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Abstract. Content-based semantics-driven recommender systems are
often used in the small-scale news recommendation domain, founded
on the TF-IDF measure but also taking into account domain seman-
tics through semantic lexicons or ontologies. This work explores the
application of content-based semantics-driven recommender systems to
large-scale recommendations on the example of movie domain. We pro-
pose methods to extract semantic features from various item descrip-
tions, including images. In particular, we use computer vision to extract
semantic features from images and use these for recommendation to-
gether with various features extracted from textual information. The
semantics-driven approach is scaled up with pre-computation of the co-
sine similarities and gradient learning of the model. The results of the
study on a large-scale MovieLens dataset of user ratings demonstrate
that semantics-driven recommenders can be extended to more complex
domains and outperform TF-IDF on ROC, PR, F1, and Kappa metrics.

Keywords: Semantics-driven recommendation · Ontology · Computer
vision · Visual semantic features · Large-scale recommendation.

1 Introduction

With the emergence of the Web vast amounts of information have become avail-
able with an accelerating increase [44], scaling up to 44 trillion gigabytes in
2020 [38]. This abundance of information has enabled users to explore immerse
variety of content (e.g., articles, movies, music), but also introduced the problem
of information overload making finding the right information difficult and time
consuming. A solution for the latter problem is seen in recommender systems
(RS) [28, 29], which provide mechanisms to filter and deliver content relevant to
the user in the form of recommendations based on information available about
the user and domain [30]. Different approaches to RS [28] exist: collaborative
filtering, where recommendations are based on similarities between preferences
of one user and preferences of others, content-based filtering, which recommends
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items according to their content, and a combination of the two latter known as
hybrid RS [5].

Here, we focus on content-based RS [26] operating on similarities between
content items based on various extractable features, The features available de-
pend on the item type and dataset. Although text (e.g., descriptions) is the
common form of information to extract features to measure similarity, other
types of information (e.g., music songs include the artist, genre, and the lyrics,
movies include the actors, plot, posters) can also serve as a source of features.

A widely used technique to estimate similarity between texts is Term Fre-
quency - Inverse Document Frequency (TF-IDF) [20], where a feature vector
based on the frequency counts of terms in the text is constructed and multiplied
by the inverse frequency of these terms occurrence in all text sources. The result-
ing vectors can then be directly compared using measures such as cosine similar-
ity [16]. Several recommenders such as CF-IDF(+), SF-IDF(+) have taken the
TF-IDF concept further to provide recommendations of news articles [4, 6, 11,
16], using concepts from domain ontologies or synsets from semantic lexicons for
features instead of terms. These methods have further been extended to (Bing)-
(C)SF-IDF recommenders [7, 19, 25] by including semantically related synsets
or concepts, or absorbing named-entity similarities using Bing page counts.

Relying on the promising results of the latter semantics-driven RS for news
articles, and encouraged by the successful scaling and porting of these methods
to large scale recommendations [3], we are now eager to explore the value of
semantic information extracted from items more complex than text – digital
images – derived by the idea that a picture may be worth more than a thousand
words! In this paper, we extend the extraction of semantic features from text to
digital images (movie posters), and explore whether and to what extent it can
contribute to recommendations. In particular, we seek to answer:

RQ1: How to extract and apply semantic features from images for recommen-
dation?

RQ2: How do semantic features from images contribute to recommendation?

In this paper we continue and extend our previous work on semantics-driven
RS [3], resulting in the following contributions:

– A method for extracting of semantic features from digital images using com-
puter vision for the task, and the adjustment of the scaled similarity model [3]
for features extracted from images.

– A proposal of novel method for large-scale semantics-driven recommenda-
tions based on concepts and synsets extracted from text, and synsets ex-
tracted from digital images.

– Demonstration that semantics-driven RS have many unexplored applications
and can be utilized effectively with the proposed approach to various do-
mains.

The rest of this paper is organized as follows. Section 2 presents related
work, while Section 3 discusses data used for the research. Section 4 focuses on
the recommendation methodology, and Section 5 on its evaluation. Section 6
draws conclusions.
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2 Related Work

We start by reviewing the semantics-driven recommenders TF-IDF, CF-IDF,
SF-IDF, and their extensions CF-IDF+, SF-IDF+ originally designed for news
recommendation. These RS extract features from news article text but can be
used to predict similarity between any two texts.

