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Abstract	

This	paper	presents	a	simple	method	to	measure	the	beliefs	of	a	decision	maker	with	

non-neutral	ambiguity	attitudes.	Our	method	require	three	simple	measurements,	it	is	

incentive-compatible,	and	it	allows	for	risk	aversion	and	deviations	from	expected	

utility,	including	ambiguity	aversion.	An	experiment	using	two	natural	sources	of	

uncertainty	(temperature	in	Rotterdam	and	in	New	York	City)	showed	that	the	

estimated	beliefs	were	well-calibrated,	sensitive	to	the	source	of	uncertainty,	and	similar	

to	the	beliefs	that	were	estimated	by	more	sophisticated	but	time	consuming	methods.		
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1. Introduction	

According	to	the	intellectual	fathers	of	subjective	expected	utility	(SEU),	the	standard	

model	of	rational	choice	under	uncertainty,	the	decision	maker’s	beliefs	can	be	

measured	by	observing	his	choices	between	uncertain	bets	(Ramsey	1931,	Savage	

1954).	This	position	was	challenged	by	Ellsberg’s	(1961)	paradox,	which	showed	that	

SEU	leads	to	inconsistent	probabilities.	Ellsberg	interpreted	his	paradox	as	evidence	that	

preferences	depend	on	a	third	dimension,	in	addition	to	the	utility	of	outcomes	and	the	

probability	of	events,	which	he	called	ambiguity	and	which	reflects	the	reliability,	

credibility,	or	adequacy	of	the	decision	maker’s	information.	Ellsberg’s	paradox1	raises	

the	question	how	beliefs	can	be	measured	when	SEU	does	not	hold	and	decision	makers	

may	have	non-neutral	ambiguity	attitudes.	The	purpose	of	this	paper	is	to	address	this	

question	and	to	present	a	simple	method	to	achieve	this.	

We	study	preferences	over	two-outcome	bets	giving	payoff	𝑥	if	event	𝐸	obtains	and	a	

lower	payoff	𝑦	otherwise	and	assume	that	these	preferences	can	be	evaluated	as		

𝑓 𝑃 𝐸 𝑈 𝑥 + (1 − 𝑓 𝑃 𝐸 𝑈 𝑦 .		 	 	 (1)	

In	Model	(1),	𝑈	is	a	(strictly	increasing)	utility	function,	𝑃	is	a	probability	measure	over	

events	that	reflects	the	decision	maker’s	beliefs,	and	𝑓		is	a	(strictly	increasing)	function	

that	measures	Ellsberg’s	third	dimension,	the	deviations	from	subjective	expected	utility	

including	attitudes	towards	ambiguity.	SEU	is	the	special	case	of	(1)	where	𝑓	is	the	

identity	function	and	the	decision	maker	is	neutral	towards	ambiguity.	If	𝑓	is	convex,	

which	reflects	pessimism,2	model	(1)	is	consistent	with	the	paradoxes	of	Allais	

																																																													

1	For	a	recent	overview	of	the	experimental	evidence	see	Trautmann	and	Van	de	Kuilen	2016).	

2	For	instance,	in	the	Ellsberg	two	color	paradox	where	a	ball	is	randomly	drawn	from	an	
unknown	urn	containing	100	Black	and	Red	balls	in	unknown	proportion,	most	people	are	
indifferent	between	betting	on	red	or	on	black,	meaning	that	𝑃 𝐵 = 𝑃 𝑅 = 1/2.	Nevertheless,	
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(certainty	effect)	and	Ellsberg	(ambiguity	aversion).	Model	(1)	combines	the	biseparable	

preference	model	of	Ghirardato	and	Marinacci	(2001),	which	contains	many	of	the	

ambiguity	models	that	have	been	proposed	to	explain	Ellsberg’s	paradox	as	special	

cases,	3	with	the	assumption	that	the	decision	maker	can	assign	subjective	probabilities	

to	events	even	when	he	does	not	maximize	SEU.	Chew	and	Sagi	(2006)	proposed	a	

behavioral	foundation	for	this	assumption	and	Abdellaoui	et	al.	(2011)	obtained	

experimental	support	for	it.		

Our	method	measures	beliefs	without	the	interference	of	ambiguity	attitudes	based	

on	three	measurements	only.	It	is	incentive-compatible,	uses	simple	choice-lists	as	in	the	

measurement	of	utility	under	risk	(Holt	and	Laury	2002),	and	can	easily	be	applied	in	

empirical	research.	Unlike	the	method	in	Abdellaoui	et	al.	(2011),	our	method	does	not	

use	chained	responses	(i.e.	previous	elicitations	are	not	used	in	subsequent	elicitations)	

and,	hence,	it	is	not	vulnerable	to	error	accumulation	and	the	possibility	of	strategic	

responding.	Our	method	is	based	on	the	elicitation	of	exchangeable	events.	Our	

estimations	show	that	this	leads	to	substantially	lower	error	rates	than	by	the	elicitation	

of	probability	equivalences.	

We	applied	our	method	in	an	experiment	using	two	natural	sources	of	uncertainty,	

the	temperatures	in	Rotterdam	and	in	New	York	City	at	a	future	date.	The	elicited	

subjective	distributions	of	beliefs	were	well-calibrated,	sensitive	to	the	source	of	

																																																													

a	pessimistic	decision	maker	(convex	𝑓)	will	behave	as	if	the	“probability”	of	the	winning	color	is	
less	than	one	half.		

3	Examples	are	Choquet	expected	utility	(Schmeidler	1989),	maxmin	expected	utility	(Gilboa	and	
Schmeidler	1989),	𝛼-maxmin	expected	utility	(Ghirardato	et	al.	2004),	contraction	expected	
utility	(Gajdos	et	al.	2008),	and	prospect	theory	for	gains	and	losses	separately	(Tversky	and	
Kahneman	1992).	A	well-known	ambiguity	model	that	is	not	a	special	case	of	biseparable	
preferences	is	the	smooth	ambiguity	model	(Klibanoff	et	al.	2005).	
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uncertainty,	and	reflected	much	individual	heterogeneity.	Our	method	is	deterministic	

and	can	measure	beliefs	without	the	need	to	measure	utility	and	ambiguity	attitudes.	To	

test	the	robustness	of	our	measurements	we	also	allowed	for	the	stochastic	nature	of	

people’s	judgments	and	we	performed	joint	estimations	of	beliefs,	utility,	and	the	

function	𝑓	of	model	(1).	The	measured	beliefs	were	similar	suggesting	that	our	simple	

method	indeed	leads	to	reliable	measurements	of	people’s	beliefs.	

	

2.	The	measurement	of	beliefs	

2.1.	Notation	

Consider	a	decision	maker	who	faces	uncertainty.	Uncertainty	is	modeled	

through	a	state	space	𝑆.	Exactly	one	of	the	states	will	obtain,	but	the	decision	maker	does	

not	know	which	one.	Events	𝐸	are	subsets	of	𝑆.	𝐸4	is	the	complement	of	event	𝐸.	

