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Truşcǎ2(�)

1 Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam,
the Netherlands

2 Bucharest University of Economic Studies, 010374 Bucharest, Romania
kunalgeed15@gmail.com, frasincar@ese.eur.nl, maria.trusca@csie.ase.ro

Abstract. LCR-Rot-hop++ is a state-of-art model for Aspect-Based
Sentiment Classification. However, it is also a black-box model where
the information encoded in each layer is not understood by the user.
This study uses diagnostic classifiers, single layer neural networks, to
evaluate the information encoded in each layer of the LCR-Rot-hop++
model. This is done by using various hypotheses designed to test for
information deemed useful for sentiment analysis. We conclude that the
model did not focus on identifying the aspect mentions associated with
a word and the structure of the sentence. However, the model excelled in
encoding information to identify which words are related to the target.
Lastly, the model was able to encode to some extent information about
the word sentiment and sentiments of the words related to the target.

Keywords: aspect-based sentiment classification · neural rotatory at-
tention model · diagnostic classification

1 Introduction

The goal of Sentiment Analysis (SA) is to analyse a piece of text and iden-
tify the primary sentiment associated with a certain entity in the text [10].
According to [14] Aspect-Based Sentiment Analysis (ABSA) is a sub-task in
SA and is generally divided into three different steps. The authors explain that
the first step is to identify a sentiment-target pair, followed by classification of
the sentiment-target pair, and, lastly, the aggregation of sentiment values to
provide an overview. In this paper, we focus on neural networks designed for
Aspect-Based Sentiment Classification (ABSC), which refers to the second step
responsible for identifying the polarity associated with a specific target.

The application of ABSA is wide, and, although more complicated than SA,
can lead to a much more comprehensive analysis. For this purpose, a state-of-
the-art technique was developed in [17], which proposes a hybrid approach to



ABSA. Firstly, the authors make use of a domain ontology to identify aspects
and sentiments towards these. Any inconclusive cases are then passed to a neural
network that predicts the sentiments. Due to its high performance, we make use
of this technique as the basis of our research.

Neural networks are considered to be black-box methods as the user is not
able to explain the results based on the structure of the neural network, hence
their inner-workings are not clear. Therefore, our research aims to improve the
understanding of neural networks with a focus on the architecture presented
in [17], which is part of the larger field of explainable AI (XAI). To solve this
problem, we investigate if the model presented in [17] can capture specific in-
formation regarding the relationships between words and aspects. We further
extend this by using the domain ontology to test if LCR-Rot-hop++ can en-
code the domain knowledge represented, in a sentiment analysis context, in the
domain ontology. To investigate these questions, we use diagnostic classifiers as
introduced in [7]. The major contributions of this work are as follows. While
in [11] diagnostic classifiers are used to understand the inner-workings of the
LCR-Rot-hop model, we focus on the more advanced LCR-Rot-hop++ model
in this paper. Furthermore, in addition to diagnostic classifiers discussed in [11],
we investigate if the aspects represented in the domain ontology are encoded in
the neural network. To our knowledge, this is one of the first works that investi-
gate the presence of a domain sentiment ontology signal in the representations
produced by a neural attention model. All source data and code can be retrieved
from https://github.com/KunalGeed/DC-LCR-Rot-hop_plus_plus.

The paper is structured as follows. In Sect. 2 we discuss the literature as-
sociated with ABSA and XAI. Sect. 3 explores the dataset used in this study
and describes the pre-processing steps used to convert the dataset into the final
dataset. In Sect. 4, we describe the methodology of the used aspect-based senti-
ment classifier and the methodology of diagnostic classifiers. Sect. 5 presents the
results. Last, Sect. 6 draws conclusions from the results, states the limitations
of our study, and suggests avenues for further research.

2 Related Works

This section discusses the relevant literature for this study. Subsection 2.1 pro-
vides a more in-depth analysis of Aspect-Based Sentiment Classification. Sub-
section 2.2 describes the related work of diagnostic classifiers.

2.1 Aspect-Based Sentiment Classification

ABSC usually relies on knowledge-based solutions, machine learning, or hybrid
approaches. While classic machine learning models have modest performance
rates, the more recent neural networks have managed to significantly increase
the classification quality. Within neural networks, Long Short Term Memory
(LSTM) [6] and its variants have shown great performance in ABSC. The Left-
Center-Right (LCR) separated neural networks for ABSC is introduced in [16]
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based on a bi-directional LSTM to address two problems that were about the
target representation and the connection between the target and its context.