The TF-IDF is of interest as SF/CF-IDF(+) build on its mathematical con-
cept. The TF-IDF [33] recommender consists of two parts, where the TF indi-
cates how often a term occurs in a given document (higher frequencies link to
higher relevancy), and the IDF captures the importance and uniqueness of a
term in a collection of documents (frequent terms are considered to be common
and less important). The resulting feature vector represents terms with scores,
which can be compared to user vectors using similarity functions (e.g., the cosine
distance). The TF-IDF score is large for terms that occur frequently in single
document but not often in all other documents. A certain specified threshold
value decides whether an item and the user’s interest are considered similar.

The Concept Frequency - Inverse Document Frequency (CF-IDF) [16] is a
variant of TF-IDF, where instead of terms concepts of domain ontology are
used. The text is processed by a natural language processing (NLP) engine that
performs word sense disambiguation (WSD), part-of-speech (POS) tagging, and
tokenization to transform the text into a collection of concept candidates. A
domain ontology containing concepts and their relationships is checked for each
candidate, and if a match is found, a count is added to that concept. The use of
concepts represents the domain semantics better as only relevant words of the
domain are considered, and results in performance improvement over TF-IDF
[16]. CF-IDF+ extends this method further by including directly related concepts
in the domain ontology [11]. Each type of relationship (superclass, subclass, or
instance) is given a weight to vary the overall importance of the found concepts
and their related concepts. The weights are optimized by grid search.

The Synset Frequency - Inverse Document Frequency (SF-IDF) [6] is an-
other variant of TF-IDF, which in addition to all terms looks at synonyms and
ambiguous terms using a semantic lexicon (WordNet). Terms having the same
meaning will be subsumed in one single concept, and therefore WSD is needed.
For terms with multiple meanings, corresponding word senses are counted sepa-
rately. SF-IDF+ [25] outperforms SF-IDF by including synsets that are directly
related over the 27 types of semantic relationships present in WordNet, where
each type has a weight optimized by a genetic algorithm.

The TF/CF/SF-IDF(+) content-based RS were originally established for
news recommendation, rather small-scale recommendation domain, where they
proved their efficiency for the task. The applicability of these methods to large-
scale recommendation problem was proven to be successful in [3] on the example
of movie domain. To enable large-scale recommendations, new methods to ex-
tract semantic features from various item descriptions were established together
with a method to efficiently devise a domain ontology for the selected complex
dataset in case an external ontology is not available, leveraging the need to
manually construct such ontology. Further, the semantics-driven approach was
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scaled up with pre-computation of the cosine similarities, reduction of dimen-
sionality and gradient learning of the model, allowing to avoid computationally
expensive operations [3]. While [3] used semantic information available in the
textual form, this work extends it by including also rich semantic information
available in graphical form, on the example of the movie domain and posters
(digital images) available.

RS for (multi)media are of interest to many researchers due to the large
diverse information available. Various approaches have been exercised to pro-
vide recommendations: a graphical model and signature-tree-based scheme over
social media streams [46], knowledge graphs [18], context-aware social media
recommendations [45], ontologies [1, 34], Bidirectional Encoder Representations
from Transformers (BERT) [13] for conversational RS [27] with experiments on
movies, books and music recommendation, Word2Vec algorithm to recommend
movies [42] based on metadata (e.g., directors, actors), textual image metadata
for recommending socially relevant images [21]. A comprehensive overview of RS
for multimedia content is given in [12].

Convolutional neural networks (CNNs) dominate the field of computer vision
in terms of performance on a variety of tasks, such as optical character recog-
nition (OCR) [8, 9], facial recognition [23, 24], face detection [15], or to learn
image shapes for recommending apparel goods [32]. On some object classifica-
tion tasks [36] it can even rival human performance [31]. Guo et al. [17] used
CNNs to extract features of semantic image objects, splitting image into a num-
ber of image objects, extracting the features, and then summarising the results
for an image. Tuinhof et al. [37] used CNNs for image classification on fashion
product images to recommend products by texture and category type features.
They showed that RS purely relying on visual features are reasonable and could
also be helpful in case of lacking user historical data. Yu et al. [43] on the other
hand focused on goods RS based on image content represented by weighted fea-
ture model using only computationally inexpensive low-level image features such
as color, texture, and shape to cut down on computation time. We use computer
vision to extract visual-semantic information from movie posters.

