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Abstract. With the continuous development of the Web, it is becoming
increasingly important for e-shops to present customers with the most
relevant products. The personalisation of product rankings is one of the
problems associated with this development. Until now, the focus in the
field of machine learning has mainly been on the ranking of documents
The ranking of items in general asks for new types of features, that
accurately describe the match between query and item. We propose the
usage of cross-terms between item-specific and user-specific variables in
the Ranking SVM algorithm. We apply these new features for the ranking
of flights on the website of a company in the airline industry. For our
data, the cross-terms improve the out-of-sample accuracy of the Ranking
SVM with 2.11 percentage points compared to a baseline. Due to the high
amount of traffic on the Web, improvements like this can already have a
big impact on users’ purchase activity.

Keywords: learning to rank · implicit feedback · personalised item
ranking · user flight preferences · Web shop

1 Introduction

Due to continuous advancements in the digital world, Web commerce is becoming
increasingly important for companies. This development stresses the companies’
need of having a high quality website. The ongoing evolution of data analytics
provides companies with more insights in the characteristics their customers’
online behaviour [1]. These insights in behaviour can be used to provide cus-
tomers with relevant product suggestions. Since customers usually only spend a
limited amount of time on a website, it is crucial to present them with the most
interesting offers during their visit. These personalised recommendations require
a thorough understanding of the factors that drive a customer when purchasing
a product. One way of providing customers with these offers is a relevance-based
product ranking on individual level. In this study we aim to provide such a
ranking for a company in the airline industry. In the past, various approaches



have been proposed to solve the problem of making relevance predictions for
products or related items. Many of these approaches were in the field of infor-
mation retrieval, which originally focused on the ranking of documents. However,
information retrieval has also been applied to the field of e-commerce [2,3].

Another class of methods that aims to provide a relevance-based ranking, is
the recommender system [4,5]. These methods are mainly applied to constant
product assortments. Although these methods have proven to be very accurate in
predicting product relevance, they tend to suffer from so-called cold starts. These
cold starts indicate that the model does not perform well for customers or items
on which it has not gathered sufficient information yet. For some e-shops these
are serious concerns, since new customers are introduced every day and product
assortments change rapidly [6]. Failing to deliver personalised recommendations
can lead to customers prematurely leaving the website, causing the company
to miss out on revenue in current and potential future sales. We propose a
method that avoids the problem of cold starts by obtaining relevancy rankings
merely based on information retrieved during a customer’s session on the website
domain. If the customer closes the web page and decides to return at a later
moment, recommendations will be solely based on information from that new
session.

Another difficulty for e-shops, besides cold starts, is that a customer may
have different motivations per website visit. To give an example from the airline
industry, a customer can book a flight for both a business meeting and a holiday
in the very same week. A well-personalised website is able to capture both mo-
tivations, requiring customer preferences to be updated during a website visit.
To enable websites to capture these motivations based on real-time purchase
behaviour, Latent Dirichlet Allocation (LDA) can be applied [7]. However, LDA
has the disadvantage of not being able to update customer characteristics in real
time.

For real-time updating of customer preferences more flexible methods are
required, which can be found in the field of machine learning. In the last decade,
the ranking of items gained more and more attention in machine learning al-
gorithms, gathered under the name of learning to rank (LETOR). The purpose
of these algorithms is to rank unseen items based on user preferences. Within
LETOR there are three main approaches: the pointwise, pairwise, and listwise
approach. While the pointwise approach evaluates each item individually, the
pairwise approach focuses on item pairs. Both approaches implicitly optimise
the item ranking by obtaining a relevance score for each item or pair, respec-
tively. The pointwise approach needs implicit feedback on all items, where for the
pairwise approach it is sufficient to have partial feedback on paired comparisons.
The listwise approach solves the ranking problem by explicitly optimising the
entire ranking. However, a drawback of the listwise approach is the complexity
of its loss function. As the data set at hand contains partial feedback, we employ
a pairwise approach.