The	decision	maker	chooses	between	two-outcome	bets	𝑥5𝑦	that	pay	€𝑥	if	event	𝐸	

occurs	and	a	lower	payoff	€𝑦	otherwise.	The	decision	maker’s	preferences	over	bets	are	

evaluated	by	model	(1).	In	Model	(1),	the	utility	function	𝑈	is	an	interval	scale	and	we	will	

set	𝑈 0 = 0.	𝑃	is	a	probability	measure	that	represents	the	decision	maker’s	beliefs.	The	

decision	maker’s	beliefs	are	transformed	by	the	strictly	increasing	distortion	function	𝑓,	

that	maps	subjective	probabilities	onto	[0,1]	and	that	reflects	amongst	other	things	the	

decision	maker’s	ambiguity	attitudes.		

This	paper	concentrates	on	the	measurement	of	𝑃.	We	will	present	three,	

increasingly	sophisticated	methods	to	do	so.	Our	first	method	is	deterministic.	It	

measures	the	median	and	the	dispersion	of	a	decision	maker’s	beliefs	using	three	simple	

measurements	and	uses	these	to	estimate	the	distribution	of	𝑃.	The	second	method	

allows	for	the	stochastic	nature	of	people’s	preferences.	The	third	method	is	also	

stochastic	and	estimates,	besides	𝑃,	also	utility	𝑈	and	the	distortion	function	𝑓.	
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2.2.	Deterministic	measurement	of	the	median	and	the	dispersion	of	beliefs	

We	first	specify	an	interval	 𝑎, 𝑏 	of	possible	values	of	a	given	random	variable.	In	our	

experiment	we	studied	two	sources	of	uncertainty,	the	temperatures	(in	degrees	

Celsius)	in	Rotterdam	and	in	New	York	City	on	January	15,	2013	at	2pm,	and	we	used	

𝑎 = −50, 𝑏 = +50.	The	width	of	the	interval	 𝑎, 𝑏 	is	irrelevant	as	long	as	it	contains	all	

values	that	the	decision	maker	considers	possible.4	

The	measurement	then	proceeds	in	three	elicitations,	which	are	explained	in	Table	1.	

First,	we	measure	the	median	of	the	distribution	by	subdividing	[𝑎, 𝑏]	into	two	equally	

likely	subintervals.	In	questions	two	and	three	we	then	measure	the	dispersion	of	the	

distribution	by	subdividing	[𝑎, 0]	and	 0, 𝑏 	into	two	equally	likely	subintervals.		

	

Table	1:	Deterministic	measurement	of	the	distribution	of	beliefs	

Question	 Assessed	quantity	 Implication	

1	 Median	 𝑧?:		𝑥 @,AB 0 ∼ 𝑥 AB,D 0	 𝑃 𝑎, 𝑧? = 𝑃( 𝑧?, 𝑏 )	

2	
Dispersion	

𝑧E:		𝑥 @,AF 0 ∼ 𝑥 AG,H 0	 𝑃 𝑎, 𝑧E = 𝑃( 𝑧E, 0 )	

3	 𝑧I:		𝑥 H,AJ 0 ∼ 𝑥 AJ,D 0	 𝑃 0, 𝑧I = 𝑃( 𝑧I, 𝑏 )	

	

	

Question	1:	Measuring	the	median			

To	measure	the	median	of	the	distribution,	we	elicited	𝑧?	such	that	𝑥 @,AB 0 ∼ 	 𝑥 AB,D 0,	

where	 𝑎, 𝑧? 	means	the	temperature	lies	between	𝑎	and	𝑧?.	This	indifference	implies	

																																																													

4	In recorded history temperatures have never been close to −50K𝐶 or +50K𝐶 on January 15, neither 
in Rotterdam nor in New York City. No subject believed these values were possible, as reflected by 
their answers. 
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that	the	events	 𝑎, 𝑧? 	and	 𝑧?, 𝑏 	are	exchangeable	(Ramsey	1931,	de	Finetti	1937).	

Substitution	in	Model	(1)	gives	𝑃 𝑎, 𝑧? =

𝑃 𝑧?, 𝑏 	because	𝑓	is	increasing	and	𝑈(𝑥)	cancels	out.	It	follows	that	𝑧?	is	the	median	of	

the	distribution	of	beliefs.		

	

Questions	2	and	3:	Measuring	the	dispersion	

To	measure	the	dispersion	of	the	distribution,	we	need	two	indifferences.	We	

measured	𝑧E	such	that	𝑥 @,AG 0	 ∼ 𝑥 AG,H 0,	and	z\	such	that	𝑥 H,]^ 0 ∼ 	 𝑥 ]^,D 0.	From	(1),	it	

follows	that	𝑃 𝑎, 𝑧E = 𝑃 𝑧E, 0 = _ @,H
`

	and	𝑃 0, z\ = 𝑃 z\, 𝑏 = _ H,D
`

.	Adding	

𝑃 𝑎, 0 	to	all	terms	in	the	second	equality	and	using	the	additivity	of	𝑃	gives	 𝑎, z\ =

_ @,D a_ @,H
`

	.	Because	𝑃 𝑎, 𝑧E = _ @,H
`

	we	obtain	𝑃 𝑎, z\ − 𝑃 𝑎, 𝑧E = _ @,D
`

= 1 2,	

which	gives	a	measure	of	the	dispersion	of	the	distribution	of	beliefs.5		

	 We	could	have	immediately	measured	the	dispersion	of	the	distribution	of	beliefs	

from	𝑧?	by	asking	for	the	indifferences	𝑥 @,AG 0 ∼ 	 𝑥 AG,AB 0	and	𝑥 AB,]^ 0 ∼ 𝑥 ]^,D 0.	Then	𝑧E	

and	z\	equal	the	25%	and	the	75%	quantiles	of	the	distribution	of	beliefs.	However,	this	

would	make	our	method	chained	and	may	lead	to	error	accumulation	(errors	made	in	

one	questions	affect	the	responses	to	later	questions)	and	strategic	responding	(subjects	

can	affect	the	questions	they	face	at	a	later	stage).	We	wanted	to	avoid	these	problems	

and	therefore	used	only	non-chained	measurements.	