3 Recommendation Data

As in [3], we continue to use the MovieLens 20M3 dataset providing us 20,000,000
user ratings on a scale of 1–5 for 27,278 movies over a ten-year period from
138,493 users who had rated at least 20 movies, and acquire from the MovieLens4

the title, year of release, genre labels, and IMDB5 identification numbers for each
movie as the item-level information for feature extraction. We use two other
sources over IMDB ids: (i) OMDb6 to query movie plots, and (ii) TMDb7 to

3 https://grouplens.org/datasets/movielens/20m/
4 https://movielens.org/
5 The Internet Movie Database, https://www.imdb.com/
6 The Open Movie Database, https://www.omdbapi.com/
7 The Movie Database, https://www.themoviedb.org/
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Table 1. Movie information, descriptive statistics.

Data type and source N Missing % Mean Min Max

Title (MovieLens) 27,278
Genres (MovieLens)* 27,278 1.99 1 10
Genres (OMDb)* 27,207 0.26 2.21 1 5
Directors (OMDb)* 27,003 1.01 1.11 1 41
Plot (OMDb)** 26,327 3.49 63.49 3 1471
Writers (OMDb)* 25,831 5.30 2.41 1 35
Actors (OMDb)* 26,925 1.29 3.93 1 4
Poster (TMDb) 26,827 1.65

* Multi-class variable, statistics reported for number of classes.
** Full text, statistics reported for number of words.

collect movie posters. We use TMDb as it provides posters freely to anyone with
free user account, whereas OMDb makes them available only to patrons, and for
this reason we need to use TMDb next to OMDb. TMBd provides a movie poster
with sufficient resolution for 98.35% of the movies in the dataset, while OMDb
provides plots for 96.51% of the movies in MovieLens. We discard movies for
which no plot or poster is available. We notice that the plots are substantially
shorter (in average 63 words) than typical news articles, which might reduce
the amount of available semantic information. For each movie we obtain genres
from MovieLens and OMDb, retaining genres from both sources, as we want to
ensure no valuable information is lost due to their variability. We discard any
movie that has one or more missing values in any of the variables (e.g, director,
actor, poster, etc.), leaving us with the final dataset of 25,138 movies for this
research. This affects only 0.83% of user ratings available. Table 1 describes the
different movie-level variables we use in this research.

4 Recommendation Methodology

This section covers shortly the extraction of semantic features from the plots,
described in detail in [3], followed by the extraction of semantic features form
digital images. We then proceed with the recommendation method building on
the existing TF/CF/SF-IDF(+) recommenders.

4.1 Feature Extraction from Textual Information

In line with TF-IDF [16], CF-IDF(+) [11, 16], and SF-IDF(+) [7] recommender
systems, we extract semantic information from terms, concepts, and synsets.
Variables such as genres and persons are readily available and need not to be
extracted from text [3]. We use the relationships between persons (Actors, Di-
rectors, Writers) to construct a domain ontology, detailed in [3].

We use NLP techniques to extract terms and synsets from the plots. Using
NLTK8 package in Python 2.7, each plot is split into a set of sentences and

8 http://www.nltk.org/
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processed separately. Sentences are split into a list of words (tokens) with to-
kenization using known properties of words (such as they usually occur in the
English dictionary). Using part-of-speech (POS), each word is tagged with the
POS (e.g., noun, verb, adjective). Stop words, containing negligible semantic
information, are then removed, and the Porter [39] stemming algorithm applied
to each word to reduce the words to their roots and extract the terms.

Synsets are extracted using the Adapted Lesk [2] WSD algorithm on each
word. WSD addresses the problem of identifying the sense of a word – the mean-
ing in its context. Only senses that have the same POS tag as the word from the
text are considered. If no sense is found, all senses with any POS are considered.
The synset containing the identified sense of the word is extracted.

4.2 Feature Extraction from Images

The posters are generally made to advertise the movies and tend to show the
characters and setting of the movie. For example, the poster for the movie Toy
Story (Fig. 1) shows toys, a cowboy, and an astronaut, delivering the impression
of a family movie targeted to young boys. During the study we notice that
compared to the movie plot, the poster contains fewer irrelevant elements.