We propose a novel method for Personalising A Ranking Using Cross-terms
(PARUX) which determines the features that drive customers, and provides an



item ranking function which can be updated in real-time. In the past, feature-
based ranking functions could not incorporate user characteristics as ranking
criteria, simply because the characteristics do not differ over the items to be
ranked. We introduce the inclusion of user characteristics in the Ranking SVM
methodology of [8] by setting up cross terms with the characteristics. To the
best of our knowledge, this set-up has never been applied for the ranking of
items. In the next section, we present the related work that gave rise to this
study, followed by a framework for our method. Subsequently, we discuss an
implementation in the airline industry, followed by the performance evaluation.
Lastly, the conclusions are drawn and suggestions for further research are given.

2 Related Work

Although a lot of research has been done in the field of learning to rank (LETOR)
[9,10,11], the main focus of this research area has been on the relevance ranking
of documents or Web pages. In this context, the used algorithms aim to retrieve
and rank documents that match a query specified by the user. To capture the
similarity based on features, one can often make use of common feature weighting
measures such as TF.IDF and BM25 [9]. However, once the application of the
ranking task switches to e-commerce and purchase recommendation, no such
common measures exist. One of the challenges of LETOR in e-commerce is to
identify the user’s preferences with a low cognitive load on the user.

Coyle and Cunningham were the first to apply the concept of LETOR to
the online recommendation of flights [12]. To be able to present the users’ most
preferred flights in descending order, they proposed a so-called Case-based Rea-
soning. This method is based on similarities of previous accepted offers, as those
are presumed to contain the user’s preferences. These extracted preferences are
used to construct feature weights. Once these feature weights are known, the
ranking of the flights boils down to a straight forward multiplication of the fea-
tures and their weights. Their method is shown to achieve a recommendation
accuracy of at least 85% for each of the users. However, before the method
is able to accurately approximate the preferences, several purchases must have
been made. Moreover, since only one set of preferences is identified for each
user, the approach cannot handle the fact that a customer might have different
motivations when booking flights.

In 2013, Ostuni et al. proposed an entirely different approach to construct a
personalised ranking based on positive implicit feedback hidden in Web data [13].
Their method aims to solve this task by integrating both the content-based and
collaborative features in the same feature space. Representing this entire feature
space in an extensive graph allowed them to use path-based feature extraction,
which describes similarities between the items preferred by the user and the
items to rank. However, the proposed algorithm still needs a relatively large
amount of feedback from each individual customer. In order to avoid overfitting,
they propose to drop all users with less than 20 observations. This reveals the



downside of this method for our setting, as such a vast amount of feedback is
rarely available in the airline industry.

Other approaches have tried to personalise the product recommendation
based on similarities between users, which has the advantage that no data on
past purchases of an individual are required. In 2003, Freund et al. set up an
experiment to improve the ranking of meta-search results and movie recommen-
dations [14]. They proposed a pairwise LETOR algorithm based on the concept
of boosting called RankBoost. The idea behind RankBoost is to take a weighted
average over many (weak) ranking functions, resulting in a much more powerful
ranking rule. While the authors show that for the meta-search results RankBoost
performed just as well as the best search strategy, for the movie recommenda-
tion RankBoost outperformed the standard regression and nearest-neighbour
algorithms. For a large problem setting, as we encounter in our work, Rank-
Boost achieves an accuracy of about 65%, exceeding the runner-up by almost
5%. Although RankBoost is a very flexible and powerful algorithm, the method
gives little insight in why a certain item is preferred over another.

The method proposed by Joachims in 2002 is an approach that is able to
uncover those insights and has inspired PARUX [8]. His LETOR implementa-
tion of the Support Vector Machine (SVM), called Ranking SVM, is a pairwise
approach that optimises the retrieval quality of search engines in the document
domain. The set-up of this method is analogous to the classical SVM. Joachims
shows in his paper that Ranking SVM exceeds Google’s PageRank algorithm in
terms of retrieving quality, already after a couple of hundred training examples.
Since the method has shown to obtain accurate results when trained on rela-
tively small groups of users, it should also be able to capture the preferences
of specific, infrequent types of users. Therefore the approach can be very well
applied in our goal of personalising the ranking of items. We extend the work of
[8] by implementing Ranking SVM in an e-commerce setting. This gives rise to
the challenge of coming up with adequate features that capture the similarities
between the search query and the items to rank.

