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Summary. Motivated by a practical application, this paper investigates robust estimation of
economic indicators from survey samples based on a semiparametric Pareto tail model. Eco-
nomic performance is typically measured by a set of indicators, which are often estimated
from survey data – the motivating example being the European indicators on social exclusion
and poverty computed from the well known EU-SILC survey. Since economic data typically
contain variables with heavily tailed distributions and additional extreme outliers, the idea is to
use robust Pareto tail modeling to detect the extreme outliers and reduce their influence on
the indicators. In the survey context, however, sample weights need to be considered when
modeling the tail with a Pareto distribution such that the true distribution on the population level
is accurately reflected. Therefore, the main methodological contribution is to adapt commonly
used robust estimators for the parameters of the Pareto distribution to take sample weights into
account. The resulting approach for robust estimation of indicators is then evaluated by means
of a simulation study and applied in the context of estimating the Gini coefficient from EU-SILC
data.
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1. Introduction

Economic indicators monitor the economic performance of administrative units such as
countries or regions for analysis and prediction purposes. In many cases, economic indicators
are estimated from survey data due to a lack of availability of suitable population data. The
motivating example for this paper is the European Union Statistics on Income and Living
Conditions (EU-SILC), which is an annual panel survey conducted in European Union
member states and other European countries. This survey is used as data basis for a set
of indicators to measure risk-of-poverty and social exclusion in Europe. However, many of
these economic indicators are highly sensitive to outlying observations, in particular the
Gini coefficient (Gini, 1912) and other indicators of inequality.
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In economic data, the distributions of variables such as income or sales turnover usually
have heavy tails. In addition, even more extreme outliers deviating from the rest of the
tail are a common problem. Heavy tails are frequently modeled by a Pareto distribution
(e.g. Kleiber and Kotz, 2003), while robust estimation allows to identify extreme outliers.
So far many estimators for the parameters of a Pareto distribution have been proposed.
However, those procedures are usually designed for samples from infinite populations, survey
samples are typically not considered in the literature on the Pareto model. Finite population
survey sampling is in general based on complex sampling designs with unequal inclusion
probabilities for the observations in the population, which leads to unequal weights for the
observations in the sample (see, e.g., Tillé, 2006). The initial weights are also often further
modified by techniques such as calibration (e.g., Deville et al., 1993) so that the sample
weights of the observations in certain subsets sum up to known population totals. The idea
behind Pareto tail modeling for survey data is that the upper tail of the population data
follows a Pareto distribution. Hence sample weights need to be considered for fitting the
distribution in order to avoid bias in the estimation of the parameters.

The proposed method for estimating indicators is based on modeling the heavy tails of
economic survey data with a Pareto distribution in order to identify the extreme outliers.
Therefore we adapt promising robust estimators to take sample weights into account, which
is the main methodological contribution of this paper. Then we propose two strategies to
reduce the influence of the extreme outliers on the indicators: downweighting the outlying
observations, or replacing their values. This general approach has the advantage that it
can be applied to many indicators. Nevertheless, in order to keep the paper concise, it
is focused on applying the developed methodology to the Gini coefficient estimated from
EU-SILC data. An extensive simulation study including results for other indicators can be
found in a technical report (Hulliger et al., 2011). Furthermore, it should be noted that
more general Pareto-type distributions or other complex distributions could be considered
to model the data, but the Pareto distribution is chosen due to its simple form (see, e.g.,
Kleiber and Kotz, 2003, for an overview of statistical distributions in economics).

In the following, we present an overview of the literature on the Pareto model. In Pareto
tail modeling, typically the shape of the Pareto distribution is estimated for points over a
large threshold. Possibly the most widely known estimator was suggested by Hill (1975)
and follows a maximum likelihood approach. Other classical estimators were introduced by
Pickands (1975), Dekkers and de Haan (1989), and Kratz and Resnick (1996). Brazauskas
and Serfling (2000a,b) examined various estimators with respect to their robustness prop-
erties. More advanced robust estimators were proposed by Victoria-Feser and Ronchetti
(1994, 1997) following an optimal bias-robust approach, or by Dupuis and Morgenthaler
(2002) and Dupuis and Victoria-Feser (2006) following a weighted maximum likelihood ap-
proach. Vandewalle et al. (2007), on the other hand, developed a promising robust estimator
based on an integrated squared error criterion.