Each pixel in a digital image is represented by 3 colour values for red, green,
and blue (RGB). Thereby, an input image of size w wide and h pixels high, can
be represented as a matrix of 3×h×w values. The most common lossless digital
image compression format Portable Network Graphics (PNG) encodes pixels of
an image in a 24-bit RGB palette (8 bits per colour). Computer vision libraries
(e.g., OpenCV9) convert this to a 3 × h × w matrix of unsigned 8-bit integer
values ranging from 0 to 28 − 1 = 255. As most neural network libraries such
as Theano10 take floating-point numbers as inputs, the matrix is normalized by
multiplying with 1

255 to obtain a matrix of values in the range [0, 1].
To extract semantic features from the movie posters we use techniques from

computer vision – algorithms to gain high-level understanding from visual in-
formation on digital images. In particular, we use CNNs [14] that are state-of-
the-art models to extract a vector of synset probabilities and a Visual-Semantic
Embedding (VSE) vector from each movie poster.

In order to extract synset vectors from poster images, we exploit the VGG19
– a 19-layer deep CNN from the Visual Geometry Group of the University of
Oxford [35]. VGG19 was the highest-performing submission for the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC)11 in 2014. ILSVRC is a
competition where algorithms compete for object detection and image classifi-
cation, where the challenge for the algorithms is to classify an image in 1, 000
categories that are each represented by a synset. In the tests, for 81.1% of the im-
ages the top-5 predictions included the correct class, while human performance
on this metric is estimated to be around 88-95% [31]. The trained parameters

9 http://opencv.org/
10 http://deeplearning.net/software/theano/
11 http://www.image-net.org/challenges/LSVRC/
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Fig. 1. Crop of three windows of 224 × 224 px (right), and predicted class (synset)
probabilities for each (left), feature values are the maximum probabilities of each synset.

Window 1

Window 2

Window 3

Comic book 0.8770

Book jacket 0.0336

Toyshop 0.0294

Shoe shop 0.0147

Jigsaw puzzle 0.0098

Bookshop 0.0042

Puck 0.0031

Tray 0.0030

Confectionery 0.0016

Tobacco shop 0.0013

for this model are publicly available12. VGG19’s convolutional layers each have
a filter size of 3 × 3 and the input to each of those layers is zero-padded with
p = 1 such that the outputs are of equal spatial dimensions. Down-sampling oc-
curs only through max-pooling layers. Two fully connected layers are added and
connected to a 1,000 dimensional softmax output layer. As substantial semantic
content of the posters can be described by the objects that can be recognized
from them, we can use VGG19 to extract meaningful synset vectors. The model
takes a 224×224 colour image as input, represented as a 224×224×3 matrix of
RGB pixel values, therefore poster images are down-scaled to the width of 224
px keeping the aspect ratio. The height is then still larger than 224 but never
larger than 3×224, so we can take 3 vertically overlapping 224×224 windows of
the poster as inputs to ensure every part of the image is covered. Fig. 1 exempli-
fies these windows on the poster for the movie Toy Story with identified synsets
and their probabilities. VGG19 outputs a vector of 1, 000 probabilities, one for
each synset. We evaluate the model on each window, after which we take the
maximum of the 3 output values for each class (synset). We apply this procedure
to the posters to obtain feature vectors of 1, 000 synset values.

The synset values returned by VGG19 are intended to classify an image and
do not necessarily describe a poster fully. We therefore also consider another
approach called Visual-Semantic Embedding (VSE) [22] that has been used for
the challenge of image captioning [40], where the aim is to generate a natural
language caption that best describes the content of an input image (i.e., trans-
lating images to text). This is done by mapping the image and the sequence of
words of a caption to a common feature space – visual-semantic space – in which
semantic distances between an image and a caption can be calculated. From this
distance metric the semantic similarity between an image and a caption can be

12 http://www.robots.ox.ac.uk/~vgg/research/
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estimated and the nearest-neighbour caption can be returned. Our goal to rep-
resent the posters in a semantic space can be considered equivalent to mapping
them to a visual-semantic embedding.

The embeddings can be learned with knowledge of pairs of images and their
captions. In visual-semantic space, an image and its caption should be close. Let
us define this closeness as the cosine similarity between the image’s embedding
m⃗ ∈ Rn and the embedding of the caption c⃗ ∈ Rn. In a properly constructed
visual-semantic space, for the image and its caption, cos(m⃗, c⃗) should be rela-
tively high. Reversely, a non-descriptive caption cr should lead to a relatively
low cos(m⃗, c⃗r). As the image and the caption are mapped to the same visual-
semantic space, we can also expect that the more semantically similar poster1
and poster2 are, the higher their cos(m⃗1, m⃗2) – which is exactly the aim of our
semantics-driven recommender.