Another challenge, as stated in [15], is the fact that pairwise LETOR ap-
proaches can be very sensitive to noise in the data. When a ranking function
is learned from clickstream data on a previous, non-optimised ranking, the ob-
served preferences can contain biased information. Items that appeared in the
top of the non-optimised ranking may have enjoyed customers’ interest without
being truly preferred. To minimise this bias, our work exclusively uses click logs
that have led to an actual purchase. We argue that with the large number of
different flight options and airlines available these days, a customer will only
purchase a flight when it truly meets his or her preferences.

3 Framework

In this section we present a framework for PARUX, which ranks items in search
results based on revealed user preferences. It is based on the methodology of
Ranking SVM as presented by Joachims [8] that we extend to the context of



ranking items in general. In addition, we propose a novel method to incorporate
user characteristics in the ranking of items.

3.1 Learning to Rank for Items

The goal of LETOR is to train a ranking model for a set of items. Most LETOR
algorithms are originally designed to rank documents. Fortunately, a feature-
based formulation of this problem makes it extensible to items in general. In
that case the task remains to find meaningful features. The idea behind a feature
approach is that it reflects the relevance of an item to a query. One can regard
this query in the broadest sense of the word, as it might also include customer
characteristics. For some query q, one of its associated items i can be represented

by a feature vector x
(q)
i = Ψ(i, q). Here, Ψ is a feature extracting function. The

problem is now reduced to learning a ranking function from the feature vectors of
the queries and items in a training set. The ranking function can then be used to
rank the associated items of a new query, by using their feature representations.
The task remains to find a suitable ranking function.

3.2 Ranking SVM

Ranking SVM is a pairwise approach to LETOR [9]. That is, the method con-
siders items in pairs, where two items are represented by their feature vectors.
Although the method trains on item pairs, the final goal is to rank a list of
individual items by relevancy. The workflow of Ranking SVM is shown in Figure
1. In this figure the preferred item in each query is marked with an asterisk, and
the final ranking order is denoted by the superscript.
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Fig. 1. Framework of Ranking SVM



Ranking SVM requires ground truth labels for a target ranking. The goal
is to minimise the number of pairs that are not in accordance with the target
ranking, i.e., to minimise the number of discordant pairs. This minimisation can
be shown to be equivalent to maximising Kendall’s τ [8]. Here Kendall’s τ is
a measure for the quality of the ranking. Maximising τ is in turn equivalent
to minimising the error of classifying the training sample. For a more detailed
explanation on Kendall’s τ , we refer to [8].

We introduce a (linear) scoring function and incorporate a margin in the
ranking of the items. That is, for given weights we require that for every item i
that is preferred over item j in query q it holds that

w · x(q)
i ≥ w · x(q)

j + 1, (1)

where x
(q)
u is the feature vector of item u and query q. Weight vector w indicates

the importance of the features and has to be learned from the training data.
The +1 term in (1) is the hard margin of the SVM, i.e., the constant in the
linear combination. Note that we can obtain any margin size by multiplying the
elements in w by a scalar. However, we follow the example of the regular SVM
and restrict it to +1 [16]. The current formulation is not yet suitable for an
SVM, instead we have to train it on the difference of the two feature vectors:

w ·
(
x
(q)
i − x

(q)
j

)
≥ 1. (2)

Once we have introduced slack in the constraints, we will show that it is not
necessary to denote the −1 inequality, due to the pairwise differences. When
using large data sets of user preferences, it is unlikely that these data can be
perfectly ranked, causing the hard margin constraints to be too restrictive. We
allow for misclassification in the training set by adopting the idea of a SVM with

soft margins to the ranking context and by including a slack variable ξ
(q)
i,j in the

constraints [16]. We adapt (2) by allowing that the linear combination of the
difference vector is less than or equal to +1 for some item pairs:

w ·
(
x
(q)
i − x

(q)
j

)
≥ 1− ξ(q)i,j . (3)