Although knowledge-based and machine learning approaches had shown in-
dividual success, the hybrid techniques developed by combining them proved to
be even more effective. The hybrid technique for ABSC introduced in [15] uti-
lizes an ontology-based model to first find as many sentiment classifications as
possible and then solves the inconclusive cases using the Bag-of-Words (BOW)
model. The model is improved in [18] by changing the backup classifier to the
LCR-Rot models proposed in [16]. The authors further extended and improved
upon the LCR-Rot model by repeating the rotary mechanism n times (LCR-
Rot-hop model). The LCR-Rot-hop model is further improved in [17] by intro-
ducing deep contextual word embeddings and hierarchical attention leading to
the LCR-Rot-hop++ model.

2.2 Diagnostic Classifiers

With the increase in the use of black-box methods, such as neural networks,
there is an increased need for techniques to investigate what happens inside these
black-box methods part of XAI [5]. An approach similar to diagnostic classifiers
was proposed in [1]. In their work, the authors outline a framework that fa-
cilitates the understanding of encoded representation using auxiliary prediction
tasks. They score representations by training classifiers which take the represen-
tations as input to tackle the auxiliary prediction tasks. If the trained classifier
is unable to predict the property being tested in the prediction task, then it is
concluded that the representations have not encoded that information [1].

Another technique used to facilitate understanding of the models’ inner-
working is introduced in [2]. Using a generator model like Variational Auto-
Encoder or Generative Adversarial Network, the proposed approach aims to
generate artificial inputs that mimic the output produced by the analysed model.
As the models are considered black-box methods with no access to their inner
gradients, the optimization of the generator relies on an evolutionary strategy.
In the end, the artificial inputs are analysed to provide insights into the model
capabilities.

Considering that the visualization techniques were not sufficient to gain in-
sight into the information encoded by the recurrent neural network, diagnostic
classifiers are introduced in [7] to gain better insight into the information en-
coded by recurrent neural networks. This led to the development of diagnostic
classifiers where the authors tested multiple hypotheses about the information
processed by the network. If the diagnostic classifiers can accurately predict the
information, then it is concluded that the information is encoded in the net-
work [7].

[8] made use of diagnostic classifiers to link what is going on inside the neural
network to linguistic theory. Specifically, they examine the ability of LSTM to
process Negative Polarity Items (NPI). The results show that the model can
determine a relationship between the licensing context and NPI. As explained
in [8], NPI are words that need to be licensed by a licensing context to form a



valid sentence, for example, “He did not buy any books” where “any” is an NPI
and “not” is a licensing context. The authors determine that a good language
model must be able to encode this relationship. This study is able successfully
to link linguistic theory to deep learning [8].

The work in [3] attempts to understand the inner-workings of neural networks
and specifically what the neural networks learn about the target language. They
determine that lower levels of a neural network are better at capturing morphol-
ogy. Hence they also hypothesize that lower levels of the neural network capture
word structure and the higher levels capture word semantics [3].

[11] makes use of diagnostic classifiers for ABSC. Specifically, the authors
evaluate, in detail, the LCR-Rot-hop method developed in [18]. In [11] the LCR-
Rot-hop method is analyzed to investigate if the internal layers can encode word
information, such as Part-of-Speech (POS) tag, sentiment value, presence of
aspect relation, and aspect related sentiment value of words. They conclude that
the word structure (POS) is captured by the lower levels of the neural network,
and the higher levels are able to encode information about aspect relation and
aspect related sentiment value, which is in line with a hypothesis proposed in [3],

3 Specification of the Data

This study makes use of the SemEval 2016 Dataset, Task 5, Sub-task 1, which
contains an annotated dataset for ABSA [13]. A review is divided at a sentence
level and for each opinion in a sentence, the target, category, and polarity are
stated. The polarity of the opinion is the sentiment (positive, negative, or neu-
tral) that the opinion has towards the target. The target is the word in the
opinion towards which the sentiment is directed. Last, the category is related to
the target and shows which aspect the target belongs to. Table 1 shows the class
frequencies for the training and test set used to evaluate LCR-Rot-hop++. In
both the test and training set, the Positive class is in the majority with more
than 70%, and the Neutral class is in the minority with less than 5%. This im-
balance could make it more difficult for the neural network to learn the Neutral
class.