Mapping an image to a visual-semantic space is done in [22] by a form of
transfer learning [41], where the 4,096 visual features from the second-to-last
layer of the pre-trained VGG19 model are transferred to a new model in which
they are multiplied by a matrix of trainable weights θm, resulting in an embed-
ding vector m⃗ ∈ Rn. Transfer learning simplifies the problem from learning the
visual-semantic embedding from raw pixels to learning it from high-level visual
features trained on the ImageNet Challenge.

Another trainable neural network with weights θc transforms the text of the
caption in an embedding vector c⃗ ∈ Rn. We denote a non-matching caption for
image embedding m⃗ as c⃗r and a non-matching image for caption embedding
c⃗ as m⃗r. All weights θ = {θm, θc} are trained simultaneously to minimize the
following pairwise ranking loss:∑

m

∑
r

max{0, α− s(m⃗, c⃗) + s(m⃗, c⃗r)}

+
∑
c

∑
r

max{0, α− s(c⃗, m⃗) + s(c⃗, m⃗r)}
(1)

where s(m⃗, c⃗) = m⃗·⃗c is the scoring function. As [22], we first scale the em-
bedding vectors m⃗ and c⃗ to unit norm, making s equivalent to cosine similar-
ity s(m⃗, c⃗) = cos(m⃗, c⃗). For the purpose of extracting semantic features from
the movie posters, we are interested in the VSE m⃗ of the images. The authors
of [22] have made an embedding matrix to generate 1,024-dimensional visual-
semantic embeddings publicly available13. This matrix was trained to optimize
Eq. 1 on public image captioning datasets. Our procedure consists of using this
pre-trained embedding matrix on the 4,096-dimensional VGG19 visual feature
vectors of the movie posters to obtain their visual-semantic embeddings.

The VSE vectors have a more solid theoretical foundation compared to the
synset vectors, being derived from a state-of-the-art method whose purpose is
to translate images to text. This is a more direct way of achieving our goal
of extracting semantic features, and we expect this to improve recommender
performance compared to VGG19 synset vectors. The VSE method however has

13 https://github.com/ryankiros/visual-semantic-embedding



Enhancing Semantics-Driven Recommender Systems with Visual Features 9

a disadvantage – the features are hidden and have no natural interpretation,
making it complicated to link them to an ontology or semantic lexicon.

4.3 Scaling Visual Features

The 1,000 synset values (VGG19) and the 1,024 VSE values extracted from the
posters could benefit from scaling as we expect that some features are more
relevant to the content of the movies and thus should play a larger role in the
cosine distance, therefore scaled higher. We have little information about the
relevance of each of the 1,000 synsets, and even less about the 1,024 visual-
semantic features. We learn 1,000 scales for the synsets and 1,024 scales for
the visual-semantic features simultaneously with optimizing the model through
stochastic gradient descent (SGD). We apply the established similarity model
scaling [3] also to synsets and visual-semantic features extracted from posters.
Denoting the scale as c⃗i, if it applies to the i-th feature type ti, leads c⃗i ∈
R1,000 ⇔ ti = V GG19 and c⃗i ∈ R1,024 ⇔ ti = V SE. The user-profile vector
ui and the unseen item vector v⃗i are then scaled through c⃗i ◦ u⃗i and c⃗i ◦ v⃗i
respectively, with ◦ the element-wise product. These resulting scaled vectors
are used in the cosine. We restrict c⃗i ⩾ 0 and

∑
c⃗i = 1 to avoid the over-

parametrization caused by cos(λu⃗, λv⃗) = cos(u⃗, v⃗) ∀λ ̸= 0. Further, we use both
the scaled vectors and unscaled original vectors in the model for comparison.
Table 2 lists all used feature types.

Table 2. Characterization of used feature types

i Feature type ti Extracted from Dataset ni* mi**

1 Directors Variable OMDb 12,231 4
2 Actors Variable OMDb 45,393 4
3 Writers Variable OMDb 27,415 4
4 MovieLens genres Variable MovieLens 19 1
5 OMDb genres Variable OMDb 27 1
6 Terms Plot OMDb 48,083 1
7 Synsets Plot OMDb 69,977 19
8 VGG19 Poster TMDb 1,000 1
9 VSE Poster TMDb 1,024 1

* #Features i.e., length of feature vectors. ** #Relations.