Next, we should minimise the slack ξ
(q)
i,j . Using this formulation, it becomes

apparent that Ranking SVM is equivalent to applying the regular classification
SVM with soft margins to the difference of the feature vectors. In this case the
classes are either item i is more relevant than item j, or the other way around.
The total optimisation problem can now be formulated as follows:

min
1

2
‖w‖2 + C

n∑
q=1

∑
(i,j):y

(q)
i,j =1

ξ
(q)
i,j

s.t. w · (x(q)
i − x

(q)
j ) ≥ 1− ξ(q)i,j ∀(i, j) : y

(q)
i,j = 1

ξ
(q)
i,j ≥ 0 q = 1, . . . , n

(4)



In this formulation y
(q)
i,j = 1 if item i is preferred over item j in query q according

to the target ranking, and y
(q)
i,j = −1 if otherwise. Furthermore, slack variables

ξ
(q)
i,j indicate the distance of the difference vectors to the margin requirement.

Cost parameter C gives a penalty to a non-zero value of ξ
(q)
i,j and allows for a

trade-off between margin size and misclassification in the training sample. These
slack variables are combined with the complexity control term 1

2 ‖w‖
2

into the
minimisation objective function. Note that since we train on difference vectors,
the constraint for the −1 group of the SVM boils down to the same constraint
as for the +1 group:

(−1)
(
w · (x(q)

i − x
(q)
j )
)
≥ 1− ξ(q)i,j ⇐⇒ w · (x(q)

j − x
(q)
i ) ≥ 1− ξ(q)i,j , (5)

with the only difference being that the indices i and j are swapped. Therefore,
it is sufficient to denote only one type of constraint.

In Ranking SVM the margin is defined as the distance between the closest
two projections onto the weight vector, out of all the projections of the items in
the target ranking. Figure 2 illustrates this distance geometrically, denoted by δ,
for an instance with 4 items. As discussed, we set the margin δ to 1. In the case
with soft margins, this size is traded off against the number of misclassifications
in the training sample. In econometric literature, the loss function in Ranking
SVM is usually defined as a hinge loss on the item pairs. The hinge loss implies
that when an item pair is classified correctly according to the target ranking
with a distance between the projections of at least 1, there is no loss. Only when
the distance is smaller than the margin or when the pair is incorrectly classified,

the loss is equal to ξ
(q)
i,j > 0.

δ

w

Fig. 2. Geometric interpretation of the margin in Ranking SVM



3.3 Ranking SVM using Clickstream Data

In practice the complete target ranking of a query is rarely available. Users of a
search tool only reveal their preference by selecting or buying the most relevant
item or product. Therefore, clickstream logs contain only partial feedback from
the user. However, Ranking SVM can be adjusted for a single ‘winner’ versus
multiple ‘losers’ concept. The SVM is then trained on a subset of the true target
ranking, namely item pairs containing the winner and one of the losers. It is
sufficient to consider only a random subset of the losers, instead of creating all
possible winner-loser pairs [17]. In this way, the SVM ignores interdependency
among the losers, since the user did not reveal his preference among these items.
The learned retrieval function from Ranking SVM can be used to construct the
final ranking. From this point onwards, it is no longer necessary to consider the
items in pairs, as the items can now be ranked according to the length of their
projection on the weight vector w [8]. The length of the projection of x onto w
is defined as

‖projwx‖ = ‖x‖ cos(θxw), (6)

where θxw is the angle between x and w. Remark that the definition of the dot
product of x and w is

x′w = ‖x‖ ‖w‖ cos(θxw). (7)

Since ‖w‖ is a constant and has the same value for all x, ranking by the dot
product is equivalent to ranking by the length of the projection. It is therefore
sufficient to rank the items by the value of x′w.