																																																													

5The above analysis assumes that 0 is in 𝑎, 𝑏  and that both 𝑎, 0  and 0, 𝑏  have nonzero probability 
mass. In our setting this makes sense as January temperatures around 0 degrees Celsius (32 degrees 
Fahrenheit) are common in Rotterdam and in New York City. If 0 may not be in 𝑎, 𝑏  then we could 
use intervals 𝑎d, 𝑏′  and 𝑎dd, 𝑏′′  with 𝑎 ≤ 𝑎d, 𝑎′′ and 𝑏d, 𝑏′′ ≤ 𝑏 and elicit indifferences 𝑥 @g,AG 0 ∼
	𝑥 AG,Dg 0 and 𝑥 @gg,AJ ∼ 	 𝑥 AJ,Dgg 0 to obtain information on the dispersion of the distribution of beliefs. 
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	 The	median	and	the	dispersion	permit	measuring	each	individual	belief	

distribution	using	only	three	indifferences.	To	account	for	skewness	in	the	distribution	

we	assumed	a	beta	distribution,	which	is	consistent	with	many	distributions.	To	

estimate	the	beta	distribution	requires	specifying	the	minimum	and	the	maximum	

possible	temperatures.	For	these	bounds	we	used	−50	and	+50.	The	assumption	of	a	

common	minimum	and	maximum	was	necessary	to	be	able	to	aggregate	estimates	

across	individual	subjects.	The	values	of	the	estimated	beta	distribution	are	closely	

associated	with	the	bounds	of	the	distribution.	In	the	online	appendix	we	present	two	

robustness	checks,	one	in	which	the	bounds	are	elicited	deterministically	for	each	

subject	separately	and	one	in	which	the	bounds	were	part	of	the	estimated	stochastic	

model.		

	

2.3.	Stochastic	measurement	of	beliefs	

The	method	described	in	Section	2.2.	is	deterministic	and	assumes	that	decision	makers	

make	no	errors.	To	account	for	the	stochastic	nature	of	human	decision	making,	we	

added	an	error	term	𝜖	to	the	indifference	values	𝑧	predicted	by	Model	(1),	with	

𝜖~𝒩(0, 𝜎`).	In	practice,	for	a	given	choice	list,	with	an	interval	 𝑎, 𝑏 	of	possible	values	,	

indifference	value	𝑧	was	bracketed	by	two	values	𝑧a	and	𝑧lsuch	that	𝑧E:		𝑥 @,Am 0 ≻

𝑥 Am,D 0	and	𝑥 @,Ao 0 ≺ 𝑥 Ao,D 0.	The	error	specification	implies	that	the	likelihood	of	the	

observations	provided	by	a	given	choice	list	𝑘	is	equal	to:	6	

	 ℓ 𝜃|𝑧ua, 𝑧ul, 𝑋u = Φ Ax
mlAx(y,zx)

{
− Φ Ax

olAx(y,zx)
{

	 	 (2)	

																																																													

6	In	case	no	switch	between	the	two	options	occurred,	the	likelihood	was	equal	to	either	

Φ Ax
mlAx(y,zx)

{
	or	1 − Φ Ax

olAx(y,zx)
{

.	
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where	the	index	𝑘	refers	to	values	in	choice	list	𝑘	and	𝑧u(𝜃, 𝑋u)	is	the	indifference	value	

predicted	by	Model	(1)	for	a	distribution	of	beliefs	with	parameters	𝜃	and	choice	list	

characteristics	𝑋u = (𝑥u, 𝑦u,𝑎u, 𝑏u).	As	long	as	the	same	𝑥	and	the	same	𝑦	are	used	in	all	

choices	then	their	utilities	cancel	out	and	we	can	still	estimate	beliefs	separately	(as	in	

the	deterministic	approach).		

	

2.4.	The	complete	measurement	of	Model	(1)	

The	measurements	described	in	Sections	2.2.	and	2.3	are	robust	to	utility	and	ambiguity	

aversion.	However	they	do	not	estimate	𝑈	and	𝑓	separately.	The	third	method	measures	

𝑃,	𝑈,	and	𝑓	jointly.	In	addition	to	the	measurements	reported	in	Section	2.3,	we	elicited	a	

series	of	values	𝑧	such	that	the	decision	maker	was	indifferent	between	𝑥 A,D 𝑦	and	

money	amount	c	for	sure,	𝑥 ≥ c ≥ 𝑦.7		From	these	indifferences,	we	could	estimate	𝑈	and	

𝑓	by	imposing	parametric	assumptions.	The	required	number	of	questions	depends	on	

the	parametric	assumptions	made.		

We	measure	𝑈	and	𝑓	by	varying	the	size	of	the	events	 𝑧}, 𝑏 .	Because	𝑃 𝑧}, 𝑏 ≥

𝑃 𝑧}′ , 𝑏 	if	𝑧} ≤ 𝑧}′ ,	our	measurements	can	be	interpreted	as	eliciting	indifferences	by	

varying	subjective	probabilities.	Probability	equivalences	(eliciting	indifferences	by	

varying	objective	probabilities)	are	widely-used	in	decision	under	risk	(Farquhar	1984,	

Holt	and	Laury	2002).	For	example,	in	health	economics	quality	of	life	is	often	measured	

using	probability	equivalences	(Drummond	et	al.	2015).	Our	measurements	extend	the	

probability	equivalence	method	to	decision	under	uncertainty.		

																																																													

7Our method remains valid if c is an uncertain bet instead of a certain outcome. 
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Under	expected	utility	(𝑓	the	identity	function),	we	can	measure	utility	using	one	

single	indifference	by	assuming,	for	example,	a	constant	relative	risk	aversion	(CRRA)	

utility	function.	Hence,	we	can	measure	utility	under	uncertainty	the	same	way	that	Holt	

and	Laury	(2002)	measured	utility	under	risk.	8		

	

3.	Experiment	

3.1.	Design	

The	experiment	was	run	in	December	2012.	We	recruited	82	students	from	Erasmus	

University.	They	received	a	show-up	fee	of	€5.	In	addition,	each	subject	played	out	one	

of	his	choices	for	real.	Subjects’	total	payoffs	ranged	from	€5	to	€55	with	an	average	of	

just	over	€30.	The	experiment	lasted	about	one	hour.		

The	experiment	was	computer-run	in	small	sessions	of	three	subjects.	We	used	small	

sessions	to	improve	the	quality	of	the	data.	Subjects	first	received	instructions	and	then	

answered	several	training	questions.	The	training	questions	took	10	minutes.	We	

included	this	extensive	training	to	make	sure	that	subjects	understood	the	tasks.	We	told	

subjects	that	there	were	no	right	or	wrong	answers	and	that	we	were	just	interested	in	

their	preferences.	We	encouraged	them	to	ask	questions	at	any	time	they	wished.	

We	used	two	sources	of	uncertainty:	the	temperatures	in	Rotterdam	and	in	New	

York	City	on	15	January	2013	at	2pm	local	time.	We	expected	that	subjects	would	have	a	

better	knowledge	of	the	temperature	in	Rotterdam.	Previous	evidence	suggests	that	

people	are	less	ambiguity	averse	for	sources	of	uncertainty	that	they	feel	more	

competent	about	(Heath	and	Tversky	1991,	Abdellaoui	et	al.	2011).	

																																																													

8A CRRA utility function with power 𝛾 gives 𝛾 = 𝑙𝑜𝑔 𝑃 𝑧, 𝑏 𝑙𝑜𝑔 	 �l�
�l�

. 
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Table	2	shows	the	experimental	choice	questions.	The	first	3	choices	were	used	to	

measure	the	distribution	of	beliefs	under	the	assumption	of	deterministic	preferences.	

