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Abstract

Prediction of language mistakes is a task introduced by Duolingo as part of the Second

Language Acquisition Modeling topic that aims to learn from the history of mistakes to

improve the experience of language learners. Using transfer learning by means of pre-trained

language models, we propose a framework that can learn the actual mistakes distribution

according to which faraway words of a sentence have a higher chance to produce errors.

To adapt the information provided by the pre-trained language models, more approaches

based on feature extraction or fine-tuning were tried. However, according to our experiments,

integrating these two options in a stack-and-finetune approach seems to be more appropriate

for our task. Regarding the comparison of language models in terms of model distillation,

we notice that distillation does not affect the effectiveness while significantly reducing the

training time. We conclude that the model complexity should be adjusted to the specifics

of the analysed problem and the distillation is an efficient option for low complexity corpora

without considerably affecting the overall performance.

Keywords: Second Language Acquisition, Pre-trained Language model, Model Distillation,

Fine-tuning, Feature extraction

1. Introduction

For many years, foreign languages have been taught in a traditional, non-data-driven way

with little or no personalization of the contents. In contrast, language learning platforms

such as Duolingo now collect data on millions of users that can be used to find patterns in
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language learning and make adjustments to the learning process. Given the vast number of

people that study foreign languages, small improvements in the language learning process can

have a huge impact

One of the key factors that influence success in second language acquisition is motivation

(Gardner, 1972), which has been proved to be tightly related to contextualization, person-

alization, and provision of choices in a learning environment (Cordova and Lepper, 1996).

Thus, it is expected that by tailoring the exercises, the language learners will remain more

motivated, learn faster, and be less likely to drop out. To tailor the contents presented to

each learner, we first need to gain insight into the language learning process. Being able to

accurately determine whether a language learner has effectively learned a concept is a way of

doing this.

Second Language Acquisition Modeling (SLAM) is a task that belongs to the educational

data mining research domain (Ferreira-Mello et al., 2014; Mihaescu and Popescu, 2021). The

main aim of the task is to predict the mistakes that language learners will make in the future,

given their history of mistakes. This new research field was commenced recently by Duolingo

with a challenge (Settles et al., 2018). Several teams submitted papers with their solutions to

the problem of predicting the mistakes that certain language learners will make, given their

learning history and some demographic information. The learning history is the sequence of

sentences produced by a user, where each word is labeled with a zero or a one depending on

whether the user wrote it correctly. Several approaches and techniques have been proposed

in the past to model Second Language Acquisition (SLA); these approaches are reviewed

in Section 2. However, there have been some major breakthroughs recently in the Deep

Learning and Natural Language Processing (NLP) community (Young et al., 2018). In fact,

Deep Learning and NLP are currently two very hot topics. Multi-head attention mechanisms

and transfer learning through pre-trained language models have been key in the development

of new state-of-the-art models (Ruder, 2019).

Transformer-based Language Models (Vaswani et al., 2017) have been a major break-

through in the NLP field, achieving state-of-the-art results in popular benchmarks such as

the General Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2018)

and its successor SuperGLUE (Wang et al., 2019a). These large language models have been

proved to be successful across many traditional NLP tasks. In this paper, the focus is to
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investigate how language models and transfer learning can also be applied to the SLAM task.

There are several signs that indicate that transfer learning through pre-trained language

models might be useful for the SLAM task. First, word embeddings were the third most effec-

tive feature (after response time and days in course) according to the SLAM Task Overview

paper (Settles et al., 2018). Second, the morpho-syntactic features were shown to not affect

or even have weakly negative effects. In (Xu et al., 2018) and (Yuan, 2018) it is demonstrated

that including these features hurt the performance of the models. This is counter-intuitive,

as one would expect such linguistic features to be related to language acquisition. However,

these features were generated with SyntaxNet (Andor et al., 2016), a language parser that

was released prior to NLP’s modern era of transformer-based models. As a result, there are

many parsing errors easily observed when taking a quick glance at the dataset.

Previous models (see Section 2) have used contextualized word embeddings learned only

with the small set of within-task sentences provided in the SLAM dataset (Settles, 2018).

Alternatively, our model incorporates a pre-trained language model that generates much richer

representations of the sentences to capture many more aspects of the language. Precisely, the

input representations of our model are provided by Bidirectional Encoder Representations

from Transformers (BERT) and its distilled version (DistillBERT). The contribution of our

work can be summarized as follows:

• A state-of-the-art solution is proposed for the SLAM task that relies on transfer learning;

• Given the low complexity of the employed corpus, distillation turns out to boost the

efficiency of our model compared to the conventional BERT model;

• The stack-and-finetune approach used to extract the information stored in a pre-trained

language model was proved to be the most suitable for the SLAM task.

2. Related Literature

This section provides an overview of the techniques proposed for the 2018 Duolingo Shared

Task on SLAM. We start by presenting the best performing models submitted to the 2018

Duolingo competition and then provide a summary of the most recent methods relevant to

SLAM. A thorough review and meta-analysis of all the papers that were submitted to the
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Duolingo competition are presented in (Settles et al., 2018). Despite not being the most effec-

tive approach, our solution has high-efficiency rates due to the use of DistillBERT. Therefore,

the aim of our paper is twofold. Firstly, to introduce transfer learning in the field of SLAM.

Secondly, to prove that distillation is an efficient alternative to the widely used BERT model

with small performance reductions, especially when the complexity of the employed data is

low.

Osika et al. (2018) used an ensemble model that combines the predictions of an Recurrent

Neural Network (RNN) with Gradient Boosted Decision Trees (GBDT). They also engineered

a set of additional features such as the number of times the current token has been practiced

and the time since the current token was last seen. The authors excluded morphological

features due to their poor predictive ability when evaluated by a decision tree model. The

three most valuable features were token, user, and format. Furthermore, they observed that

4% of the instances with the least common words in the development set contribute to 10%

of the prediction error.