The SVM requires kernel parameter tuning in order to obtain optimal results.
A possible tuning method is a brute force approach in the form of an exhaustive
grid search. However, since this method is computationally expensive, a more
efficient method is necessary when the used data set is large. A more efficient
method is the Bayesian Optimisation approach as proposed by Brochu et al.
[18]. They introduce Bayesian models for predicting a target function f(x). By
starting off with evaluation in a random point and using the gathered information
to predict the next point that should be evaluated, a probabilistic model for f(x)
is constructed. With each evaluation this model is updated and exploited in order
to choose the best candidate point for the next evaluation. In such a way, the
method is able to efficiently determine the optima for any continuous target
function.

3.4 Personalisation of Rankings

For the personalisation of a ranking, it is important that the match between a
query and an item is included in the criteria on which this ranking is based. In
particular, it is important that the ranking function incorporates user charac-
teristics. However, user characteristics do not differ across the items associated
with a search query. It is therefore not possible to differentiate items based on
user characteristics.



In order to solve the above problem, we propose a novel method for including
characteristics in the ranking of items. By multiplying numeric user characteris-
tics with item-specific variables, we combine the two effects. Depending on the
value of the user characteristic, we amplify the effect of a property, or we reduce
it. We call these kinds of feature weighting measures ‘cross-terms’. It is possi-
ble to include all available combinations of variables and user characteristics, as
collinearity is not an issue for an SVM [19]. One type of cross-term can simply
be the variable itself, without multiplication factor.

We illustrate the idea of cross-terms by giving an example from the airline
industry. Consider the cross-term for ticket price

Price× Number of children,

where Number of children is specified in the search query. This cross-term cap-
tures the possible effect that the number of children has on the price preference.
When the user specifies no children, this variable has no effect on the ranking,
as the values for all items in the query results are equal to zero. Note that we do
not yet imply the sign of the effect, as the SVM can still give either a negative
or a positive weight to this variable. However, when using this cross-term one
does assume that the effect increases linearly with the number of children.

If both the number of variables and the number of user characteristics is
large, the number of cross-terms becomes also large, as this is the multiplication
of the two. It is necessary to perform feature selection for Ranking SVM, espe-
cially when using many cross-terms. Including too many features might cause
overfitting of the SVM for the training sample. We perform feature selection
such that we are left with a prespecified number of features r.

3.5 Feature Selection

In order to find the subset of r among d cross-terms (r < d) that optimise the
performance of the ranking function, we use the SVM-RFE approach as proposed
by [20]. This method utilises the properties of the weight vector w. When each
of the variables is scaled onto a continuous interval of [0, 1], the magnitude of
wi gives an indication for the importance of cross-term i [21]. Therefore, we can
perform backward feature selection on the weights. We iteratively remove the
cross-term corresponding to the minimal value of w2

i and calculate a new weight
vector with the remaining cross-terms, until a subset of size r remains.

3.6 Performance Measurements

Accuracy is used as the main evaluation measurement in this study. We calculate
this by introducing a Success@N% performance measure. This measure considers
a prediction to be correct when the selected item is ranked in the top N percent of
the ranking. The top N percent is ceiled to the next integer. Furthermore, we test
the model performance by comparing the results of PARUX with a benchmark.
As a baseline model we use a naive ranking rule, which simply orders the items
based on one single feature. The feature that correlates the most with the target
ranking is chosen as the feature for the naive ranking rule.



3.7 Implementation

We use a number of different programming languages for this study. Due to the
large size of the used data set, we perform pre-processing steps in Java, as Java
is relatively fast in processing compressed data. We use an implementation of
the Ranking SVM algorithm in Python, called SVMrank. Before that, the data is
shaped in R into the format that is required for the SVMrank algorithm. R is also
used to perform parameter tuning for SVMrank and feature selection according
to the SVM-RFE algorithm.

In Python we make use of the SVMrank software provided by Joachims [8].
The svm rank learn command performs the Ranking SVM algorithm and gives
importance weights to all included features. The binary svm rank classify

leverages these weights and assigns a class label to items in a test set. In R
we make use of the rBayesianOptimization package to find the optimal SVM
parameters. Apart from these operations, we only use standard libraries in all
of the programming languages.