The	first	choice	determines	the	median	of	the	belief	distribution,	the	second	and	third	

the	dispersion.	The	fourth	and	fifth	determined	the	minimum	and	maximum	values	of	

the	temperatures	in	Rotterdam	and	in	New	York	that	the	subject	considered	possible,	

which	were	used	in	the	robustness	checks	reported	in	the	online	appendix.				

Choices	1,	2,	3,	and	6-12	were	used	to	measure	beliefs	allowing	for	stochastic	

preferences.	In	these	choices	the	outcomes	were	always	€50	and	€0	and,	by	setting	

𝑈 €50 = 1	and	𝑈 €0 = 0,	they	cancelled	out.	Moreover,	in	these	choices	we	always	

measured	exchangeable	events	and,	because	the	probability	distortion	function	is	

increasing,	it	follows	that	that	the	subjective	probabilities	of	these	exchangeable	events	

are	equal.	Choices	4,5,	and	14-24	measured	the	complete	stochastic	Model	(1).		

We	randomized	the	order	of	the	questions	except	that	the	belief	questions	always	

came	before	the	questions	that	measured	the	utility	and	the	distortion	functions.9	To	

test	for	consistency,	we	repeated	choices	1	and	18	for	both	the	Rotterdam	and	the	New	

York	temperature.		

	

Table	2.	The	experimental	questions	and	the	mean	responses.	

Choice		 Indifference	 Purpose	 Mean	𝑧	Rotterdam	 Mean	𝑧	New	York	
1	 50 l�H,A 0~50 A,a�H 0	 Median	 2.60	 0.23	

2	 50 l∞,A 0~50 A,H 0	 Dispersion	 −3.65	 −5.00	
3	 50 H,A 0~50 A,a�H 0	 4.91	 4.73	
4	 49~50 A,�H 0	 Minimum	 −21.06	 −24.60	
5	 1~50 A,�H 0	 Maximum	 15.65	 16.89	
6	 50 l�H,A 0~50 A,�H 0	 Stochastic		 1.67	 −0.24	
7	 50 l�H,A 0	~50 A,l� 0	 −6.80	 −8.18	

																																																													

9	Hence,	questions	4	and	5	always	came	before	questions	14-24	in	the	estimation	of	the	complete	
Model	(1).	The	results	were	not	affected	when	these	two	questions	were	removed.	
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8	 50 a�,A 0~50 A,a�H 0	 Beliefs	 7.85	 7.84	
9	 50 l��,A 0~50 A,a� 0	 −0.77	 −2.61	
10	 50 l�,A 0~50 A,a�� 0	 3.16	 2.34	
11	 50 l�H,A 0~50 A,l�H 0	 −11.94	 −12.46	

12	 50 a�H,A 0~50 A,a�H 0	 11.72	 12.34	

13	 10 l�H,A 0~10 A,a�H 0	 Test	Model	
(1)	 2.57	

−0.21	

14	 5~50 A,a�H 0	

Utility	and	
Weighting	
Functions	

6.44	 6.20	
15	 10~50 A,a�H 5	 3.59	 2.37	
16	 25~50 A,a�H 15	 −0.44	 −2.65	
17	 20~50 A,a�H 5	 −1.67	 −4.70	
18	 25~50 A,a�H 0	 −3.44	 −6.68	
19	 35~50 A,a�H 20	 −3.23	 −6.20	
20	 5~10 A,a�H 0	 −1.05	 −2.38	
21	 10~15 A,a�H 0	 −4.39	 −8.55	
22	 40~50 A,a�H 20	 −8.13	 −12.49	

23	 40~50 A,a�H 5	 −10.35	 −15.09	
24	 45~50 A,a�H 0	 −16.13	 −19.50	

1	rep.	 50 l�H,A 0~50 A,a�H 0	 Consistency	 3.05	 −0.02	
18	rep.	 25~50 A,a�H 0	 −2.49	 −6.07	

	
Note:	1	rep.	(18	rep.)	denotes	the	repetition	of	choice	1	(18).	The	first	column	
denotes	the	number	of	the	choice,	the	second	the	indifference	that	was	measured,	
the	third	the	purpose	of	this	indifference	(e.g.	median	means	it	served	to	elicit	the	
median	of	the	distribution	of	beliefs),	and	the	fourth	and	fifth	column	denote	the	
mean	values	of	𝑧	in	Rotterdam	(fourth	column)	and	New	York	City	(fifth	column).	

	
	

Several	choices	gave	additional	information	about	subjects’	preferences.	Question	13	

tested	Model	(1),	which	underlies	all	our	measurements.	It	was	similar	to	question	1	

except	that	the	highest	payoffs	were	€10	instead	of	€50.	The	elicited	indifference	

10 l�H,A 0~10 A,a�H 0	implies	by	Model	(1)	that	𝑃 −50, 𝑧 = 𝑃([𝑧, 50]).	Consequently,	

Question	13	gave	another	measurement	of	the	median	of	the	distribution	of	beliefs,	

which,	provided	Model	(1)	is	correct,	should	be	equal	to	the	measurement	of	the	median	

obtained	in	Question	1,	except	for	random	error.	Different	responses	would	signal	a	

violation	of	Model	(1).	



12	
	

	Choices	18	and	20	tested	whether	utility	belonged	to	the	power	(constant	relative	

risk	aversion)	family.	The	payoffs	of	choice	18	were	five	times	as	large	as	those	of	choice	

20	and	under	constant	relative	risk	aversion	the	elicited	𝑧-values	should	be	the	same.		

	

Figure	1:	Display	of	the	choice	lists	

	

We	used	choice	lists	to	elicit	the	indifference	values.	Each	choice	list	contained	9	choices.	

Figure	1	gives	an	example	of	a	choice	list	used	in	the	exchangeability	questions.	In	the	

first	choice	on	the	list	subjects	compared	𝐴 = 𝑥 @′,@′ 𝑦	and		𝐵 = 𝑥 @′,D′ 𝑦,	i.e.		𝑧	was	equal	to	

𝑎′,	and	subjects	should	prefer	bet	𝐵.	The	value	of	𝑧	increased	by	D
′l@′

�
		in	each	following	

choice	on	the	list,	increasing	the	attractiveness	of	𝐴,	until	𝑧	was	equal	to	𝑏′	in	the	final	

choice	where	subjects	should	prefer	𝐴.	We	imposed	the	choice	in	the	first	and	final	

choice	of	the	list	and	asked	subjects	to	complete	the	choice	list.	The	program	imposed	

monotonicity:	if	a	subject	preferred	𝐴 = 𝑥 @′,A 𝑦	to	𝐵 = 𝑥 A,D′ 𝑦	for	some	value	of	𝑧	then	the	

program	automatically	selected	𝐴	for	all	𝑧′ > 𝑧.	Figure	1	shows	a	choice	where	the	value	

of	𝑧	is	zero.	Subjects	could	either	choose	𝐴	or	𝐵	or	click	on	“no	preference”.	If	subjects	

selected	“no	preference”	for	some	value	of	𝑧	then	we	used	this	value	as	their	indifference	
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value.	However,	this	happened	in	only	0.8%	of	the	choice	lists.	Most	subjects	switched	at	

some	point	from	𝐵	to	𝐴.	We	then	used	the	midpoint	of	the	highest	value	of	𝑧a	for	which	

they	preferred	𝐵	and	the	lowest	value	of	𝑧l	for	which	they	preferred	𝐴	as	their	

indifference	value.		