Xu et al. (2018) designed an RNN with four types of encoders: a context encoder (both at

word level and character level), a linguistic feature encoder (including part-of-speech, morpho-

logical, and syntactic information), a user information encoder (including user ID, country,

and days in course), and a format information encoder (including device type and response

time). The context encoder consists of two LSTMs that work at both word and character

levels, respectively. The authors found out that the context and the format encoders are the

most effective ones and that the linguistic encoder is the least effective.

Rich et al. (2018) used an ensemble of GBDTs with features motivated by theories from

the psychology literature. They engineered features that aimed to capture the motivation and

diligence of users. Other features such as corpus frequency and L1-L2 cognates were included.

The authors concluded that morphological features and part-of-speech tags contributed very

little to the predictive ability. Furthermore, they indicated that word order, subject-verb

matching, and other grammatical rules are aspects in which users commonly make mistakes,

and that explains the importance of considering the word contexts.

Kaneko et al. (2018) proposed a system with two components: a predictive Bi-LSTM that

predicts whether a learner has made a mistake for the current word and a history LSTM that

tracks the learning history of each specific learner. The output of the predictive Bi-LSTM
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is fed into the history LSTM at each step. The authors trained a single model for all three

language tracks (Spanish, English, and French) without any engineered features or language-

specific information. An ablation experiment confirmed the importance of the history LSTM;

the AUC decreased from 0.834 to 0.648 when excluding it.

Bestgen (2018) used a model based on logistic regression. Multiple conjunctive features

(that is, features that are built by combining several primitive features) were engineered by

taking word n-grams and combining them with metadata about the exercises and the users.

The author decided not to incorporate morpho-syntactic information due to the lexical and

syntactical simplicity of the exercises. The most effective conjunctive features included the

tokens and the exercise format.

A more recent work proposed for SLAM is introduced in (Hu et al., 2020) by means of an

encoder-decoder architecture. The encoding part is represented by two modules for capturing

both the input sentences features and the meta-information (user and exercise features). To

decode the encoded information, the method employs a multi-layer perceptron that yields the

final token-level predictions. The proposed method is further enriched by a multi-task learning

approach used to provide predictions for multiple language learning datasets simultaneously.

A similar encoder-decoder is also approached by Ruan et al. (2021). However, the meta-

information is not further encoded, and the decoder has an auto-regressive nature to better

capture the dependencies between words. In the end, the predictions are generated by a

variational inference layer. To mimic the most effective method introduced for SLAM by

Osika et al. (2018), Ruan et al. (2021) pack their solution as an ensemble model that combines

the proposed encoder-decoder with a GBDT model.

Sense et al. (2021) are concerned to enhance a machine learning model via a cognitive

approach. While given a sufficient volume of training data, the machine learning model is

able to perform satisfactorily, training on limited data might benefit from the insights of a

cognitive model. Considering the SLAM data on the English track as a reference, GBDT is

selected as the main token classifier, and the Predicted Performance Equation (PPE) is chosen

as the cognitive model. Despite the small performance margin reported between GBDT and

PPE-GBDT models on the entire data, the margin is more significant for small subsets.

In addition to the above works that have as the main target the prediction of the token-

level mistakes, there are some worth mentioning works that have slightly different aims for
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improving the users’ learning experience. The model proposed by Srivastava and Goodman

(2021) has a coarser approach predicting the correct/incorrect label at the exercise level in-

stead of the token level. The labels are simply assigned with respect to the presence of a right

or wrong answer in the exercise solution. Similar to our approach, the proposed binary classi-

fier relies on a transformer-based language model - GPT-2 (Radford et al., 2019). To improve

the learning experience, the authors also include an exercise generator model that returns

a new exercise based on the quality of the previous answers. Basically, more wrong/correct

answers require the generation of simpler/more complex exercises. Next, according to Wu

et al. (2020), the purpose of the Duolingo dataset to predict the users’ capability to answer

correctly is redefined to infer the proficiency of the language learners. The solution is pro-

vided by considering the Item Response Theory in an approach that relies on the principle of

variational inference.

3. Methodology

3.1. Language Models

Language modeling is the task of predicting the word that will appear next in a given

text. This simple idea has been shown to lead to very powerful representations of language.

Language models are trained on huge corpora that contain unlabeled data, what is commonly

referred to as unsupervised training. In this way, one can take advantage of the enormous

amounts of text data that are available and learn how languages work.

Language models compute the probability of a sequence of words appearing in a certain

sentence. This probability P (w1, . . . , wN ) over the N words of the input sentence can be

expressed as the product of the conditional probabilities P (wi|w1, . . . , wi−1) of each word wi.

One might also choose a window of n previous words to compute the conditional probabilities,

which is approximately equal:

P (w1, . . . , wN ) =

i=N∏
i=1

P (wi|w1, . . . , wi−1) (1)

≈
i=N∏
i=1

P
(
wi|wi−(n−1), . . . , wi−1

)
(2)

Neural language models, also referred to as continuous space language models, make use of

neural networks to solve the task of predicting the next word in a sentence. As opposed to tra-
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ditional language models, neural language models represent words as non-linear combinations

of weights in a neural network, in a so-called distributed way. While the first neural language

models used feed-forward and recurrent networks, the latest rely heavily on attention-based

mechanisms.