Table 1: Polarity frequencies in Training and Test Sets
Training Data

Polarity Frequency %

Negative 488 26.0
Neutral 72 3.8
Positive 1319 70.2

Test Data

Polarity Frequency %

Negative 135 20.8
Neutral 32 4.9
Positive 483 74.3

Due to the fact that we use BERT word embeddings to represent words, we
need to re-concatenate words that have been divided into word pieces in order
to generate the dataset used to train and test the diagnostic classifiers. As any
words that begin with “##” is a word piece belonging to the word preceding
it, we can combine them into a single word. Due to each word also needing its



own BERT word piece embedding and hidden states, when we combine the word
pieces we also need to generate a single word embedding or hidden states for the
newly formed word. The word embedding and hidden states represent the layer
information that is output by each layer of the LCR-Rot-hop++ model, prior to
the final MLP layer for sentiment classification. A proposed solution [19] was to
use a recurrent neural network to combine word piece embeddings into a single
word embedding, however, without a large dataset to train the neural network
this would result in inadequate word embeddings. One of the methods to get a
single embedding that captures the meaning of a larger piece of text, such as
a phrase or a sentence, from the individual embedding is to average the word
embeddings to get a single word embedding representing the entire phrase [9].
We use this approach to combine word pieces and their embedding and layer
information into a single vector due to its simplicity.

4 Method

This section is dedicated to the proposed methodology. Section 4.1 presents the
backup model of the the two-step approach HAABSA++, and Sect. 4.2 provides
an overview of the diagnostic classifiers used to understand the inner-working of
the LCR-Rot-hop++ model.

4.1 LCR-Rot-hop++

We aim to investigate if a layer of the backup model of the hybrid approach pre-
sented in [17] (more precisely the LCR-Rot-hop++ neural network) encodes cer-
tain information. We will begin by training the neural network proposed in [17]
on the training data. After the training is complete, we extract the hidden layers
from all the correctly predicted instances to generate the features for our train-
ing dataset. The accuracy of our methods will be evaluated on the SemEval 2016
test set. We make several diagnostic classifiers to test our various hypotheses.
Furthermore, the diagnostic classifiers are trained only on the correctly pre-
dicted instances from the training data, as training on the incorrect instances
can possibly lead to the diagnostic classifiers learning incorrect information.

The context representations for LCR-Rot-hop++ are calculated at the sen-
tence level. However, to create our dataset we require these representations to
be at the word level. We get the word-level representations by omitting the sum
when calculating the context representations at the sentence level, hence the
formula to get the word level layer information is given in Equation 1.

rli = αl
i × hli (1)

Here, αl
i is the attention score for the ith word in the left context. Similarly, hli is

the hidden state of the word. After this, we apply the hierarchical attention by
multiplying the attention score calculated by the hierarchical attention process
for the left context with rli as shown in Equation 2.

rl
′

i = αl × rli (2)



Here, the αl corresponds to the hierarchical attention score calculated for the left
context. By making these changes we can extract hidden states of the various
layers at the word level. In total five layers are extracted, [e, h, r1, r2, r3] which
stand for the BERT embeddings, hidden states, hierarchical weighted representa-
tions 1, 2, and 3, respectively. The BERT embedding layer has a dimensionality
of 768, while the rest of the layers have a dimensionality of 600. The dimen-
sionality of 600 is due to the 300-dimensional hidden states of the bi-directional
LSTM layer, which results in 600 neurons in total. The final layer is repeated
three times (the hop part), hence resulting in five layers in total.

The newly extracted layer information is fed into a single layer MLP which
is trained to predict the given hypothesis. A single layer MLP is used as we
want a simple model, and the use of a simple model is also inspired by the
works proposed in [3] and [11]. If a complicated model is required to extract
the encoded information, then the information is not prominently present in the
data. Due to the highly imbalanced nature of the dataset, we balance the dataset
in the same manner as [11] by drawing min(qc, qmean) instances for each class,
where qc is the number of instances for class c, and qmean is the average number
of instances in a class, excluding the class with the highest number of instances.

4.2 Diagnostic Classifier

An overview of diagnostic classifiers is provided in Figure 1. In this figure, we are
evaluating the word “lousy” for the POS hypothesis. Knowing that each word is
assigned a label that ranges between 0 and 4 for POS tags: Nouns, Adjectives,
Adverbs, Verbs, or “Remaining” words, we notice that the adjective “lousy” is
properly classified only by the first layers of the model.