	 Subjects	made	364	choices	in	total.	At	the	end	of	the	experiment,	one	of	these	364	

choices	was	selected	randomly	and	played	out	for	real.	If	a	subject	had	chosen	𝐴	or	𝐵	in	

this	choice	then	we	played	out	his	preferred	bet.	If	the	subject	had	selected	“no	

preference”	then	we	randomly	selected	one	of	the	two	bets	to	be	played	out	for	real.	

Ambiguity	averse	subjects	may	prefer	this	randomization	to	one	of	the	two	bets.	

However,	as	mentioned	before,	very	few	subjects	chose	the	option	“no	preference”	and	

there	is	no	reason	to	suspect	that	such	a	preference	for	randomization	has	affected	the	

results.	

	

4.2.	Analysis	

	 We	assumed	that	the	beliefs	followed	a	beta	distribution.	We	also	tried	other	

distributions	(Gaussian,	triangular)	but	these	led	to	a	worse	fit.	

In	the	stochastic	approach,	we	assumed	that	utility	belonged	to	the	exponential	

(constant	absolute	risk	aversion)	family.	We	also	performed	the	analyses	using	the	

CRRA	family,	but	this	led	to	a	decrease	in	goodness	of	fit	both	at	the	aggregate	level	and	

for	57%	of	our	subjects.	Moreover,	the	responses	to	choices	18	and	20	indicated	that	

constant	relative	risk	aversion	did	not	hold.	We	used	the	same	utility	function	for	both	

sources	of	uncertainty.	Abdellaoui	et	al.	(2011)	found	support	for	the	assumption	that	

utility	is	relatively	stable	across	sources	of	uncertainty.	

The	distortion	function	was	estimated	using	Prelec’s	(1998)	two-parameter	

specification:	
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𝑓 𝑃 𝐸 = exp	(−𝑑(−ln(𝑃(𝐸)))�).	 	 	 	 	 (3)	

The	parameter	𝑔	mainly	reflects	the	insensitivity	of	the	decision	maker	to	likelihood	

information	(Abdellaoui	et	al.	2011).	The	parameter	𝑑	measures	the	decision	maker’s	

pessimism/optimism	with	higher	values	indicating	more	pessimism.	Dummies	were	

added	to	test	for	source	dependence	of	𝑔	and	𝑑.		We	used	different	error	terms	for	the	

exchangeability	tasks	1,2,3,	6-13	and	for	the	probability	equivalence	tasks	4,5,	14-24.	

At	the	individual	level,	we	estimated	the	model	parameters	by	maximizing	the	sum	of	

the	log	likelihoods	defined	by	Eq.	(2)	over	all	choices,	using	the	BFGS	algorithm.	To	

prevent	that	the	estimated	values	were	based	on	a	local	optimum,	we	used	50	randomly	

distributed	sets	of	starting	values	for	the	parameters.	We	did	this	both	at	the	aggregate	

level	by	pooling	the	individual	choices	and	for	each	subject	separately.	The	individual	

results	are	reported	in	the	Appendix.		

At	the	aggregate	level	we	estimated	a	random	coefficients	model.	Instead	of	

estimating	each	individual	parameter	separately,	the	random	coefficients	model	

estimates	the	parameters	of	the	population-level	distribution	from	which	the	individual	

parameters	are	drawn.	Hence,	the	estimation	for	each	subjects	borrows	strength	from	

other	subjects	to	obtain	a	more	powerful	analysis	leading	to	more	precise	and	less	

biased	estimates	(Kreft	&	de	Leeuw	1998).	The	online	appendix	describes	the	random	

coefficients	estimation	in	detail.		

We	used	likelihood	ratio	tests	to	test	the	goodness	of	fit	of	nested	models	and	the	

Bayes	Information	Criterion	otherwise.		

An	important	question	that	we	seek	to	address	is	whether	our	simple	method	

elicits	the	same	beliefs	as	the	more	sophisticated	stochastic	methods.	If	so,	this	would	

make	the	method	suitable	to	use	in	empirical	elicitations	of	beliefs.	Hence,	our	main	

interest	is	to	test	for	equalities	of	parameters.	Classic	significance	tests	are	less	suitable	
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for	this	as	they	do	not	allow	to	state	evidence	for	the	null	and	they	overstate	the	

evidence	against	the	null	(Rouder	et	al.	2009).	Hence,	we	used	Bayes	factors	(BF)	

instead.	Bayes	factors	indicate	how	much	more	likely	the	alternative	is	than	the	null.	A	

Bayes	factor	of	10	indicates	that	the	alternative	is	10	times	as	likely	as	the	null	given	the	

data.	Conversely,	a	Bayes	factor	of	0.10	indicates	that	the	null	is	10	times	as	likely	as	the	

alternative	given	the	data.	We	used	the	common	interpretation	that	a	Bayes	factor	larger	

than	3		signals	some	support	for	the	alternative	over	the	null,	a	Bayes	factor	larger	than	

10	signals	strong	support	for	the	alternative	over	the	null,	and	a	Bayes	factor	larger	than	

30	signals	very	strong	support	for	the	alternative	over	the	null.	Similarly,	a	Bayes	factor	

less	than	0.33		signals	some	support	for	the	null	over	the	alternative,	a	Bayes	factor	less	

than	0.10	signals	strong	support	for	the	null	over	the	alternative,	and	a	Bayes	factor	less	

than	0.03	signals	very	strong	support	for	the	null	over	the	alternative.	To	check	for	

robustness	we	also	performed	classic	statistical	tests.	These	led	to	the	same	conclusions	

and	are	reported	in	the	online	appendix.	The	online	appendix	also	contains	the	results	

from	other	statistical	tests	that	we	compared	and	that	are	not	reported	in	the	paper.	

	 		

5.	Results	

5.1.	Consistency	

Table	2	shows	the	mean	indifference	values	that	we	elicited.	The	consistency	was	

good.	We	repeated	four	elicitations,	one	exchangeability	question	and	one	probability	

equivalence	question	for	both	sources,	temperature	in	Rotterdam	and	temperature	in	

New	York.	A	Bayesian	Anova	showed	support	for	the	null	that	the	original	and	the	

repeated	elicited	values	were	the	same	over	the	alternative	that	they	differed	(all	𝐵𝐹 <

0.28).	The	Spearman	correlations	between	the	original	and	the	repeated	measurements	

were	substantial	(all	𝜚 > 0.67).		
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A	critical	assumption	underlying	our	analysis	is	that	Model	(1)	holds.	Under	Model	

(1)	we	should	find	the	same	values	of	𝑧	in	Question	1	and	13	and,	indeed,	Bayesian	t-

tests	revealed	support	for	the	null	that	the	elicited	values	of	𝑧	were	the	same	in	these	

choices	(both	𝐵𝐹 < 0.15).		