Several neural language models have been conceived in the last years, achieving SoTA

results across many NLP tasks. In fact, the emergence of these models was described by

Sebastian Ruder as “the ImageNet1 moment of NLP”. The latest neural language models

such as ULMFit (Howard and Ruder, 2018), GPT-2 (Radford et al., 2019), and BERT (Devlin

et al., 2019) are able to capture many more complex language phenomena (e.g., polysemy and

negation). As opposed to using word embeddings, which are very limited representations

of language, language models allow us to pretrain an entire model and not just the first

layer. Hence, instead of training a language model from scratch, one can take advantage

of transfer learning by taking a language model that has been pre-trained on huge corpora

(usually millions of sentences) and fine-tuning it to solve a specific task. In this way, complex

language phenomena do not have to be learned from scratch every time a model is trained

for a certain task. As a result, one needs significantly fewer tagged examples and much less

computing power to train a model as compared to using word embeddings. This is of great

importance, since collecting tagged data can be very expensive or even unfeasible in the case

of minority languages (e.g., Estonian) or for certain tasks (e.g., sarcasm detection).

3.2. Transformer Architecture

The transformer architecture was proposed by Vaswani et al. (2017), and it is based only

on attention mechanisms instead of RNNs. It consists of two parts: a stack of encoders and a

stack of decoders. Both the encoders and the decoders are composed of modules that consist

mainly of multi-head attention and feed-forward layers. All the encoders share the same

structure; however, they do not share weights. As opposed to RNN-based encoder-decoder

architectures, transformers are parallelizable and require less time to train.

Figure 1 displays a high-level schema of the transformer architecture. First, the inputs

and outputs of the transformer are embedded into an n-dimensional space. In order to pre-

1The ImageNet challenge fostered the creation of computer vision models which achieved astonishing accu-

racy results through deep learning and transfer learning.
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Encoder #1

Encoder #2

Encoder #3

Decoder #1

Decoder #2

Decoder #3

Input embedding
+

Positional Encoding

Output embedding
+

Positional Encoding

Linear

Softmax

Output Probabilities

Figure 1: The simplified architecture of the transformer with three encoders and three decoders.

serve the sequential nature of the elements in the sequences (i.e., their relative positions), a

positional encoding technique is used. These positions are added to the n-dimensional vector

embeddings. These resulting word embeddings are then fed to the first encoder. The rest of

the encoders have as input the output of the previous encoder, i.e., a fixed-length vector.

Each embedding flows through its own path in the encoder, making transformers paral-

lelizable. Each encoder consists mainly of two sub-layers, as Figure 2(a) shows. First, the

encoder’s inputs flow through a self-attention layer. In this way, the encoder attends to other

words in the input sentence in order to encode each word. Then, the outputs of the self-

attention layer flow through a feed-forward neural network. Decoders (see Figure 2(b)) are

similar to encoders; they also have a self-attention layer and a feed-forward neural network.

However, between the two layers, the decoder has an additional attention layer for capturing

relevant parts of the input sentence. Residual connections are used around each sub-layers of

both the encoders and the decoders, followed by layer normalization.

The output of the decoder stack is fed to a fully connected neural network which projects

it into a logits vector, i.e., a vector of size vocab size where a score is assigned to each word in
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Multi-Head Attention

Add & Normalize

FNN

Add & Normalize

Fixed-size
vector input

(a) Encoder block

Multi-Head Attention

Add & Normalize

Enc-Dec Attention

Add & Normalize

FNN

Add & Normalize

Fixed-size
vector input

(b) Decoder block

Figure 2: A more detailed architecture of the transformer including separate blocks for the Encoder and

Decoder.

the vocabulary. Then, a softmax layer converts these scores into probabilities, and the word

with the highest probability is selected as the output of the transformer.

3.3. BERT

In late 2018, Devlin et al. released BERT (Bidirectional Encoder Representations from

Transformers), a language representation model based on the popular transformer architecture

widely used for different NLP tasks that vary from sentiment classification (Meškelė and

Frasincar, 2020) to multi-term response selection (Li et al., 2021). Unlike previous models such

as ULMFiT (Howard and Ruder, 2018) and GPT (Radford et al., 2018), BERT learns deep

bidirectional representations by taking into account both the left and right context of a word

when constructing its representation. Devlin et al. show that by adding only one additional

layer to BERT and fine-tuning it, state-of-the-art results can be achieved for a large variety

of sentence-level and token-level NLP tasks, outperforming many task-specific architectures.

9



BERT only uses encoders in its architecture and comes in two sizes: base and large. The base

model consists of 12 encoder layers, 12 self-attention heads, hidden size 768, and a total of

110M parameters. The large model has 24 encoder layers, 16 self-attention heads, a hidden

size of 1024, and a total of 340M parameters. Two datasets were used to pre-train BERT:

BooksCorpus (800M words) (Zhu et al., 2015) and English Wikipedia (2,500M words). In

this way, BERT learns rich language representations through unsupervised learning.

There are two ways to adapt BERT’s pre-trained language representations to downstream

tasks: feature extraction and fine-tuning. Feature extraction requires less computation time,

as the model’s layers are kept frozen (i.e., their weights are not updated), and the resulting

vector embeddings can be reused. On the other hand, fine-tuning is more computationally

intensive but leads to better results in many cases. Peters et al. (2019) explore these two

adaptation strategies across different NLP tasks and conclude that their relative performance

depends on the similarity of the pretraining and target tasks.

Two tasks were used to pre-train BERT: Masked Language Modeling (MLM) and Next

Sentence Prediction (NSP). MLM randomly masks 15% of the input tokens and predicts the

masked tokens based only on their context. A [MASK] tag is assigned to each randomly

masked input token. NSP uses pairs of sentences (sentenceA, sentenceB) to capture the

relationships between consecutive sentences. To that end, 50% of the training pairs are

contiguous sentences selected from the text corpus and assigned the label IsNext, while the

other half are non-contiguous sentences that are randomly selected and assigned the label

NotNext.

