.74 144.90 / 12.94

t.mw3 4-shops 0.78 / 0.04 0.98 / 0.00 0.04 / 0.00 2,539.20 / 98.60 2.28 / 3.77

t.mw x d.wo abt-buy 0.52 / 0.02 1.00 / 0.00 0.39 / 0.04 16,998.68 / 504.64 20.75 / 4.58

t.wo4 x d.wo abt-buy 0.65 / 0.02 1.00 / 0.00 0.47 / 0.03 1,039,981.45 / 62,697.68 1,441.33 / 217.08

t.wo4 abt-buy 0.71 / 0.02 1.00 / 0.00 0.44 / 0.03 60,376.30 / 7,362.27 54.43 / 22.35

t.wo3 x d.mw3 amz-ggl 0.54 / 0.02 1.00 / 0.00 0.41 / 0.05 90,529.18 / 11,833.81 209.98 / 68.36

t.wo3 x d.mw4 amz-ggl 0.59 / 0.02 1.00 / 0.00 0.41 / 0.05 133,298.35 / 38,686.92 262.43 / 103.16

t.wo3 x d.wo amz-ggl 0.63 / 0.02 1.00 / 0.00 0.42 / 0.04 1,151,049.95 / 103,369.37 1,453.68 / 173.81

tokenizers seems to achieve better efficiency. This is as expected, because the model words work

best with technical descriptions, which are most common among consumer electronics.

In the ‘high’ group, most methods are able to achieve a relatively high reduction rate, except

for the ‘4-shops’ dataset. The reason for this is that there are multiple Web shops and thus, there

is more variation in the descriptions. As the results for the other two groups demonstrated, the

‘4-shops’ dataset seems to be the most difficult for the methods to achieve a high reduction rate.

With respect to the PQ measure, all methods are found to statistically differ, except for t.wo4 and

t.mw2, and t.wo2 and t.wo4 . d.mw2. Given these results, for the ‘4-shops’ dataset there is not

a clear winner. For the other two datasets, the scheme t.wo seems to give the best performance

with respect to PC and RR.

The results from these experiments demonstrate the scalability of our approach. For example,

in Table 3, which shows the results for the ‘high’ group, we can see that the method t.wo2 + d.mw

takes on average 71.35 ms for amz-ggl and 23.83 ms for abt-buy for a bootstrap sample (an increase

of factor 2.99). Given the fact that the amz-ggl data set has 4,591 descriptions and the abt-buy

data set has 2,175 descriptions (a factor 2.11 difference in size), we can see that the increase in

blocking duration is very close to linear.
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Table 2: Blocking evaluation results for the considered blocking methods in ‘medium category’ (w.r.t to the PC

measure). For each measure, we averaged the scores achieved over the 40 bootstraps. Each cell shows (1) the mean

and (2) the standard deviation. The best values per column for each dataset are given in bold font.

Scheme dataset PC RR PQ Block Blocking

count duration (ms)

t.mw3 + d.mw2 4-shops 0.80 / 0.04 0.95 / 0.00 0.02 / 0.00 5,268.55 / 171.25 11.60 / 19.34

t.mw2 x d.mw 4-shops 0.84 / 0.03 0.89 / 0.00 0.01 / 0.00 45,208.00 / 1,527.39 55.78 / 18.08

t.wo4 x d.mw 4-shops 0.84 / 0.03 0.86 / 0.01 0.01 / 0.00 2,674,844.73 / 154,913.98 4,064.73 / 607.06

t.wo3 x d.wo abt-buy 0.81 / 0.01 0.99 / 0.00 0.27 / 0.02 611,670.70 / 25,527.48 816.03 / 83.14

t.wo3 abt-buy 0.88 / 0.01 0.99 / 0.00 0.24 / 0.02 31,452.78 / 1,760.35 27.43 / 10.56

t.wo2 x d.wo abt-buy 0.89 / 0.01 0.98 / 0.00 0.13 / 0.01 248,044.33 / 7,655.92 325.93 / 27.40

t.wo2 x d.mw4 amz-ggl 0.74 / 0.02 0.99 / 0.00 0.24 / 0.02 95,143.25 / 36,259.98 188.58 / 88.68

t.wo3 amz-ggl 0.75 / 0.02 0.99 / 0.00 0.36 / 0.04 29,719.25 / 2,441.90 27.58 / 10.95

t.wo2 x d.wo amz-ggl 0.78 / 0.02 0.99 / 0.00 0.20 / 0.02 537,230.35 / 32,067.84 688.13 / 165.69

Table 3: Blocking evaluation results for the considered blocking methods in ‘high category’ (w.r.t to the PC measure).

For each measure, we averaged the scores achieved over the 40 bootstraps. Each cell shows (1) the mean and (2) the

standard deviation. The best values per column for each dataset are given in bold font.

Scheme dataset PC RR PQ Block Blocking

count duration (ms)

t.mw2 4-shops 0.93 / 0.02 0.83 / 0.01 0.01 / 0.00 1,902.48 / 60.47 2.20 / 3.50

t.wo4 4-shops 0.93 / 0.02 0.82 / 0.01 0.01 / 0.00 157,152.50 / 10,788.26 156.70 / 97.48

t.wo4 + d.mw2 4-shops 0.95 / 0.01 0.81 / 0.01 0.01 / 0.00 159,881.88 / 10,788.41 255.70 / 111.22

t.wo2 abt-buy 0.97 / 0.01 0.97 / 0.00 0.10 / 0.01 11,140.50 / 385.18 10.70 / 6.74

t.wo2 + d.mw abt-buy 0.98 / 0.01 0.95 / 0.01 0.05 / 0.00 12,006.83 / 400.41 23.83 / 12.56