Choices	18	and	20	tested	the	CRRA	utility	function,	which	is	widely	used	in	empirical	

economics.	For	Rotterdam	a	Bayesian	t-test	was	inconclusive	(𝐵𝐹 = 1,7)	but	for	New	

York	temperature	we	found	very	strong	evidence	that	the	CRRA	utility	function	did	not	

hold	(𝐵𝐹=482.7).		

	

Figure	2:	Density	and	cumulative	distribution	of	beliefs.	

Deterministic	approach	
	

	

	

5.2.	Deterministic	measurement	of	beliefs		

The	deterministic	approach	uses	only	the	first	three	elicitations	of	Table	2	to	

estimate	the	distribution	of	beliefs.	The	first	elicited	value	of	𝑧,	which	measures	the	

median	of	the	distribution,	was	higher	for	Rotterdam	than	for	New	York	(𝐵𝐹=9.4)	

signaling	that	subjects	took	account	of	the	differences	between	the	sources	and	expected	
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higher	temperatures	in	Rotterdam	than	in	New	York	City.	The	second	and	third	values	of	

𝑧	measure	the	dispersion	of	the	distributions.	The	test	of	the	second	value	was	

inconclusive	(𝐵𝐹 = 1.1),	but	we	found	support	for	the	null	that	the	third	value	of	𝑧	was	

the	same	for	Rotterdam	and	New	York	(𝐵𝐹 = 0.16).	

Figure	2	shows	the	estimated	density	(panel	A)	and	distribution	functions	(panel	B)	

of	the	beliefs	for	Rotterdam	and	New	York	temperatures	under	the	deterministic	

approach.	based	on	the	mean	values	obtained	in	the	first	three	measurements.	The	

estimated	distributions	reflect	that	subjects	expected	lower	temperatures	in	New	York	

than	in	Rotterdam.	A	Bayesian	analysis	showed	very	strong	support	for	the	hypothesis	

that	the	means	of	the	distributions	for	Rotterdam	and	New	York	differed	(𝐵𝐹 = 39.6).	

However,	we	also	found	support	for	the	null	that	the	variances	were	the	same	(𝐵𝐹 =

0.21).	

	

Figure	3:	Comparison	between	beliefs	and	the	empirical	distribution	function		

	

Figure	3	compares	the	estimated	distribution	functions	and	the	empirical	

distribution	functions	of	the	average	and	maximum	temperatures	over	the	past	50	years	
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for	Rotterdam	(Panel	A)	and	New	York	(Panel	B).	We	did	not	have	the	exact	historical	

data	of	the	temperature	on	2pm,	but	it	is	probably	close	to	the	maximum	temperature.	

Subjects’	beliefs	were	generally	well-calibrated.	Both	the	means	and	the	medians	of	the	

elicited	distributions	were	close	to	their	historical	values.	The	shapes	of	the	elicited	

distributions	were	also	similar	to	those	of	the	historical	distributions.	If	subjects	

answered	randomly	or	if	our	method	would	introduce	biases	then	we	would	expect	

systematically	different	shapes.	Panel	A	shows	that	beliefs	about	the	temperature	in	

Rotterdam	were	slightly	low	compared	with	the	historical	data.	This	may	be	explained	

by	availability	bias	(Tversky	and	Kahneman	1973)	as	the	winters	in	Rotterdam	of	2009-

2012	were	relatively	cold.	For	New	York	City	(Panel	B)	beliefs	were	close	to	the	

historical	data.	

	

Figure	4:	Individual	belief	distributions	

	

The	individual	belief	distributions	differed	considerably.	To	illustrate,	Figure	4	

shows	the	belief	distributions	for	temperatures	in	Rotterdam	and	New	York	of	four	of	

our	subjects.	Panel	A	shows	the	distributions	of	subject	13,	which	have	the	same	
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variance	but	different	means.	These	distributions	look	like	Gaussian	distributions.	For	

subject	30	(Panel	B)	the	distributions	have	almost	equal	means,	but	the	variance	is	

higher	for	Rotterdam	temperature.	Subject	49	(Panel	C)	has	negatively	skewed	

distributions	of	beliefs.	Subject	12	(Panel	D)	has	a	Gaussian	distribution	of	beliefs	about	

temperature	in	Rotterdam,	but	a	close	to	uniform	distribution	of	beliefs	for	temperature	

in	New	York	City.	

	

5.3.	Stochastic	measurement	of	beliefs	

	 The	stochastic	approach	used	10	elicitations	to	measure	the	beliefs	distribution.	

The	main	purpose	of	this	analysis	was	to	test	the	robustness	of	the	results	from	the	

deterministic	approach	when	we	allowed	for	response	error.		

	 We	observed	no	substantial	differences	with	the	results	from	the	deterministic	

approach.	Figure	5	shows	the	density	and	cumulative	distribution	function	based	on	the	

means	of	the	individual	estimated	parameters	of	the	beta	distribution.	They	are	close	to	

those	that	were	obtained	under	the	assumption	of	deterministic	preferences.	For	

Rotterdam	we	found	support	for	the	null	that	the	estimated	parameters	of	the	beta	

distribution	were	the	same	under	the	deterministic	and	the	stochastic	approach	(both	

𝐵𝐹 < 0.21	).	For	New	York	we	also	found	support	or	the	null	but	it	was	slightly	weaker	

(both	𝐵𝐹 = 0.33	for	𝛼	and	𝐵𝐹 = 0.39	for	𝛽).	For	both	Rotterdam	and	New	York,	we	

found	support	for	the	null	that	the	means	of	the	“deterministic”	and	the	“stochastic”	

distributions	were	the	same	(𝐵𝐹 = 0.13	for	Rotterdam, 𝐵𝐹 = 0.24	for	New	York).	We	

also	found	support	for	the	null	that	the	variance	of	the	New	York	distribution	was	the	

same	under	the	deterministic	and	the	stochastic	approach	(𝐵𝐹 = 0.25).	However,	for	

Rotterdam	the	evidence	was	inconclusive	(𝐵𝐹 = 0.84).			
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The	evidence	that	subjects	expected	lower	temperatures	in	New	York	City	was	

very	strong	under	the	stochastic	approach	(𝐵𝐹 = 61534.3).	We	also	found	very	strong	

evidence	that	the	variance	of	the	Rotterdam	beliefs	distribution	was	lower	than	that	of	

the	New	York	distribution	(𝐵𝐹 = 11673.8).		

	

Figure	5:	Density	and	cumulative	distribution	of	beliefs.	