BERT’s input representation is the sum of three embeddings: token, segment, and position

embeddings. The token embeddings are obtained from an embedding dictionary that contains

30,000 tokens, the segment embeddings allow BERT to distinguish between sentence A and

sentence B, and the position embeddings are used to model the sequential nature of the words

in the sentences. BERT uses two special tags, namely a [CLS] tag and a [SEP] tag. The

[CLS] tag corresponds to the first input token and is used in order to construct an aggregate

sequence representation. The [SEP] tag is used to separate sentences A and B. These tags

are added in the preprocessing stage of the input sentences.
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3.4. Model Distillation

Much of the attention in the NLP field has been paid to large transformer models since

the release of BERT. However, at least some of the focus has shifted lately into making these

massive models smaller in size and reducing their inference times. In this way, language models

are becoming more accessible and manageable to researchers that lack huge computational

power. There are several techniques available to reduce the size of a model. Knowledge

distillation is a compression technique that allows us to obtain a reduced model, called the

student, from a larger model, called the teacher. The student model is trained to mimic the

teacher model’s behavior. Other commonly used techniques are quantization and pruning.

Quantization reduces the size of a model by decreasing the numerical precision of its weights,

whereas pruning consists in removing parts of a model to reduce its size. This can be done

in several ways; one can prune weights, neurons, or even weight matrices, e.g., by removing

entire attention heads from transformers.

Model compression was introduced by Bucilǎ and Niculescu-Mizil (2006), who showed that

complex ensembles of hundreds or thousands of base-level classifiers can be compressed into

smaller, faster models with little loss in performance. A few years later, Hinton et al. (2015)

developed this approach further and generalized it by using a different compression technique.

Neural networks are usually trained to predict class probabilities by using a softmax layer that

converts logits zi into probabilities pi. Hinton et al. introduce a temperature parameter in

these softmax probabilities:

pi =
exp(zi/T )∑
j exp(zj/T )

, (3)

where T is a temperature parameter that controls the smoothness of the output distribution.

Larger values result in a softer probability distribution over classes. That is, the temperature

value T allows us to control the uncertainty in the teacher’s output. The same temperature

value is assigned to both the student and the teacher networks at training time. However,

during inference T is set to 1 in order to recover a standard softmax.

As opposed to the usual classification problems in supervised learning where only the

estimated probability of gold labels is maximized, knowledge distillation aims to train a smaller

network that mimics the whole distribution of the output probability of the teacher network.
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This is important because we are usually not only interested in the gold labels but also in other

labels that might have a lower probability. For example, book might be the most likely masked

word in the sentence "This is an interesting [MASK]", but the probabilities assigned to

the words movie, story, and task are also valuable and reflect part of the knowledge learned

by the teacher network. To this end, cross-entropy over soft targets is used rather than over

hard targets. In this way, the model learns to generalize better and faster. This is achieved

by using a distillation loss Lce =
∑

i ti ∗ log(si), where ti is the estimated weight of the soft

target si.

DistilBERT (Sanh et al., 2019) was trained on the same corpus as the original BERT

model following the knowledge distillation approach proposed by Hinton et al. (2015), which

was presented above. It retains 97% of BERT’s performance on the GLUE benchmark and

is 60% faster, while only having roughly half of BERT’s parameters. Furthermore, it is the

fifth best language model for the Semantic Textual Similarity task. In order to achieve this,

Sanh et al. (2019) introduce a triple loss function that combines a masked language modeling

loss Lmlm, a distillation loss Lce, and a cosine-distance loss Lcos which intends to preserve the

similarity of the vectors (embeddings) belonging to the teacher and the student. DistilBERT

has the same general architecture as BERT, although the number of layers is reduced by half.

However, the hidden size dimension is kept at 768, since most of the operations used in the

transformer architecture are highly optimized and reducing it has a relatively smaller impact

on the computational efficiency. DistilBERT is initialized with BERT’s weights by taking one

layer out of two, thus benefiting from their common dimensionality.

3.5. Model Architecture

The proposed model consists of three main parts: a set of embedding layers, a pre-trained

Language Model (BERT or DistilBERT), and a set of layers on top of both. Since it has been

shown that BERT-base (see Section 3.3) outperforms BERT-large in some cases (Goldberg,

2019), the proposed model is developed on the simpler BERT-base variant. As the number

of observations available in our dataset is limited, and the model capacity of BERT-large is

large, our model would likely overfit. Furthermore, in order to use BERT-large a larger GPU

is required as well as longer training times. Figure 3 shows the architecture of our model as

well as its inputs and outputs. The reported experimental results consider both BERT and
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DistilBERT. The latter is a compact language model learned from BERT (see Section 3.4).

The main advantage of DistilBERT is that it requires less computing resources while losing

very little performance. Furthermore, it was trained without BERT’s NSP task, which seems

irrelevant for our task.

Pre-trained language model

(DistilBERT/BERT)

BiGRU

time

day

token userid

country

client

day

time

format

session

Layer 1: Linear/GRU/BiGRU/LSTM/BiLSTM

Layer 2: Linear

Layer 3: Linear

0/1

Input

Output

Figure 3: Model architecture.

The pre-trained language model (DistilBERT or BERT) takes as input a token belonging

to an aligned reference answer. Hence, it is not required to learn an embedding from scratch for

the pre-trained language model; there is already a pre-trained embedding layer in DistilBERT

and BERT. The output of the pre-trained language model (of size 768 for both BERT and

DistilBERT) is then fed into a bidirectional Gated Recurrent Unit (BiGRU) of size 256 in

order to reduce the dimensionality of the pre-trained language model’s output. Our model

also takes as input several features that are provided in the dataset (see Section 4). An

embedding is learned from scratch for each of these categorical features. All embedding layers
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are of size 64 except for that of userid, which is of size 128, and token, which is of size 256.