Classifier.png

Fig. 1: Overview of the Diagnostic Classifier

In this paper, we test various hypotheses to analyze if the neural network
encodes certain information. Below we list the various hypotheses being tested
in this paper and how the corresponding tests are generated. Some of these have



already been considered in [11], however, for the simpler LCR-Rot-hop model
and not the advanced LCR-Rot-hop++ model.

POS tagging is the process of assigning tags to the words based on the POS
and the grammatical categories such as tense, singular/plural, etc. Due to lim-
ited amounts of data available we omit predicting grammatical categories and
limit ourselves to four Part-Of-Speech tags, already mentioned above. The words
classified as anything other than these four are categorized under “Remaining”.
This process is done using the Stanford CoreNLP package. This hypothesis is de-
signed to check if the neural network can understand the structure of a sentence
and its various components. Figure 2a shows an example for POS classification.

Mention Tagging involves predicting the Aspect Mention related to the word.
We use the ontology to identify the Aspect Mention a word is connected to. We
match the word to a concept in the ontology and ensure maximum matches by
checking all lexicalizations of a concept. If there is a match, we check what Aspect
Mention this concept is a subclass of in order to identify the aspect the word is
referring to. Due to the limited coverage of the ontology, the size of this dataset
is much more limited than the others. This hypothesis helps to understand what
part of the ontology the neural network can understand and is encoded in the
neural network. We test this hypothesis by checking if the neural network can
identify various aspects of the ontology. An example of mention tagging is given
in Figure 2b.

Aspect Relation Classification is the task of predicting the presence of a re-
lation between the words in the context and the target/aspect. Hence, this is a
binary classification problem. To generate the dataset, we make use of the Stan-
ford Dependency Parser, which identifies the various grammatical relationships
between words in a sentence. If any relationships exist between a context word
and its target, we label that word as 1, and 0, otherwise. This hypothesis helps
to check if the neural network is encoding information about the relationship
between a context word and the target. Figure 2c shows an example of relation
tagging. The dependencies are indicated by an arrow from the context word to
the target word.

Word Sentiment Classification is the task of predicting the sentiment of a
word as either Positive, Neutral/No Sentiment, or Negative. To identify word
sentiment, we make use of a two-step procedure. First, we match the word to
a concept in the ontology if it is possible. For this, we use the various lexical
representations a concept has. After matching words to a concept, we check
if the concept belongs to the Positive or Negative subclasses of the Sentiment
Value class defined in the ontology and use that to identify the sentiment. If the
word does not match any concept in the ontology or is related to a concept that
does not belong to the Positive or Negative subclasses, we use as back-up the
NLTK SentiWordNet library to identify the word sentiment. NLTK SentiWord-
Net identifies the sentiment based on its most frequently used context. It can
also classify the word as Neutral/No Sentiment. Due to the limited coverage of
the ontology, we have to use the NLTK SentiWordNet so that we have a larger
dataset to be used to train and test. This hypothesis is designed to identify if



the neural network can correctly detect the sentiment of the word. Figure 2d
shows an example for Word Sentiment Classification.

Target-Related Sentiment Classification is a combination of the previous
two tasks discussed, namely Word Sentiment Classification and Aspect Rela-
tion Classification. We generate another dataset which combines the information
from the previous two datasets. If a word has a relation with the target (Aspect
Relation Classification) we gather the sentiment of the word (Word Sentiment
Classification) and assign that sentiment. If there is no relation or if the sen-
timent is Neutral, we identify it as “No sentiment”. This hypothesis checks if
the neural network can identify the words that have a relation to the target and
what sentiment they hold. An example of this can be seen in Figure 2e.

(a) Part-of-speech tagging (b) Mention tagging

(c) Relation tagging
(d) Word sentiment classification

(e) Aspect sentiment classification

Fig. 2: Examples with part-of-speech tagging, mention tagging, relation tagging,
word sentiment classification, and aspect sentiment classification

The diagnostic classifiers are implemented using the scikit-learn library
in Python. We make use of the MLPClassifier function in the library for the
diagnostic classifiers. MLPClassifer has the ReLU activation function and a
constant learning rate of 0.001. Hyper-parameter optimization was performed
using the GridSearchCV function provided in the scikit-learn library on the
training data with three folds.