4 Evaluation

In this section we delineate a detailed set-up of our experiment and evaluate
the results obtained by PARUX. To train and test our proposed framework, we
use a data set which comprises clickstream data, collected on the website of a
European airline during the first quarter of 2016. For the sake of comparability
among the click logs, we only consider users that have made a selection on both
an outward and a return flight, i.e., retour flight selections only. As a final sweep
through this sample, we select the 9.59% of users that have actually purchased
the flight ticket corresponding to their selection, that is 16, 239 queries. By taking
only the converted flights we aim to minimise the bias caused by clicks that were
made to just explore the site, and therefore might not contain actual information
on customer preferences. To obtain a set of training data, the remaining sample
is randomly permuted and 2/3 of the click logs are drawn without replacement,
which gives n = 10,826 queries resulting in a conversion. Consequently, the test
data is made up of 5,413 queries.

We merely focus on ranking the presented outward flights, since in the used
data set the logged return price fully depends on the selected outward flight. Con-
sidered are four main features of outward flights, on which data is contained in
the related search query on individual level. These features are price, journey du-
ration, number of stops, and departure time. Since the latter has non-numerical
values (time format), we transform the single variable into four disjunct cate-
gorical dummies: departure in the night (00:00-5:59 AM), morning (6:00-11:59
AM), afternoon (00:00-5:59 PM), and evening (6:00-11:59 PM). With one of the
four features being transformed into respectively four different dummies, we are
left with a total of seven flight-specific features.

Only queries for which 4 or more flights were presented to the customer are
considered. We argue that in smaller sets of flights ranking is not relevant. For



every query we select the flight which is chosen by the customer: the ‘winning’
flight. Subsequently, we construct 3 item pairs containing both the ‘winner’ and
one randomly picked ‘loser’. We choose to take 3 ‘losers’ as we wish to include
the same number of item pairs for each query. There is large variation in the
prices and journey durations of flights to different destinations in the data, as
both short distance trips and intercontinental flights occur. To make the queries
for different destinations comparable, we transform price, flight duration, and
the number of stops to Z-scores within the search results of a query. That is, we
consider these variables relative to the values of the corresponding variables of
other flights that were shown in the search results. We then create the input file
for the SVMrank algorithm with these new standardised variables. In this way,
we are able train one model for search queries to all destinations in the data.
After this standardisation, each of the features is then scaled onto the continuous
interval [0, 1] to allow for an unambiguous interpretation of the weight values that
result from SVMrank. Scaling is performed according to Min-Max normalisation
over all observations:

xscaled =
x− xmin

xmax − xmin
. (8)

As proposed in Section 3.4, we include cross-terms in our analysis to per-
sonalise the ranking. For the customer-specific features we incorporate variables
such as the specified number of adults, selected travel class, whether the user is
logged in on the website, and if he or she has visited a promotional Web page.
A full overview of all features can be found in Table 1. Economy is a dummy
which is equal to 1 if the specified travel class is economy, and 0 if business. The
three variables containing the word “page” take on a value of 1 if a particular
page on the website has been visited before the search. The Apple dummy in-
dicates whether the flight is booked from an Apple device. Europe is equal to
1 if the selected flight origin and destination are both located within Europe.
We include the variable Europe because the Europe-based airline considered in
this study is interested in potential differences between continental and inter-
continental flights. This gives rise to a total of 77 variables that can be included
in the SVMrank algorithm: the seven untouched flight-specific features, as well
as every flight-specific feature multiplied by each of the ten customer-specific
features (7 × 10) as presented in Table 1.

We decide to include a subset containing the top 25% most important cross-
terms, which results in r = 20 variables. To identify these cross-terms, we per-
form a feature selection as described in Section 3.5. Later we will present a
complete overview of the 20 included cross-terms. These variables are used to
obtain the optimal parameters for SVMrank.