For the choice of the threshold, various proposals have been made in the literature
as well. Beirlant et al. (1996a,b) and Danielsson et al. (2001) introduced procedures to
determine the optimal choice of the number of observations in the tail for the Hill estimator
based on minimizing the asymptotic mean squared error (AMSE). Nevertheless, those two
procedures are not robust as they are designed for the non-robust Hill estimator. A robust
prediction error criterion for simultaneously choosing the number of observations in the tail
and estimating the shape parameter was introduced by Dupuis and Victoria-Feser (2006).

Concerning robustness in survey statistics, Chambers (1986) introduced the notion of
representative and nonrepresentative outliers. Keep in mind that each observation in a
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survey sample represents a number of observations in the population as given by its sample
weight. Representative outliers are observations whose values are correctly recorded and
are not unique in the population. Therefore they contain relevant information and need
to be considered in the estimation of quantities of interest. Nonrepresentative outliers are
observations that either contain incorrect values or can in some sense be considered unique
in the population. Consequently, they may corrupt the estimation of quantities of interest
and need to be excluded or downweighted. In economic survey data, representative outliers
are the observations forming the heavy tails, whereas nonrepresentative outliers are even
more extreme observations that deviate from the observations in the tails. It is important
to note that nonrepresentative outliers may very well belong to the true distribution on
the population level, but including them in the estimation of quantities of interest from the
sample may have too high an influence on the estimates. Cowell and Flachaire (2007) use
the term high-leverage observations for such data points and stress their frequent occurrence
in economic data.

The rest of the paper is organized as follows. Brief descriptions of the Gini coefficient
and the Pareto distribution are given in Sections 2 and 3, respectively. Section 4 presents
the Pareto quantile plot for the case of survey data. Afterwards, selected estimators for the
shape parameter of the Pareto distribution are adapted for sample weights in Section 5.
How to use the semiparametric Pareto model for robust estimation of economic indicators
is described in Section 6. In Section 7, the estimators are evaluated by means of simula-
tion. The application to EU-SILC data is then presented in Section 8. Finally, Section 9
concludes.

2. Gini coefficient

The motivating application of this paper is given by the European indicators on social
exclusion and poverty, which have been defined by the European Union for monitoring and
evaluating economic policies of its members and other European countries. A large subset of
these indicators is estimated from the well known panel survey European Union Statistics
on Income and Living Conditions (EU-SILC). We focus on one of the indicators that is
particularly influenced by extreme outliers: the Gini coefficient.

Originally proposed by Gini (1912), the Gini coefficient is a well known measure of
inequality of a distribution and is widely applied in many fields of research. In the context
of EU-SILC, it is used to measure inequality of income. Eurostat (2004, 2009) defines the
Gini coefficient as the relationship of cumulative shares of the population arranged according
to the level of income, to the cumulative share of the income received by them. All members
of a household are thereby assigned the same equivalized disposable income (see Eurostat,
2004, 2009, for details on its computation).

For a definition of the Gini coefficient in mathematical terms, let x := (x1, . . . , xn)
′

be the income with x1 ≤ . . . ≤ xn and let w := (w1, . . . , wn)
′ be the corresponding sample

weights, where n denotes the number of observations. Then the Gini coefficient is estimated
by

Ĝini := 100
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The Gini coefficient is closely related to the Lorenz curve (Lorenz, 1905), which plots
the cumulative proportion of the total income against the corresponding proportion of the
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Fig. 1. Left: Example for the Lorenz curve. Right: Probability density function of the Pareto distribu-
tion with parameters x0 = 1 and θ = 1, 2, 3, 4.

population. As for the Gini coefficient, the data are first sorted by income in non-decreasing
order. An example for the Lorenz curve is shown in Figure 1 (left). The line at the angle
of 45◦ thereby corresponds to perfect equality of incomes. The Gini coefficient can then be
written as

Gini = 100 · 2A, (2)

where A denotes the area between the Lorenz curve and the line of perfect equality. In the
example in Figure 1 (left), the area A is shaded in grey.