Those features have larger embeddings because of their higher cardinality (i.e., more unique

values). Note that the token feature is input to both the pre-trained language model and

an embedding layer. This allows our model to learn task-specific information more easily by

means of a learned embedding and results in a more fair comparison. The continuous features

(day and time) are fed into Layer 1 directly after standardizing their values. We also cap

the time values at 100 seconds, as some of the values reported in the dataset are much above

that. The output of the BiGRU on top of the pre-trained language model, the embeddings,

and the continuous features are concatenated before being input into the upper layers of our

model.

There are three layers on top of the pre-trained language model and the embedding layers.

For Layer 1, several neural network architectures (linear and RNN layers) were tried with

different configurations (number of layers and number of neurons). The next two layers are

linear. The output of Layer 3 is a value in the range [0.0, 1.0] predicting the probability that

the user made a mistake at that token. A softmax activation function and a cross-entropy

classification loss are used to obtain this probability.

The path through the entire network is as follows. First, the categorical features (token,

userid, country, client, format, and session) are fed through their embedding layers. The

token is also fed into the pre-trained language model, and its output goes through a BiGRU

of size 256 with a dropout rate of 0.3, as a way of regularizing the input of Layer 1. Then,

the embeddings, as well as the output from the BiGRU and the continuous features (day and

time) are concatenated and fed into Layer 1, which can be a linear layer, a (Bi)GRU, or a

(Bi)LSTM. The output of Layer 1 (of size 512) is fed into Layer 2, and that of Layer 2 (of size

32) into Layer 3 (of size 1), subsequently. A dropout rate of 0.5 is applied for Layers 1 and 2,

which was found to be optimal for a wide range of neural networks and tasks (Srivastava et al.,

2014). Note that the embedding layers and Layers 1, 2, and 3 are trained from scratch in

every experiment reported in Section 6. Finally, a softmax layer is used to output a per-token

probability of a mistake.

We use the PyTorch-Transformers library from HuggingFace (Wolf et al., 2019), a popular

library with PyTorch implementations of state-of-the-art pre-trained language models. The

models were trained on a 16GB Tesla P100 GPU provided by Google Colab. Our code is pub-
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licly available at https://github.com/alvaro768/slam-pre-trained-LM/. The employed

dataset is available at https://dataverse.harvard.edu/dataset.xhtml?persistentId=

doi:10.7910/DVN/8SWHNO.

The optimization was done by the Adam algorithm by means of the minimization of the

binary cross-entropy between the predicted labels and the true labels given in Equation 4.

The learning rate and the batch size are set to 3e-4 and 256, respectively. The max sequence

length is 20, which is sufficient to accommodate any tokenized sentence (exercise instance)

from our corpus.

L = − 1

T

T∑
t=1

[yt · log xt + (1− yt) · log(1− xt)] , (4)

where xt and yt are the token and its label at time step t, respectively.

4. Data

The corpus of language learner data that we employ in this work was released by Duolingo

to support the 2018 Duolingo Shared Task on Second Language Acquisition Modeling (Settles

et al., 2018). The corpus collects data on three language tracks: English from Spanish (2.6k

users), Spanish from English (2.6k users), and French from English (1.2k users). The task

proposed by Duolingo consists in predicting the word-level mistakes that users will make

given their learning history and some additional metadata such as the exercise format and the

response time. In the following, L1 denotes the source language of a learner (not necessarily

her native language) and L2 the target language (i.e., the language she is learning).

All the data available correspond to three types of exercises linked to written production:

reverse translate, reverse tap, and listening. Reverse translate requires the user to translate

from L1 to L2, reverse tap involves translating a sentence from L1 to L2 by selectively tapping

words that are provided to the user, and the listening exercise consists in transcribing an

L2 utterance. The three types of exercises that are provided involve active recall, which is a

principle of efficient learning. Figure 4 illustrates these three types of exercises with examples.

The dataset includes all the sentences (exercise instances) produced by the users during the

first 30 days of learning a language. Each exercise instance in the dataset collects information

related to the exercise and the user. Figure 5 shows all the information available for a sample
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Figure 4: Types of exercises available on Duolingo: Reverse translate, Reverse tap, and Listening.

exercise instance. The following meta-data information are available: an anonymous user ID,

the countries from which the user has done exercises, the number of days since the user started

learning the language on Duolingo, the client (platform) which the learner used, the session

type (lesson or practice), the exercise format (reverse translate, reverse tap, or listening), and

the time (in seconds) that the learner took to finish the exercise. This meta-data is provided

in the first line of each exercise instance (see Fig. 5). The rest of the lines include a token ID,

the actual token (word) from the reference answer, and morpho-syntactic features (part of

speech, morphology features, dependency parse labels, and dependency edges). Importantly,

these features were not handcrafted but generated with SyntaxNet (Andor et al., 2016). The

last column contains the labels: a 1 if the user made a mistake and a 0 otherwise.

In our work, following the approach proposed by Xu et al. (2018), there are three groups of

features: token, user, and format features. Table 1 displays the grouping of these features. The

morpho-syntactic features (part of speech, morphology features, dependency parse labels, and

dependency edges) are excluded, as they were found to have weakly negative effects (Settles

et al., 2018).