To learn scaling for visual feature types, we use the similarity model (Eq. 2)
established in [3], where si is part similarity (here cosine similarity) and wi its
weight, u⃗i user-profile feature vector, v⃗i unseen item feature vector, q⃗i vector of
relation weights, U⃗i user feature matrix, and V⃗i feature matrix for unseen item:

sim =

k∑
i=1

wisi =

k∑
i=1

wi · cos(u⃗i, v⃗i) =

k∑
i=1

wi
q⃗i(UiV

⊤
i )q⃗i

⊤√
q⃗i(UiU⊤

i )q⃗i
⊤
√
q⃗i(ViV ⊤

i )q⃗i
⊤

(2)
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In the similarity model [3] we insert u⃗i ← (c⃗i ◦ u⃗i) and v⃗i ← (c⃗i ◦ v⃗i), where
c⃗i ∈ Rni is the learnable scaling, u⃗i = Ui, and v⃗i = Vi, because the number of
relations mi = 1 for these feature types. We restrict

∑mi

l=1 q⃗il = 1, making q⃗i = 1
redundant, and rewrite part-similarity model si as given by Eq. 3:

sim =

k∑
i=1

wisi =

k∑
i=1

wi
(c⃗i ◦ u⃗i)(c⃗i ◦ v⃗i)⊤√

(c⃗i ◦ u⃗i)(c⃗i ◦ u⃗i)⊤
√
(c⃗i ◦ v⃗i)(c⃗i ◦ v⃗i)⊤

(3)

The scaling ci has ni optimizable parameters and therefore by definition the
model is at least ni-dimensional – this is irreducible. However, when we want
to re-use the learned scaling, we can pre-compute c⃗i ◦ u⃗i and c⃗i ◦ v⃗i because the
scaling is known and fixed in that case. Then we can redefine u⃗i = c⃗i ◦ u⃗i and
v⃗i = c⃗i ◦ v⃗i and use our efficient model [3] with pre-computed UiU

⊤
i , UiV

⊤
i , and

ViV
⊤
i .

5 Experiments and Results

The similarity model is directly trained on pairs of user-profiles and correspond-
ing unseen items to recommend items for which the predicted similarity is above
a certain threshold value, following the procedure established in [3]. The stochas-
tic gradient descent (SGD) is applied on the gradient of the similarity model.

An item is considered to be liked by a user if it is rated with a score ≥ 4.5,
otherwise disliked, resulting in an average proportion of 19.12% liked items and
20.9 liked items per user. Further, we shuffle the order of users in our dataset
and take the first 1,000 as the test set for evaluation, the following 1,000 as the
validation set for the similarity model (including early stopping while training),
and the rest 136,493 as the training set to optimize the similarity model.

An observation is a pair of user-profile and unseen item. User-profiles are
constructed by sampling p = 5 liked items from a user. For each observation
the feature matrices UiV

⊤
i , UiU

⊤
i , and ViV

⊤
i are constructed from the Xi pre-

computed data. The ViV
⊤
i are retrieved as blocks of Xi, while UiV

⊤
i and UiU

⊤
i

are constructed from sums of p blocks.
For the train and validation sets, the unseen items are defined as all items

not in the user-profile. For each user-profile, we sample a liked or a disliked item
with equal probability such that we obtain balanced train and validation sets
with E(y) = 0.5. Each observation is therefore a random user-profile and item,
sampled from a random user. We sample 100 batches of 1,024 validation obser-
vations and 1,374 training batches of 1,024 observations, for totals of 102,400
and 1,406,976 respectively.

To allow the test set to reflect a realistic recommendation setting, we sample
the p = 5 user-profile items by shuffling all rated items and then iteratively
discarding the first item, adding it to the user-profile if it is liked. We stop as
soon as we have obtained p = 5 liked items. All discarded liked and disliked
items are then considered to be seen. Thus, we simulate the situation when a
RS detects that a user has liked p = 5 items. We require the unseen items to
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contain at least one liked and one disliked item to able to measure performance,
leaving us with 809 eligible user-profiles from the 1,000 test users. We then
construct observations for the user-profile with each unseen item, and save these
in a separate batch for each user. The test data is therefore composed of 809
batches of varying sizes, namely the number of unseen items. The comparison
between the predicted scores and the actual likes forms the basis of performance
measurement. The similarity model is trained with SGD and follows the method
(Algorithm 1) described in [3].