5 Evaluation

To analyze if the neural network can encode hypotheses, such as the structure of
a sentence (POS tagging) or the sentiment of a word, we employ diagnostic clas-
sifiers to investigate if the layer information can encode the various information
correctly. We make use of the accuracy and the weighted F1 score to measure the
performance of the diagnostic classifier. We discuss individual hypotheses and
compare them to the results reported in [11]. Last, we provide an overview of
how the LCR-Rot-hop++ model encoded the various hypotheses and compare
their performance.



POS tagging. Table 2 shows the results for the diagnostic classifier trained
to predict the POS tag of a word. Table 2 shows that the accuracy is highest
for the embedding layer but falls as we move deeper into the neural network,
although there is a slight increase at the end. A similar trend is shown by the
F1 score, although there is an increase in the weighted F1 score in the second
weighted hierarchical layer. This suggests that the deeper layers of the neural
network encode less information about the POS tags. Overall, the embedding
layer tends to best encode information about the structure of the sentence, while
the information is lost or becomes less pronounced in the data as it moves deeper
into the network. According to the results reported in [11], a steep fall in the
accuracy is visible after the embedding layer, which continues in the hidden state
layer. Last, the accuracy is stabilized for the weighted layers, although there is a
slight increase in the third weighted layer, which is also observed in our results.
However, our reported accuracies for POS tags are significantly lower compared
to [11]. A possible reason for the relatively low accuracy and F1 scores could be
the BERT embeddings used to represent words. This could confuse the diagnostic
classifier as the same words have different representations, in different contexts,
but could still have the same POS tag. As we move deeper into the neural
network, we are losing information regarding the POS tags which suggest that
the model is deeming it unnecessary for sentiment classification. The optimal
number of neurons for each classifier is given in Table 2.

Table 2: Diagnostic Classifier results for POS Tagging
Layer Accuracy (%) F1 (%) Number of Neurons

Embedding 65.51% 69.96% 500
Hidden State 58.18% 63.58% 700

Hierarchical Weighted State 1 55.57% 61.53% 500
Hierarchical Weighted State 2 55.54% 61.62% 500
Hierarchical Weighted State 3 56.50% 62.19% 700

Aspect Mention Tagging. The Aspect Mention tagging is a new task intro-
duced in the current work to check if the various aspects in the domain are being
encoded in the neural network. According to Table 3, the accuracy falls as we
move deeper into the model. While the BERT embedding layer has the high-
est accuracy, the hierarchical weighted layers are the least effective. However,
within the hierarchical weighted layers, the accuracy only decreases minutely
and is relatively stable. It is to be noted that the Mention Tagging hypothesis
has a highly imbalanced dataset, and after balancing the dataset we are left with
a much smaller dataset which might adversely affect the classifier. Furthermore,
due to the imbalance in the data, the weighted F1 is a better evaluation metric
and also provides a slightly different result. According to F1, the performances of
the embedding layer and the hidden state are extremely close to each other. The



embedding layer is below the hidden layer by an extremely small margin. The
trend for the weighted F1 scores is downwards, similar to the accuracy. From
this information, we can see that the embedding layer is able to best encode
information about the Aspect Mentions. Overall, our results suggest that as we
move deeper into the neural network, information about the aspects is to some
extent lost. It is to be noted that a word could be related to multiple aspects,
and hence a multi-class diagnostic classifier could be replaced with a multi-label
diagnostic classifier. The optimal number of neurons for each classifier is given
in Table 3.

Table 3: Diagnostic Classifier results for Mention Tagging
Layer Accuracy (%) F1 (%) Number of Neurons

Embedding 79.50% 61.91% 500
Hidden State 77.08% 61.99% 900

Hierarchical Weighted State 1 73.49% 60.40% 700
Hierarchical Weighted State 2 73.37% 59.68% 500
Hierarchical Weighted State 3 73.15% 58.22% 500