Note that the sentences provided in the corpus are not the actual responses that the

learners submitted. Instead, their responses were aligned with the most similar reference

(correct) answer and labels were assigned per-token: 0 if the learner’s answer coincided with

the most similar reference answer, and 1 otherwise. This matching was done by means of
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#user:XUaq7Hc4 countries:NZ days:16.540 client:android session:practice format:listen time:17

Token ID Token P.O.S. Morphology feats. Labels Edges Tag

rx42Rld/0201 Yo PRON Case=Nom|Number=Sing|Person=1 nsubj 2 0

PronType=Prs|fPOS=PRON++

rx42Rld/0202 veo VERB Mood=Ind|Number=Sing|Person=1 ROOT 0 0

Tense=Pres|VerbForm=Fin|fPOS=VERB++

rx42Rld/0203 que SCONJ fPOS=SCONJ++ mark 4 0

rx42Rld/0204 tienes VERB Mood=Ind|Number=Sing|Person=2 ccomp 2 1

Tense=Pres|VerbForm=Fin|fPOS=VERB++

rx42Rld/0205 una DET Definite=Ind|Gender=Fem|Number=Sing det 6 0

PronType=Art|fPOS=DET++

rx42Rld/0206 gata NOUN Gender=Fem|Number=Sing|fPOS=NOUN++ dobj 4 0

Figure 5: Sample exercise instance (meta-information is provided on the first line; the rest of the lines offers

information about the exercise).

Token User Format

token userid day

country time

client format

session

Table 1: Feature grouping.

the finite-state transducer method (Mohri, 1997). Figure 6 illustrates this alignment with

an example. The learner sentence is the sentence provided by the learner (possibly with

mistakes) and the reference sentence is the most similar correct answer. Note that special

characters such as accents and punctuation marks are not taken into account.

5. Evaluation

All datasets (for the three language tracks) are provided pre-partitioned; the first 80% of

the learning data for each user is used for training, the next 10% for development, and the

last 10% for testing. The performance of this per-token binary classification task is assessed

by measuring the AUROC and the F1-score, two evaluation metrics that are widely used for
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learner: Cuantas mansanas tienes ?

reference: ¿ Cuántas manzanas tienes tú ?

label: 0 1 0 1

Figure 6: Sentence alignment example with the learners’ responses allocated per token (labels indicate whether

the learners’ answers are correct).

classification problems. The AUROC measures the area under the ROC (Receiver Operating

Characteristics) curve, which is a probability curve obtained by plotting TPR (True Positive

Rate) against FPR (False Positive Rate). The F1-scores were computed using a threshold of

0.5.

Precision is defined as the number of true positive results divided by the sum of true

positives and false positives, and recall is the number of true positives divided by the sum of

true positives and false negatives.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

The F1-score is the harmonic mean of precision and recall:

F1 = 2 · precision · recall
precision + recall

(7)

6. Results

This section presents the performance evaluation of several models previously described in

Section 3. These models incorporate the token feature, the user features user id, country, and

client, and the format features day, time, format, and session. First, a baseline model is defined

by including a linear layer as Layer 1 without a pre-trained language model. Then, different

architectures are explored by comparing several types of layers and numbers of neurons for

Layer 1. Finally, it is presented a comparison between several approaches for the incorporating

of DistilBERT and BERT in our model. The considered approaches are: feature extraction

(Peters et al., 2019), fine-tuning (Peters et al., 2019), and stack-and-finetune (Wang et al.,

2019b).
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6.1. Baseline Models

Table 2 presents the results of the baseline models. Settles et al. (2018) provide a baseline

that uses a simple L2-regularized logistic regression trained via stochastic gradient descent

(SGD) with all the dataset features provided. This logistic regression was trained using only

the training set. This baseline model achieves an AUC value of 0.774 and an F1 score of 0.190.

Our baseline model uses the neural architecture presented in Section 3. This baseline

model features a 64-neuron linear layer as Layer 1. The rest of the model is left unchanged.

Furthermore, it does not include a pre-trained language model. We also train this model

using only the training set and report the results on the development set. Our baseline model

achieves an AUC of 0.811 and an F1 score of 0.379.

Model AUC F1

SLAM baseline (Logistic Regression) 0.774 0.190

Our baseline (Neural Network) 0.811 0.379

Table 2: Baseline models results.

6.2. Architecture

Several architectural choices for Layer 1 are evaluated (see Fig. 3) before incorporating

a pre-trained language model into our model. Table 3 reports the results for different com-

binations of layers (linear, GRU, BiLSTM, and BiGRU) and numbers of neurons (128, 256,

and 512). Note that the bidirectional layers actually have twice as many neurons (e.g., a

128-neuron BiGRU has 256 neurons in total).

Using an RNN decoding layer (GRU, BiGRU, or BiLSTM) or larger layers (i.e., layers

with more neurons) results in better AUC and F1 scores. However, it can be clearly seen that

the layer size has a much lower impact than the layer type. Furthermore, we observe that

increasing the number of neurons exhibits diminishing returns.

Finally, it is also worth noting that biGRUs perform much better than their unidirectional

counterpart. This confirms the importance of having bidirectional layers for text data. The

difference between the BiGRU and the BiLSTM layers is small, with the former achieving

slightly better AUC scores (our primary evaluation metric) but worse F1 scores. As it results
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in better AUC scores than the bidirectional LSTM layer, a 256-neuron BiGRU layer is used

for our base model (see highlighted cells in Table 3). Furthermore, GRU layers are simpler

(two gates instead of the three LSTM layers) and are computationally more efficient.

# of neurons 64 128 256 512

Architecture AUC F1 AUC F1 AUC F1 AUC F1

Linear layer 0.8176 0.3627 0.8207 0.3626 0.8219 0.3710 0.8223 0.3876

GRU layer 0.8345 0.4289 0.8352 0.4163 0.8367 0.4523 0.8391 0.4546

BiGRU layer 0.8429 0.4328 0.8454 0.4493 0.8459 0.4380 0.8462 0.4467

LSTM layer 0.8351 0.4199 0.8357 0.4214 0.8374 0.4481 0.8376 0.4480

BiLSTM layer 0.8425 0.4563 0.8445 0.4650 0.8448 0.4662 0.8452 0.4603

Table 3: Model performance for different architectures.