We demonstrate the value of semantics-driven recommendations by compar-
ison to the traditional TF-IDF recommender (denoted as T) as a baseline with
terms from plots. Our version of SF-IDF+ based on synsets from plots is called
S, modified CF-IDF+ holding 5 concept feature types (Directors, Actors, Writ-
ers, and genres from MovieLens and OMDb) and operating on the ontology as
C, VGG19 as VG, and VSE as VS. When the visual feature scaling of VG or VS
is learned (optimized) together with the rest of the parameters, the component
is denoted VGL or VSL respectively. When the VG scaling is pre-trained in an-
other model and transferred to this model, we denote the component VGR (each
of the 10 restarts uses a pre-trained scaling from a different restart of VGL) or
VGA (each of the 10 restarts uses the same pre-trained scaling – the average
scaling over all 10 restarts of VGL). Our proposed semantics-driven model is
called C+S+VGA, combining the concepts (C) with synsets from plots (S) and
posters (VG), where the scaling for the VGG19 synsets is transferred from the
average of the 10 optimized VGL models. Table 3 lists all models used. We test
the proposed C+S+VGA model against the TF-IDF benchmark and against all
alternative models.

Table 3. Models and their optimization results, averages over 10 random restarts;
n=102,400 validation and n=1,406,976 train observations. Scaling transferred from
VGL for C+S+VGR and C+S+VGA.

Model k* θ** Logloss*** Training time****
Valid. Train Epochs Secs/Epoch Minutes

T benchmark) 1 2 0.6896 0.6900 10.0 6.4 1.1
C 5 18 0.6815 0.6826 11.9 10.3 2.0
S 1 21 0.6912 0.6914 11.0 14.7 2.7
C+S 6 38 0.6812 0.6822 11.0 22.7 4.2
VG 1 2 0.6924 0.6925 9.4 6.4 1.0
VS 1 2 0.6930 0.6931 8.1 6.3 0.9
VGL 1 1,002 0.6797 0.6797 26.4 87.3 38.4
VSL 1 1,026 0.6779 0.6777 39.3 64.4 42.2
C+S+VG 7 39 0.6810 0.6820 11.7 23.3 4.5
C+S+VGL 7 1,039 0.6681 0.6694 35.7 117.0 69.7
C+S+VGR 7 39 0.6708 0.6716 9.4 23.8 3.8
C+S+VGA 7 39 0.6671 0.6680 10.4 23.0 4.0

* Number of feature types (part-similarities) ** Number of parameters.
*** Minimum over all epochs. **** Until early stopping.
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We start by describing the results for the computational load of the optimiza-
tion procedure implemented in Python 2.7 using Keras14 and Theano15 libraries,
with calculations performed on a regular desktop PC with NVIDIA GTX1060
CPU enabling efficient parallel computations of the gradient updates in batches
of 1,024 observations. To optimize C+S+VGA and C+S+VGR, we first optimize
the VGL model, extract the visual scaling from the 10 restarts, and pre-compute
the VGG19 dot-products with this scaling. Table 3 presents the optimization
results. We find training within reasonable limits, taking fewer than 70 minutes
for even the heaviest model C+S+VGL. The impact of our scalability method
is reflected in a 15x reduction in seconds per epoch of the VG model, which
uses pre-computed dot-products, compared to its VGL counter-part using the
traditional approach. Although the VSL model with visual-semantic embeddings
has 1,024 features compared to 1,000 synset features for the VGL model, it takes
about 1.5x as many epochs to converge and results in a slightly better logloss.
The sparsity of the VGG19 vectors compared to the VSE vectors could have
been a factor in this. For the unscaled visual vectors we see the opposite, as VG
needs slightly more epochs and results in a lower loss.

We continue with the comparison between the predicted scores and the actual
likes, which forms the basis of performance measurement expressed through area
under curve (AUC) for the precision-recall (PR) and receiver operating charac-
teristic (ROC) curve, F1-measure, and Cohen’s kappa [10] coefficient κ. Even
though we do not directly optimize for these metrics, a lower logloss results in
higher test performance (Table 4). Table 4 presents the analysis of performance
metrics over all models, showing that concepts alone (C) are more informative
than both synsets (S) and terms (T), while the combination of C+S [3] outper-
forms T on all metrics. The inclusion of features captured from poster images
further improves (depending on method) the recommendation, as the proposed
C+S+VGA model outperforms C+S, and thereby also the benchmark T.