t.wo abt-buy 0.99 / 0.00 0.88 / 0.01 0.02 / 0.00 1,573.63 / 40.29 5.93 / 11.33

t.wo2 amz-ggl 0.93 / 0.01 0.99 / 0.00 0.20 / 0.02 9,706.18 / 450.01 10.28 / 8.47

t.wo2 + d.mw amz-ggl 0.96 / 0.01 0.70 / 0.01 0.01 / 0.00 10,121.03 / 455.96 71.35 / 55.31

t.wo amz-ggl 0.99 / 0.00 0.92 / 0.00 0.03 / 0.00 1,305.78 / 40.24 4.75 / 11.16
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Table 4: The top-3 best performing methods (w.r.t. the F1-measure) and the all-pairs method for the entity resolution

evaluation, showing the average of each of the measures, taken over the 100 considered bootstraps. The scheme ap

stands for the scheme that does not apply any blocking but instead just considers all pairs. The best values per

column are given in bold font.

Scheme F1-measure Precision Recall Mean sample duration (ms)

t.mw3 x d.wo 0.5382 0.5411 0.5380 447.15

t.mw3 x d.mw 0.5376 0.5511 0.5272 221.68

t.mw3 0.5368 0.5389 0.5376 49.52

ap 0.5248 0.4723 0.5922 406.8

4.2. Entity Resolution Evaluation

In order to validate the found results in the previous section, we perform another evaluation,

i.e., one that assesses the performance of the entity resolution algorithm when a blocking scheme

is applied. For this part, we used only the ‘4-shops’ dataset as this dataset has the required

characteristics for the MSM algorithm (unstructured key/value data). The other two datasets have

only a single description field, making a comparison with these datasets not possible. Different

than the blocking evaluation, the entity resolution evaluation is implemented on top of a cluster

computing framework, i.e., the Apache Spark framework [30]. Because we had access to a large

cluster, we were able to run 100 bootstraps of the MSM algorithm with each of the blocking

schemes. For MSM we tried 375 different parameter configurations. Previously, in Section 4.1.1,

we have explained which are the scheme configurations that we consider. Using the considered

configurations, we arrive at a total number of experiments of 12,375,000 (100 bootstraps × 375

MSM instances × 330 blocking scheme configurations). We used a cluster of 640 cores and an

additional caching layer for computing the MSM similarities.

Table 4 shows the results of the top-3 methods and the all-pairs method w.r.t. the F1-measure

using the MSM matching function. We found that only the methods t.mw3 x d.wo and t.mw3 are

statistically different w.r.t the F1. With respect to the average duration per bootstrap sample, we

can report that all measured mean differences are statistically significant, except for the difference

between t.mw3 x d.wo and ap. From this we can conclude that the top-2 methods exhibit the same

performance, and that, considering the relatively small difference between the top-3 methods, one
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can expect a relatively good performance from all top-3 methods (t.mw3 x d.wo, t.mw3 x d.mw,

and t.mw3).

It is interesting to see that the all pairs scheme does not give the best performance and that

the best performing methods do not come from the group that scores the highest on PC. At first,

this seems counterintuitive, however, there is a reasonable explanation for this. It seems that

the blocking schemes are able to factor a significant amount of pairs that would lead to false

positives. This is also reflected by the increased precision. Apparently, the decrease in recall (due

to the computation of less pairs) is less than the increase in precision, and thus resulting in a

higher F1-measure. This is a very interesting observation since most studies on blocking schemes

are performed with the assumption of the availability of a perfect matching function. The found

results in these experiments suggest that with imperfect matching functions, such as MSM, the

best performing methods are not necessary the ones with the highest PC measure.

Further experiments are needed to generalize the findings regarding the contribution of the

considered tokenizers. However, the results from our experiments do suggest interesting research

directions. For example, the top-3 methods all utilize the model words tokenizer. This might

suggest that for product descriptions containing technical specifications, such as the ‘4-shops’

dataset, model word tokenizers are more suitable than word tokenizers.

5. Conclusion

In this paper, we have proposed a scalable approach for multi-source entity resolution using

various blocking schemes. Our approach consists of three main components: (1) a blocking scheme,

(2) a product similarity function, and (3) a clustering procedure. Various blocking schemes, which

operate on the title, the description, or both, are evaluated with a perfect similarity function, as

well as an imperfect, but well-performing, one [10]. The framework has been evaluated using an

extensive set of experiments and three large datasets used commonly in entity resolution studies.

The most important finding with regards to the blocking evaluation is that experimental setups

that evaluate blocking schemes with only a perfect matching function are not sufficient. The results

suggest that for our similarity function and clustering procedure, which together achieve an F1-

measure of 0.525 when using all pairs, blocking methods that compute very few pairs achieve

a higher performance than ones that have a high PC. In particular, we find that the blocking
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scheme that extract model word triples from the title (i.e., t.mw3) gives the best trade-off between

effectiveness and efficiency on our test dataset, achieving an F1-measure of 0.537. The higher F1-

measure, compared to the F1-measure of 0.525 for all pairs, suggests that the employed similarity

function is sensitive to the number of pairs it needs to consider.

The blocking approach used in this paper has proved to make our solution highly effective

and efficient for the considered domains. However, this blocking approach can be improved. For

example, recent work on zero-shot entity typing [31, 32, 33] can be considered to detect to which

category an entity description corresponds, such as computers, televisions, tablets, audio, video

games, or another category (since our focus is on consumer electronics and software products). In

this way, the number of pair-wise similarities that need to be computed can be further reduced,

and, in addition, this could benefit the accuracy of duplicates detection as the comparisons are

performed only per product type.
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