In order to determine the relative importance of the model’s features before incorporating

a pre-trained language model, an ablation study is performed. Table 4 shows the decrease in

the AUC and F1 scores after removing each set of features from our base model as described in

Section 3.2. Leaving out the token feature has the largest impact on the model performance,

resulting in a 0.1005 absolute decrease of the AUC score. This decrease is larger than that

of leaving out both the format and the user features, which include seven categorical and

numerical variables.

Ablated features ∆ AUC ∆ F1

Token feature -0.1005 -0.2595

Format features -0.0498 -0.1669

User features -0.0229 -0.1580

Table 4: Ablation study.

6.3. Distribution of Mistakes and Confusion Graphs

Next, the distribution of the actual mistakes made by the language learners in a sentence

is compared with the distribution of the mistakes that were predicted by our model. The

distribution plots in Figure 7 resembles a truncated right-skewed Normal distribution; users
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make more mistakes at the beginning of a sentence. However, this does not take into account

the fact that long sentences are less common in the dataset than short ones. Figure 8 controls

for this and indicate the percentage of mistakes for each position in a sentence. These plots

show that users are more likely to make a mistake in a word the further away a word is in a

sentence. The reported numbers and percentages are computed per position in the sentence.

Figure 7: Corrected actual and predicted mistakes distribution.

The performance of our model at a token level is analysed hereinafter in order to under-

stand when our model makes accurate predictions and when it fails to do so. Figure 9 shows

two confusion graphs with the percentage of true positives, false positives, false negatives, and

true negatives for every position in a sentence. The percentage of true positives (predicting a

mistake and being correct) increase the further away a token is, while the percentage of true

negatives (predicting no mistake and being correct) decreases. This is in line with the distri-

bution of actual mistakes shown in Figure 8. Furthermore, the percentage of false positives

(predicting a mistake and not being correct) and false negatives (predicting no mistake and

not being correct) increase the further away a token is, which implies that the model makes

more mistakes when less data is available (longer sentences are rarer in the dataset).

6.4. Feature Extraction

Feature extraction is the first approach used to incorporate a pre-trained language model

in our solution. Precisely, we freeze all the layers of the pre-trained language model and extract

the weight values of a subset of layers. The rest of the model (embedding layers and layers 1,

2, and 3) is trained after randomly initializing their weights. To that end, three models are

built using (a) layers 1-2, (b) layers 3-4, and (c) layers 5-6 of DistilBERT, and three models

using (a) layers 1-4, (b) layers 5-8, and (c) layers 9-12 of BERT. The outputs of these layers
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Figure 8: Actual and predicted mistakes distribution.

Figure 9: Confusion graphs.

are concatenated into a vector (of lengths 1,536 (2 × 768) and 3,072 (4 × 768), respectively)

and then fed into a bidirectional GRU layer (see Figure 3). The effect of the token embedding

is analysed by generating the results of the model with and without this embedding (see the

top part of the table). These two models use the final output of (Distil)BERT.

As shown in Table 5, the AUC scores are higher than those achieved with our base model

(without a pre-trained language model). Furthermore, the training times of the model with

BERT are approximately twice as long as those of the model with DistilBERT. The times are

given in hh:mm:ss format. The results of the models with and without a token embedding

indicate that it is useful to have a token embedding as well as a pre-trained language model,

which supports our decision of including both in our model. In this way, our model can learn

SLAM-specific information that cannot be found in pre-trained models. As it has been shown

that different layers of BERT learn different aspects of language, we compare the results

across them. Extracting upper layers resulted in a lower AUC score for both DistilBERT and

BERT; these layers capture linguistic phenomena that are more specific to the pre-training
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Model AUC F1 Time

NN+DistilBERT(with emb.) 0.8504 0.4647 1:26:54

NN+DistilBERT(no emb.) 0.8492 0.4693 1:54:49

NN+BERT(with emb.) 0.8501 0.4674 2:23:44

NN+BERT(no emb.) 0.8488 0.4548 3:07:24

NN+DistilBERT(extr. 1-2) 0.8512 0.4772 1:19:21

NN+DistilBERT(extr. 3-4) 0.8515 0.4591 1:19:07

NN+DistilBERT(extr. 5-6) 0.8508 0.4605 1:20:54

NN+BERT(extr. 1-4) 0.8518 0.4695 2:48:43

NN+BERT(extr. 5-8) 0.8503 0.4613 2:47:38

NN+BERT(extr. 9-12) 0.8495 0.4572 2:51:47

Table 5: Feature extraction results.

task it was trained on, while lower layers capture more general patterns. Last, note that

NN+BERT(extr. 9-12) (i.e., concatenation of the features extracted from the four last layers)

was the best-performing feature extraction approach in Devlin et al. (2019) for the Named

Entity Recognition task. Given that our corpus is much different (and more simple) than the

corpora on which BERT was trained, the lower layers of (Distil)BERT contain probably more

useful information for SLAM than its upper layers.

6.5. Fine-Tuning

The fine-tuning approach, which consists in freezing some layers of the language model

and updating (fine-tuning) the weights of the rest is explored next. The rest of the model

(as depicted in Figure 3) is trained from scratch after randomly initializing the weights. Four

different options are considered: fine-tuning only the last layer (layer 6), fine-tuning the last

two layers (layers 5-6), fine-tuning the last three layers (layers 4-6), and fine-tuning all of

them (layers 1-6). Table 6 shows the results for each of these options.