As [22] states that CSVM = CSVMrank/n, with n the number of queries in the
training set, we can use a classical SVM to tune the kernel parameters. To de-
termine which kernel function should be used, we compare them by running an
SVM with different kernels on the same validation set. The validation set is ran-
domly sampled from the total training set by means of 10-fold cross-validation.
In each iteration we assess the accuracy of the four different kernel functions:



Table 1. Overview of all used flight-specific and customer-specific features

Flight-specific features Customer-specific features
Price Number of adults
Number of stops Number of children
Journey duration Economy
Departure in the night Log in
Departure in the morning Business page
Departure in the afternoon Promotional page
Departure in the evening Booking orientation page

Number of clicks
Apple
Europe

linear, radial, polynomial, and sigmoid. For the kernel parameters we use the
default values of the e1071 package in R. After 1500 iterations the resulting
accuracy levels per kernel are compared in a t-test, for which the results can
be found in Table 2. It follows that a linear kernel is independently preferred
over any of the three other kernels for a significance level of 0.01. Since the non-
linear kernels have the additional disadvantage of losing interpretation on the
generated weights, we choose to apply SVMrank with a linear kernel.

Table 2. p-values related to SVM kernel selection, indicating a preference for kernel 1
over kernel 2

Kernel 1 Kernel 2 t-value p-value
Linear Radial 3.886 0.000
Linear Polynomial 1354.783 0.000
Linear Sigmoid 2.682 0.007

To tune the cost parameter C for the linear kernel, we perform Bayesian
optimisation on a validation set, which is constructed by applying 10-fold cross-
validation to the training sample. This results in an optimal cost parameter value
of C = 0.0316 for a classical SVM with linear kernel. Given the relation stated in
the previous paragraph, we obtain an optimal cost parameter value for SVMrank

of C = 0.0316 × 10, 826 = 342.10. With this optimal value the model gives the
cross-term weights as presented in Table 3.

Regarding the absolute values of the weights, Price has the strongest effect
on the determined ranking, with a weight value of -2.945. As an illustration,
the ranking score of a flight will decrease if the price increases, assuming that
all other variables are held constant. Similarly, given the negative weight for
variable Journey duration of -2.700, a decrease in duration will improve the



Table 3. SVMrank output weights corresponding to the 20 most important cross-terms
based on training data

Cross-term Value
Journey duration -2.700
Journey duration × Europe 0.607
Price × Economy -2.644
Price -2.945
Journey duration × Economy -2.227
Number of stops -1.879
Number of stops × Economy -1.607
Price × Europe -0.868
Number of stops × Booking orientation page -0.217
Number of stops × Number of clicks -0.262
Departure in the evening × Number of adults -0.145
Departure in the morning × Number of adults 0.458
Departure in the evening × Europe -0.533
Departure in the afternoon × Number of clicks -0.093
Price × Business page 0.032
Number of stops × Log in -0.341
Price × Number of clicks -0.544
Journey duration × Booking orientation page -0.206
Departure in the morning × Number of children -0.032
Journey duration × Apple -0.102

relative ranking position of the flight ceteris paribus. This yields that a trade-off
between features can be constructed.

It should be noted that it is impossible to infer a ranking from direct feature
values, as for the SVMrank input each feature is first converted into a Z-score on
query level, and then scaled over the entire feature range. The weights are there-
fore only applicable to standardised units, clouding the explicit interpretation.
Nonetheless, if the constructed cross-term values are standardised and scaled,
an expected ranking can be constructed in the form of a linear combination by
multiplying weights with cross-term values.

Apart from the feature Price, Table 1 also contains the Price × Economy

cross-term. Since Economy is equal to 1 only if the customer has selected the
economy travel class, the effect of this cross-term is only existent for economy
flights. The negative weight of -2.644 implies that economy travellers are more
sensitive to changes in price than business travellers, given that all other vari-
ables remain constant. However, there are more additional effects for economy
travellers. Note the presence of variables Journey duration × Economy and
Number of stops × Economy, for example. The main consequence is that the
trade-off between variables becomes inherently different between economy and
business travellers.