Aspect Relation Classification. Table 4 shows the results of the diagnostic
classifier for identifying Aspect Relations. This task checks if the neural network
can identify words that are related to the target. Table 4 shows that the highest
accuracy is present in the hidden state layer, while the lowest accuracy is in the
embedding layer. As we go deeper into the neural network we see a huge spike
in its ability to encode aspect relations at the hidden states layers, but after
that, there is a small decline in accuracy for the next layer followed by small
fluctuations in the remaining layers. A similar pattern is seen in the weighted
F1 score, where the hidden state layer can encode the aspect relations best.
This suggests that the model can identify words related to the target better
as we move deeper into the neural network and although there is a small drop
moving into the hierarchical layers, the model is able to identify words related to
the target relatively well. This is logical as the neural network aims to identify
words that are related to the target, towards which it is trying to classify the
sentiment, and hence its ability to identify words related to the target should
improve as we go deeper into the model. Out of all the layers, the hidden states
appear to encode aspect relations the best. A possible reason for the hidden
state performing better than the hierarchical layers could be that some words
are related to the aspect but have no sentiment value, hence the model does not
pay attention to those kinds of words deeper into the model, resulting in slightly
lower accuracy. [11] showcases a similar pattern for aspect relations. There is
a spike for the hidden state layer followed approximately the same values (or
lower) for the weighted layers. The optimal number of neurons for each classifier
is given in Table 4.



Word Sentiment Classification. Table 5 shows the performance of the diag-
nostic classifiers for identifying the sentiment of a word. The results prove that
as we go deeper into the neural network, the accuracy and the weighted F1 score
fall, although there is a spike for the third hierarchical weighted layer. A possible
reason for the higher performance of the BERT embedding layer is probably due
to the nature of word embeddings that can hold information about their context,
alleviating the problem of sentiment detection. Overall, we see that information
about the word sentiments is lost as we move deeper into the network. This
could be justified due to Type-2 Sentiment Mentions [17] causing some words
to not be important for determining the sentiment towards the target as they
are not related to that aspect. [11] does find a similar downward trend initially,
although at a much higher accuracy. [11] observes that following the downward
trend, the accuracy stabilizes for the weighted layers, however, this is not the
case for this study as we observe another increase in the final layer. The optimal
number of neurons for each classifier is given in Table 5.

Table 4: Diagnostic Classifier results for Aspect Relation
Layer Accuracy (%) F1 (%) Number of Neurons

Embedding 73.06% 78.03% 700
Hidden State 82.38% 84.04% 900

Hierarchical Weighted State 1 80.85% 82.79% 500
Hierarchical Weighted State 2 81.89% 83.53% 1100
Hierarchical Weighted State 3 80.66% 82.58% 900

Table 5: Diagnostic Classifier results for Word Sentiment
Layer Accuracy (%) F1 (%) Number of Neurons

Embedding 77.03% 80.81% 900
Hidden State 67.84% 73.69% 900

Hierarchical Weighted State 1 66.82% 72.95% 700
Hierarchical Weighted State 2 63.13% 70.27% 1100
Hierarchical Weighted State 3 66.00% 72.01% 900

Target-Related Sentiment Classification. Table 6 shows the results for
the diagnostic classification of the Target-Related Sentiment Classification task,
which has to check if the neural network can predict the sentiment of the words
specifically related to the target. Table 6 shows that the accuracy is highest
in the hidden state layer and falls as we move deeper into the neural network,
before rising again in the final layer. However, the accuracy never increases
past the hidden state layer. The weighted F1 score follows a similar pattern,
although it is much less pronounced for the spike in the final layer. As this
hypothesis is a combination of two other hypotheses, its trend can be explained



through them. We observe, that the Aspect Relation accuracy increases and
then stabilizes but for the Word Sentiment hypothesis it decreases before a spike
in accuracy at the end. The increase in accuracy for the hidden state layer is
possibly due to the increase in the layers’ ability to identify words related to
the target being greater than the fall in its ability to identify the sentiment.
Furthermore, as the accuracy for Aspect Relations stabilizes, but the accuracy
for the word sentiment hypothesis continues to fall, we observe a downward
trend for the layers following the hidden state. However, the final spike can be
explained by the spike in accuracy for the Word Sentiment hypothesis, while the
accuracy of the Aspect Relation hypothesis remains approximately the same.
We observe that the neural network places more importance on identifying the
sentiment of the words related to the aspect, as we observe a relatively good
accuracy for Target-Related Sentiment Classification in the final layer, which is
within expectations as that is an important task for ABSC. The optimal number
of neurons for each classifier is given in Table 6.