Stochastic	approach	based	on	the	means	of	the	individual	values	

	

	

5.4.	Beliefs	and	attitudes	
	
	 We	now	turn	to	the	results	of	the	complete	elicitation	of	Model	(1)	including	the	

measurement	of	utility	and	ambiguity	attitudes.	Figure	6	shows	the	estimated	beliefs	

distributions	for	Rotterdam	and	New	York	based	on	the	means	of	the	individually	

estimated	parameters	of	the	beta	distribution.	They	are	again	similar	to	the	distributions	

elicited	under	the	deterministic	approach	and	under	the	stochastic	approach.	A	Bayesian	

Anova	supported	the	null	that	the	parameters	of	the	beta	distribution	were	the	same	

under	the	three	approaches	(both	𝐵𝐹 < 0.09	for	Rotterdam	and	both	𝐵𝐹 < 0.16	for	New	
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York.).	The	parameters	were	also	strongly	correlated	(all	𝜚 > 0.73	for	Rotterdam	and	all	

𝜚 > 0.66	for	New	York).		

The	data	also	supported	equality	of	the	means	of	the	belief	distributions	under	

the	three	approaches	for	both	Rotterdam	(𝐵𝐹 = 0.05)	and	New	York	(𝐵𝐹 = 0.14).	We	

found	support	for	the	null	that	the	variances	were	the	same	for	New	York	under	the	

three	approaches	(𝐵𝐹 = 0.19),	but	for	Rotterdam	the	data	were	inconclusive	about	the	

equality	of	the	variances	(𝐵𝐹 = 1.59).	The	comparison	between	the	stochastic	approach	

and	the	complete	elicitation	supported	the	null	of	equal	variances	(𝐵𝐹 = 0.12),	but	the	

comparison	with	the	deterministic	approach	was	inconclusive	(𝐵𝐹 = 0.82)	just	like	we	

saw	in	the	comparison	between	the	deterministic	and	the	stochastic	approach.		

Figure	6:	Density	and	cumulative	distribution	of	beliefs.	

Complete	approach	based	on	the	means	of	the	individual	values	

	

5.4.1.	Utility	

	 Figure	7	shows	the	estimated	utility	function	based	on	the	mean	of	the	individual	

estimates	and	the	cumulative	distribution	function	of	the	individual	estimates.	We	found	
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support	for	the	null	that	utility	was	linear	(𝐵𝐹 = 0.14).	Panel	B	shows	that	this	held	for	a	

large	proportion	of	our	subjects.	

	

Figure	7:	Estimated	utility	function	using	the	mean	of	the	individual	estimates	

	

	

5.4.2	Distortion	functions	

	 Figure	8	shows	the	estimated	distortion	functions	for	Rotterdam	and	New	York	

based	on	the	mean	and	median	individual	estimations.	The	means	of	the	estimated	

parameters	suggest	a	very	pessimistic	attitude	in	line	with	Gilboa	and	Schmeidler’s	

(1989)	maxmin	expected	utility	model.	The	medians	signal	a	less	pessimistic	attitude	

although	the	distortion	functions	lie	for	the	most	part	below	the	diagonal	reflecting	

underweighting	of	subjective	probabilities.	The	observed	median	parameters	were	

similar	to	those	found	by	van	de	Kuilen	and	Wakker	(2011).	Compared	to	Abdellaoui	et	

al.	(2011)	we	found	the	same	likelihood	insensitivity,	but	more	pessimism.		

	

Figure	8:	Distortion	functions	using	the	means	of	the	estimated	parameters	
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The	distortion	functions	for	Rotterdam	and	New	York	look	similar	and,	indeed,	

the	data	supported	the	null	that	both	likelihood	insensitivity	(𝐵𝐹 = 0.12)	and	pessimism	

(𝐵𝐹 = 0.14)	were	the	same	for	Rotterdam	and	New	York.	Hence,	we	found	no	evidence	

that	the	distortion	function	depended	on	the	source	of	uncertainty.		

	

Figure	9:	Cumulative	distribution	functions	of	the	individual	parameters	for	

likelihood	insensitivity	and	pessimism.	
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Figure	9	shows	the	cumulative	distribution	functions	of	the	individual	likelihood	

insensitivity	and	pessimism	parameters	for	Rotterdam	and	New	York.	The	figure	shows	

that	the	functions	for	Rotterdam	and	New	York	and	that	there	is	a	lot	of	individual	

heterogeneity.	This	large	heterogeneity	implied	that	the	evidence	on	pessimism	was	

inconclusive	(𝐵𝐹 = 1.2	for	Rotterdam	and	𝐵𝐹 = 0.61	for	New	York)	and	that	we	actually	

found	support	for	the	null	that	there	was	perfect	likelihood	sensitivity	(𝐵𝐹 = 0.17	for	

Rotterdam	and	𝐵𝐹 = 0.16	for	New	York).	

Given	the	above	results	we	also	explored	whether	our	data	were	consistent	with	

subjective	expected	utility.	We	re-estimated	Model	(1)	with	the	restriction	that	the	

parameters	𝑑	and	𝑔	in	Eq.(3),	Prelec’s	(1998)	specification	of	the	distortion	function,	

were	both	equal	to	1.	Model	(1)	with	𝑑	and	𝑔	unrestricted	fitted	significantly	better	for	

45	of	our	82	subjects.	For	the	remaining	subjects	we	could	not	reject	expected	utility.	

	 	

5.5	Random	coefficients	estimation	

	 To	check	for	robustness	we	also	estimated	a	random	coefficients	model.	Figure	

10	shows	the	estimated	belief	distributions	under	the	random	coefficients	model	for	

Rotterdam	and	New	York.	They	are	again	similar	to	what	we	observed	before.	For	

Rotterdam,	a	Bayesian	Anova	gives	very	strong	support	for	the	null	that	all	four	methods	

that	we	considered	(deterministic,	stochastic,	complete	estimation,	and	random	

coefficients)	give	the	same	parameters	of	the	beta	distribution	and	the	same	mean	(	

𝐵𝐹 < 0.02).	However,	we	also	found	strong	support	for	the	alternative	that	the	

variances	differ	(𝐵𝐹 = 19.9).	This	is	mainly	due	to	the	higher	variance	for	the	

deterministic	method.	For	New	York,	all	tests	supported	the	null	that	the	parameters	of	

the	beta	distribution,	the	mean,	and	the	variance	of	the	belief	distributions	elicited	by	
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the	four	methods	were	the	same	(all	𝐵𝐹 < 0.32).	The	correlations	between	the	

parameters	of	the	beta	distribution	were	very	high	(both	𝜚 > 0.97).	

	

Figure	10:	Density	and	cumulative	distribution	of	beliefs.	