The weight for Journey duration × Europe has a positive sign, indicating
that the duration of a flight is of less influence for customers travelling within
Europe. The other cross-term weights can be interpreted in a similar way.

Table 4. Outcomes and performance measures of the SVMrank classification step.
When applying the model to the training data, only 3 ‘loser’ flights are included per
query. For the test set, all presented flights are included. Average loss is defined as the
fraction of discordant pairs averaged over all rankings.

Train data Test data
Number of queries 10,826 5,413

Correct 8,240 3,099
Incorrect 2,586 2,314

Number of pairs 32,478 72,682
Number of discordant pairs 3,968 7,630
Success at 15% 76.11% 75.54%
Average loss 12.22% 10.50%

Given the model output as represented by the weights, classification of the
test data by SVMrank can be assessed by means of performance measures as
shown in Table 4. We use Succes@k% instead of Succes@k, since the number of
flights shown to a customer highly differs per search query. In specific, we choose
the Succes@15% performance measure. In this way, we require the chosen flight
to be on top of the predicted ranking to count as a success, if the number of
flights is 6 or less. However, when the number of shown flights is high, e.g. 30, we
only require that the chosen flight is among the top 5 items of the model ranking.
We consider this a reasonable measure, as we argue that website visitors do not
investigate the entire list of search results, both for short and long lists of results.

Classification on the test data gives a total of 7,630 swapped pairs, resulting
in an average loss value of 10.50%. Phrased differently, we are able to predict
the winner correctly for 89.50% of all possible winner-loser pairs. This results in
a Success@15% of 75.54%. We predict the selected flight to be at the top of the
ranking for 3,099 queries, out of 5,413 on the test set.

If we run SVMrank with the 7 flight-specific features only, the selected flight
was predicted to be in the top 15% of all presented flights 73.43% of the time
on the test data. Hence, using the top 20 cross-terms gives an increase in Suc-
cess@15% of 2.11 percentage points. Although these increments appear to be
relatively small, when viewed by a vast number of customers, a slightly more
personalised ranking potentially increases click-through and conversion rates.

Additionally, we generate a naive ranking to evaluate the performance of
PARUX. We choose the variable Price as the naive ranker, since this is the
flight-specific feature that correlates the most with the target ranking. The naive
model is evaluated on the same test set used for the SVMrank algorithm. The
Success@15% on this test set is 62.41%, which indicates that SVMrank with 20



cross-terms outperforms the naive ranking model by approximately 12 percent-
age points. This shows that additional information on customer preferences is
captured by the cross-terms, and that SVMrank is able to identify the trade-offs
customers make up to a certain extent.

5 Conclusion

In this work, we have explained the necessity of presenting customers with the
most interesting products when shopping online. We proposed a learning-to-rank
framework for personalising the product ranking in an e-shop. Using Ranking
SVM, we were able to beat a naive ranking rule by 10 percentage points in success
rate. We introduced PARUX, a model that leverages features that describe the
match between item-specific variables and user characteristics. Compared to the
Ranking SVM model with only flight-specific features, PARUX improves the
Success@15% with 2.11 percentage points. Due to the high amount of traffic
on the Web, improvements like this can already have a big impact on users’
purchase activity.

However, the actual impact of our framework should be investigated in an
A/B-testing experiment. Note that the feature weights should be updated reg-
ularly, as customer preferences can change over time. As soon as the model is
implemented in an actual item search engine, it would be interesting to train
the model on the search behaviour in this optimised setting. We would like to
see if the model performance improves if it is trained on this new data, as this
data might contain a better representation of the user preferences, due to the
fact that the top listed items are the most competitive ones.

As a suggestion for future work, we would like to extend PARUX such that it
can incorporate past purchase behaviour. In this way, the framework is further
personalised on the individual level. Another way to extend the model for the
same purpose, would be to segment the users and train a model for each of
the different segments. Additionally, it would be interesting to see if the use of
cross-terms will prevail in areas other than the airline industry.
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