Comparing the visual feature models we see the unscaled VG outperforms
VS, indicating the 1,000 synset feature values we extracted from the posters are
more suitable for recommendation than the 1,024-dimensional visual-semantic
embeddings. Optimized scaling results in a large performance increase: from
an AUC(ROC) of 0.508 to 0.605 for VSL and from 0.525 to 0.605 for VGL.
Under learned scaling VSL rivals VGL on some metrics, and closes the gap on
AUC(ROC). These results indicate that the visual-semantic embeddings do not
improve recommender performance over the synset vectors.

When the mean optimized scales of VGL are transferred to the C+S+VGR

model, it strongly outperforms its unscaled version C+S+VG and all other rec-
ommenders without learned scaling. When we collect the average VG scale over
10 random restarts of VGL and transfer this to C+S+VGA, we see that it
strongly outperforms all other models.

The proposed C+S+VGA recommender model outperforms the traditional
benchmark TF-IDF by a large margin on all metrics. Average AUC(ROC) im-

14 (https://keras.io)
15 https://pypi.org/project/Theano/
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Table 4. Performance on test set, n = 809 users, averages over 10 random restarts.

Models AUC F1 κ
ROC PR minr maxr minr maxr

T (TF-IDF, benchmark) 0.535 0.324 0.413 0.479 0.041 0.200
C 0.567 0.358 0.419 0.507 0.081 0.249
S (SF-IDF+) 0.531 0.319 0.411 0.477 0.038 0.198
C+S 0.570 0.361 0.419 0.509 0.083 0.251
VG 0.525 0.308 0.415 0.476 0.036 0.189
VS 0.508 0.299 0.415 0.472 0.018 0.176
VGL 0.605 0.347 0.429 0.519 0.110 0.262
VSL 0.605 0.370 0.422 0.517 0.115 0.268
C+S+VG 0.574 0.362 0.419 0.510 0.087 0.253
C+S+VGL 0.624 0.385 0.431 0.531 0.131 0.289
C+S+VGR 0.624 0.386 0.432 0.532 0.128 0.286
C+S+VGA 0.634 0.391 0.435 0.537 0.137 0.298

proves from 0.531 to 0.634, and AUC(PR) from 0.324 to 0.391. We improve
minr(F1) from 0.413 to 0.435, and maxr(F1) from 0.479 to 0.537. Kappa met-
rics are improved from 0.038 to 0.137 and from 0.198 to 0.298 for minr(κ) and
maxr(κ) respectively. Given the separately pre-trained visual scaling, we can op-
timize the model with the scalable approach using pre-computed dot-products
just in 4-5 minutes. It is neither necessary to train the scaling together with the
model as a whole, nor to directly optimize on the final performance metrics.

6 Conclusion

In this paper we continued our work on scaling content-based semantics-driven
RS to large-scale recommendation task, and extended the approach to include
features delivered by computer vision. The paper delivers the second phase of our
work earlier work [3]. While previously [3] we showed that semantic information
can be extracted not only from articles but also from information of different
nature represented as text, established a method for virtual ontology construc-
tion, when suitable domain ontology is not readily available, and showed that
effective scales can be found through direct optimization of the logloss within
minutes on consumer-grade hardware, we now demonstrated that rich semantic
information can be extracted from digital images to further improve recommen-
dations. Through a reformulation of how related features are combined, we were
able to pre-compute the computationally expensive operations of the cosine sim-
ilarities and reduced the dimensionality of the similarity model by several orders
of magnitude. Overall, we showed that semantics-driven RS can be extended
to more complex domains with high-quality recommendations on an extremely
large scale.

The proposed semantics-driven recommender C+S+VGA enhanced with vi-
sual features strongly outperformed the baseline TF-IDF, and all other models
on ROC, PR, F1, and κ, even though it was not directly optimized on these
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metrics but on a cross-entropy loss function that allowed for efficient gradient-
based optimization. We showed that semantics-driven RS can be extended to
more complex domains with high-quality recommendations on an extremely
large scale. The visual synsets extracted from images do not have to be dis-
ambiguated but can perhaps be augmented with related synsets from WordNet.
The convincing success of learned feature scaling introduces the possibility of
models with greater degrees of freedom, especially since the short training time
on commodity hardware means that still larger datasets can be utilized.
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