Random	coefficients	model	using	the	mean	of	the	individual	values		

	

Turning	now	to	attitudes,	if	we	compare	the	estimates	of	the	individual	elicitations	of		

Model	(1)	with	those	from	the	random	coefficients	model,	we	found	support	for	the	null	

that	utility	is	the	same	(𝐵𝐹 = 0.12).	However,	we	also	found	strong	support	for	the	

alternative	that	likelihood	insensitivity	differed	(both	𝐵𝐹 > 12.0).	We	found	more	

likelihood	insensitivity	in	the	random	coefficients	estimation.	The	comparison	of	

pessimism	was	inconclusive	for	both	Rotterdam	and	New	York	(𝐵𝐹 = 0.75	for	

Rotterdam	and	𝐵𝐹 = 0.45	for	New	York).	In	the	random	coefficients	model	we	found	

some	support	for	the	hypothesis	that	the	distortion	functions	differed	across	sources	

(𝐵𝐹 = 7.4	for	𝑔	and	𝐵𝐹 = 5.5	for	𝑑).		
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6.	Discussion	

Many	decisions	are	made	under	uncertainty.	To	analyze	these	decisions	requires	

measuring	beliefs.	This	is	complex	due	to	the	interactions	between	beliefs,	risk	attitudes,	

and	ambiguity	attitudes.	Existing	methods	have	solved	this	interaction	problem	by	

imposing	simplifying	assumptions.	The	popular	proper	scoring	rules	(Brier	1950,	Good	

1952)	assume	risk	and	ambiguity	neutrality	and	only	measure	beliefs	correctly	if	the	

decision	maker	maximizes	expected	value	(Winkler	and	Murphy	1970).	While	

refinements	that	allow	for	risk	aversion	and	deviations	from	expected	utility	exist	

(Offerman	et	al.	2009,	Kothiyal	et	al.	2010,	Hossain	and	Okui	2013),	systematic	biases	

remain	(Kadane	and	Winkler	1988,	Armantier	and	Treich	2013).	Moreover,	

psychologists	have	questioned	whether	people	can	sensibly	respond	to	proper	scoring	

rules	(Erev	et	al.	1993).	

The	limitations	of	proper	scoring	rules	have	led	to	the	use	of	non-incentivized	

methods	(Manski	2004,	Armantier	and	Treich	2013,	Trautmann	and	Van	de	Kuilen	

2014)	and	prediction	markets	(Wolfers	and	Zitzewitz	2004)	in	belief	elicitation.	These	

methods	have	limitations	of	their	own.	Hypothetical	choice	may	lead	to	less	careful	and	

less	truthful	responses.	Estimations	from	prediction	markets	assume	risk	neutrality	and	

only	give	information	about	aggregate	beliefs	ignoring	individual	heterogeneity.10	Prelec	

(2004)	suggested	an	ingenious	method,	the	Bayesian	truth	serum,	which	even	permits	

measuring	beliefs	for	unverifiable	events.	However,	the	incentive-compatibility	of	the	

Bayesian	truth	serum	might	be	opaque	for	subjects	and	it	assumes	that	decision	makers	

																																																													

10Karni (2009) suggested measuring beliefs using matching probabilities (see also Spetzler and Stael 
Von Holstein 1975). This method avoids some violations of expected utility, but is invalid under 
ambiguity aversion (Budescu et al. 2011). There exist methods that are robust to ambiguity aversion 
(e.g. Abdellaoui et al. 2005, Diecidue et al. 2007, Baillon 2008, Abdellaoui et al. 2011), but these rely 
on simplifying assumptions or chained responses.  
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are	Bayesians.	Empirical	evidence	shows	that	people	often	deviate	from	Bayesianism	

(Grether	1980,	El-Gamal	&	Grether	1995,	Charness	&	Levin	2005,	Poinas	et	al.	2012).	

In	this	paper,	we	have	introduced	a	simple	method	to	measure	beliefs	that	addresses	

the	abovementioned	problems.	Our	method	is	incentive-compatible,	non-chained,	and	

permits	measuring	the	individual	distribution	of	beliefs	from	just	three	measurements.	

Perhaps	most	important,	our	method	gives	correct	measurements	even	when	the	

decision	maker	has	non-neutral	risk	and	ambiguity	attitudes	and	deviates	from	expected	

utility	and	Bayesianism.	Experimental	implementation	showed	that	the	measured	

beliefs	were	well-calibrated	and	sensitive	to	the	different	sources	of	uncertainty.	We	

tested	the	robustness	of	the	measurements	by	our	simple	method	with	those	from	

increasingly	sophisticated	methods	that	took	account	of	the	stochastic	nature	of	people’s	

preferences,	that	measured	both	beliefs	and	ambiguity	attitudes,	and	that	allowed	the	

estimates	for	each	subject	to	benefit	from	the	data	of	the	other	subjects	(the	random	

coefficients	model).	We	found	support	for	the	null	that	our	simple	method	gave	the	same	

estimates	as	these	more	sophisticated	methods.	

Our	method	is	based	on	Model	(1),	Ghirardato	and	Marinacci’s	(2001)	general	model	

of	biseparable	preferences	with	probabilistic	sophistication	within	sources	of	nature.	

Empirical	support	for	the	central	condition	underlying	biseparable	preferences	was	

obtained	by	Abdellaoui	et	al.	(2016).	Probabilistic	sophistication	within	sources	of	

nature	was	tested	by	Abdellaoui	et	al.	(2011),	who	could	not	reject	it.	We	included	one	

test	of	Model	(1)	and	obtained	support	for	it.	More	evidence	is	required	to	settle	the	

debate	on	the	acceptability	of	assuming	Model	(1),	but	based	on	what	is	available	Model	

(1)	seems	to	describe	people’s	preferences	rather	well.	

We	fitted	the	individual	belief	distributions	by	the	beta	distribution.	As	the	beta	

distribution	is	general	we	do	not	believe	that	this	has	introduced	substantial	distortions.	
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The	beta	distribution	fitted	significantly	better	than	the	other	distributions	that	we	tried.	

Fitting	a	continuous	distribution	to	a	small	number	of	individual	data	points	has	the	

advantage	that	response	errors	are	smoothened	out	and	leads	to	belief	forecasts	that	are	

at	least	as	accurate	as	“raw”	data	points	which	are	often	subject	to	considerable	error.	

	A	final	argument	in	favor	of	our	method	is	that	our	method	may	be	less	prone	to	

errors.	We	estimated	two	error	terms,	one	for	the	exchangeability	questions	and	one	for	

the	probability	equivalence	questions.	We	found	strong	evidence	that	the	estimated	

errors	in	the	exchangeability	questions	were	lower	than	those	in	the	probability	

equivalence	questions.	The	median	error	was	about	three	times	as	small	in	the	

exchangeability	questions.	As	our	method	uses	only	exchangeability	questions,	this	

findings	suggests	that	the	error	in	our	measurements	will	be	substantially	lower	than	

the	error	in	methods	based	on	probability	equivalence	measurements.	

	

7.	Conclusion.	

	 This	paper	introduces	a	simple	method	to	measure	individual	beliefs.	Our	method	

is	incentive	compatible,	non-chained,	and	it	estimates	the	distribution	of	beliefs	using	

three	simple	measurements.	It	is	valid	under	many	decision	models	and	is	robust	to	

ambiguity	aversion.	Measured	beliefs	were	well-calibrated,	sensitive	to	the	two	sources	

of	uncertainty	and	similar	to	those	obtained	using	more	sophisticated	methods.	We	hope	

that	by	providing	such	a	simple	method	to	measure	beliefs	in	decision	under	ambiguity	

will	help	decision	analysts	to	accurately	account	for	uncertainty	in	their	models.	
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