Note that fine-tuning the last layer of DistilBERT results in an AUC score similar to those

obtained with feature extraction, while all the other fine-tuning options yield significantly

worse results. This is due to the learning rate being too high. The weights of the pre-trained

language model are close to their optimal values, while those of the embeddings and layers 1,
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Model AUC F1 Time

NN+DistilBERT(fin. 6) 0.8515 0.4819 1:55:05

NN+BERT(fin. 6) 0.8500 0.4611 2:39:40

NN+DistilBERT(fin. 5-6) 0.8464 0.4548 1:41:14

NN+BERT(fin. 5-6) 0.8454 0.4534 2:38:22

NN+DistilBERT(fin. 4-6) 0.8461 0.4446 1:56:34

NN+DistilBERT(fin. 1-6) 0.8453 0.4330 2:48:41

Table 6: Fine-tuning results.

2, and 3 are randomly initialized and need a higher learning rate. A more robust fine-tuning

alternative is presented in the next section. Note as well that fine-tuning the models takes

longer than using feature extraction, and that the difference in time needed to fine-tune the

last layers of BERT and DistilBERT (while keeping the rest of their layers frozen) is smaller

than the one observed between them when performing feature extraction. Again, the times

are given in hh:mm:ss format.

6.6. Stack-and-Finetune

The stack-and-finetune training strategy is as follows. First, we train the entire neural

network (keeping the weights of the language model frozen) until convergence with the same

learning rate as before, i.e., 3e-4. Then, the whole neural network is fine-tuned (including the

language model) during a few epochs with a lower learning rate. This prevents catastrophic

forgetting from happening, a phenomenon that might occur when language models are trained

with a high learning rate. Table 7 shows our model results after using the stack-and-finetune

approach with a learning rate of 1e-5 for the fine-tuning stage. The execution times of the

stacking and the fine-tuning stages are reported separately in hh:mm:ss format.

Model AUC F1 Time

NN+DistilBERT(lr=1e-5) 0.8518 0.4847 1:08:37 + 1:48:01

NN+BERT(lr=1e-5) 0.8525 0.4789 1:18:40 + 4:22:04

Table 7: Stack-and-finetune results.
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The AUC and F1 scores are higher (for both DistilBERT and BERT) than the scores

obtained with feature extraction and fine-tuning alone. By using a higher learning rate at a

first stage and a lower one thereafter, we were able to avoid catastrophic forgetting. Further-

more, the model with BERT achieves a higher AUC score than with DistilBERT, which is in

line with BERT being a larger language model. However, note that stack-and-finetune the

model with BERT takes twice as long as with DistilBERT. Last, we highlight that using the

stack-and-finetune approach results in AUC scores of 0.8518 and 0.8525 (with DistilBERT

and BERT, respectively), which is substantially higher than that of the model without a

pre-trained language model (0.8459).

Considering the stack-and-finetune approach with BERT word embeddings, Table 8 com-

pares our model with the SLAM-related techniques introduced in Section 2. Even though our

model ranks in the seventh position, our main aim is to show that the pre-trained language

models are useful for the SLAM task and prove that model distillation might enhance the

efficiency much more than affect the effectiveness (one can note that the differences between

AUC and F1 are relatively small).

Method AUC F1

1 Hu et al. (2020) 0.864 0.564

2 Ruan et al. (2021) 0.863 0.564

3 Osika et al. (2018) 0.861 0.561

4 Xu et al. (2018) 0.861 0.559

5 Rich et al. (2018) 0.859 0.468

6 Sense et al. (2021) 0.854 -

7 Our method 0.853 0.479

8 Kaneko et al. (2018) 0.848 0.476

9 Bestgen (2018) 0.846 0.414

10 Yuan (2018) 0.841 0.479

Table 8: Comparition between our method and the methods proposed for the SLAM shared task.

7. Conclusion

We provided evidence that transfer learning through using pre-trained Language Models

such as BERT and DistilBERT is effective for Second Language Acquisition Modeling. The
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stack-and-finetune approach is preferred in terms of AUC and F1 scores among the three

methods presented. However, it must be noted that these improvements come at the expense

of a larger computational cost and longer training times.

We explored three different ways of extracting and adapting the information stored in

the pre-trained language model (DistilBERT or BERT). Feature extraction of the lowest two

layers achieved a substantially higher AUC score and F1-score than our base model (without

a pre-trained language model); 0.8512 and 0.4772, respectively, for DistilBERT. Extracting

the features of the last layers resulted in a worse performance, which is in line with the fact

that upper layers learn more task-specific information. We argued that our corpus is much

different from the corpora on which BERT was trained as our sentences are shorter and less

syntactically complex. Fine-tuning the layers of the pre-trained language model did not show

an improvement over feature extraction — fine-tuning the last layer of DistilBERT yielded an

AUC score of 0.8515, while fine-tuning more layers damaged the model’s performance due to

the learning rate being too high. As a more robust fine-tuning alternative, we lastly showed

the stack-and-finetune approach, which first freezes the pre-trained language model and then

fine-tunes the whole model with a lower learning rate. This resulted in an AUC score of

0.8520 when using DistilBERT and a learning rate of 1e-6 for the fine-tuning stage, as well

as an AUC score of 0.8525 when using BERT and a learning rate of 1e-5 for the fine-tuning

stage.

Our work can be expanded in several directions. Regarding the data, we believe it would

be interesting to make available and analyze the answers of more advanced language learners.

It can be expected that, with more complex data (i.e., longer, more complex sentences), the

benefits of using pre-trained language models such as BERT will be greater, as these models

are trained on huge corpora with long, syntactically complex sentences. Regarding the model,

a next step could be comparing the performance of pre-trained language models of smaller

sizes in order to determine the trade-off between model capacity and performance for SLAM.
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