Table 6: Diagnostic Classifier results for Target-Related Word Sentiment
Layer Accuracy (%) F1 (%) Number of Neurons

Embedding 76.88% 85.27% 500
Hidden State 78.05% 87.22% 700

Hierarchical Weighted State 1 76.05% 85.58% 700
Hierarchical Weighted State 2 75.38% 85.10% 1100
Hierarchical Weighted State 3 77.28% 85.61% 500

5.1 Overview

Figure 3a and Figure 3b show the accuracy and F1 scores, respectively, for
the different hypotheses in a single graph. We can see in Figure 3b that the
model is successful at learning about Aspect Relations, Word Sentiments, and
the sentiment of the word if it is related to the target (Target-Related Word
Sentiment). This is a good sign as these tasks are extremely important for ABSC.
A major difference between Figure 3b and Figure 3a is that the Mention Tagging
hypothesis is performing the worse when compared using the weighted F1 score
but good when comparing based on the accuracy. A reason for this disparity
in results could be due to the data imbalance and the fact that the Mention
Tagging dataset is much smaller compared to the other hypotheses datasets due
to the limited coverage of the ontology. The performance for POS tagging and
Mention Tagging is low, based on the weighted F1 score, which suggests that the
model is not able to encode information about the structure of the sentence and
which Aspect Mention a word is related to. These results are to be expected as
these tasks are not important for ABSC, as identifying the sentiment supersedes
POS tagging and the Aspect Mentions are usually already identified.



(a) Accuracy. (b) F1 score.

Fig. 3: Overview of the Accuracy and F1 score for the different hypotheses.

From these results, we can conclude that while the LCR-Rot-hop++ model
learns about the word sentiment and structure of the sentence in the starting
layers, the more complex details such as which words are related to the target
and the sentiment of those words are learnt deeper into the model.

6 Conclusion

In this study, we proposed the use of diagnostic classifiers to investigate if the
hidden layers in the LCR-Rot-hop++ model can encode information regarding
various hypotheses that are important for ABSC. These hypotheses are:

– POS tagging: We found that the BERT embeddings were the best in clas-
sifying POS tags, while the other layers had significantly lower accuracies
and F1 scores. This implied that deeper into the model, information about
the POS tags is not encoded. According to the weighted F1 score, the LCR-
Rot-hop++ model does not capture information about the structure of the
sentence.

– Mention Tagging: We found that the accuracy and weighted F1 score signifi-
cantly fell deeper into the model. This implied that the neural network does
not encode information about the Aspect Mention related to the word. The
best accuracy for mention tagging was found in the embedding layer. This
also suggested that the model did not find this information important as we
lose this information as we proceed deeper into the network.

– Aspect Relation Classification: The neural network was able to encode infor-
mation regarding which words are related to the target. We found relatively
high accuracy and weighted F1 score. The weighted F1 score and the accu-
racy rose deeper into the network and stabilized at the hierarchical weighted
layers. This means that the network was able to learn information about
which words are related to the targets.



– Word Sentiment: The ability to identify the sentiment of a word fell as
we went deeper into the neural network. The best accuracy and weighted
F1 score were for the embedding layer. The relatively high accuracy and
weighted F1 score for the embedding layer could be due to the contextual-
ization. Overall, the LCR-Rot-hop++ showed moderate success in encoding
information regarding the word sentiments.

– Target Related Word Sentiment: We found that the hidden state layer had
the highest accuracy for the ability to identify words that are related to the
target and then their sentiment. As we moved deeper to the network it fell
for a bit before once again rising. Overall, we found that the neural network
is able to encode information regarding the sentiments of the words related
to the target the best, which is within expectations as this information is
highly relevant for ABSC.

In the future, this research should be repeated for different neural networks
designed for ABSC, as that might give insight into what kind of neural network
works best for certain hypotheses. Furthermore, for the Mention Tagging hypoth-
esis, a multi-class, multi-label diagnostic classifier could be trained to account for
one word being related to multiple Aspect Mentions. In addition, as imbalanced
datasets are present in the real world, we should look to combining the model
with more advanced re-sampling techniques, such as Condensed Nearest Neigh-
bor [12]. It is to be noted that this procedure must be done carefully, as certain
oversampling techniques, such as SMOTE [4] and its variants, generate synthetic
data and adding synthetic data is counter-intuitive as we want to investigate if
the hypothesis is encoded in the layers originally. The final suggestion would be
to explore how and where the neural network learns other concepts represented
in the ontology besides the aspect mention (e.g., sentiment expressions).
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