3. Pareto distribution

In this paper, the Pareto distribution is used to model the upper tail of economic survey
data in order to identify extreme outliers that may highly influence indicators. The Pareto
distribution is well studied in the statistics and economics literature. It is defined in terms
of its cumulative distribution function

Fθ(x) = 1−

(

x

x0

)

−θ

, x ≥ x0, (3)

where x0 > 0 is the scale parameter and θ > 0 is the shape parameter (Kleiber and Kotz,
2003). The corresponding density function is given by

fθ(x) =
θxθ

0

xθ+1
, x ≥ x0. (4)

Figure 1 (right) displays the density function of the Pareto distribution with scale pa-
rameter x0 = 1 and different values of the shape parameter θ. The effect of changing the
shape parameter θ is thereby clearly visible: the lower θ, the lower the probability mass at
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x0 and the longer the tail. In extreme value theory, the tail index is a measure of the tail
heavyness of a distribution. For the Pareto distribution, the tail index is in fact given by
γ = 1/θ.

In the semiparametric Pareto tail model, the cumulative distribution function on the
whole range of x is modeled as

F (x) =

{

G(x), if x ≤ x0,
G(x0) + (1−G(x0))Fθ(x), if x > x0,

(5)

where G is an unknown distribution function (Dupuis and Victoria-Feser, 2006).
Let n be the number of observations and let x = (x1, . . . , xn)

′ denote the observed values
with x1 ≤ . . . ≤ xn. If k is the number of observations to be used for tail modeling, the
threshold x0 is estimated by

x̂0 := xn−k. (6)

If, on the other hand, an estimate x̂0 for the scale parameter of the Pareto distribution
is available, k is given by the number of observations larger than x̂0. In this way, the
estimation of x0 and k directly corresponds with each other.

4. Pareto quantile plot

In applied data analysis, visual exploration is an important first step to gain insight into
the data at hand. For our purpose, the Pareto quantile plot allows to check whether the
Pareto model for the upper tail of the data is suitable. Moreover, it is a graphical method
for inspecting the parameters of a Pareto distribution. For the case without sample weights,
it is described in detail in Beirlant et al. (1996a).

If the Pareto model holds, there exists a linear relationship between the logarithms
of the observed values and the quantiles of the standard exponential distribution, since
the logarithm of a Pareto distributed random variable follows an exponential distribution.
Hence the logarithms of the observed values, log(xi), i = 1, . . . , n, are plotted against the
theoretical quantiles.

In the case without sample weights, the theoretical quantiles of the standard exponential
distribution are given by

− log

(

1−
i

n+ 1

)

, i = 1, . . . , n, (7)

i.e., by dividing the range into n + 1 equally sized subsets and using the resulting n inner
gridpoints as probabilities for the quantiles. For survey data, the range of the exponential
distribution needs to be divided according to the weights of the n observations. The Pareto
quantile plot is thus generalized by using the theoretical quantiles

− log

(

1−

∑i

j=1 wj
∑n

j=1 wj

n

n+ 1

)

, i = 1, . . . , n, (8)

where the correction factor n/(n+ 1) ensures that the quantiles reduce to (7) if all sample
weights are equal.

If the tail of the data follows a Pareto distribution, those observations form almost a
straight line. The leftmost point of a fitted line can thus be used as an estimate of the
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Fig. 2. Pareto quantile plots of Austrian (top) and Belgian (bottom) EU-SILC income survey data
from 2005 (left) and 2006 (right).

threshold x0, the scale parameter. All values starting from the point after the threshold
may be modeled by a Pareto distribution, but of course this point cannot be determined
exactly by graphical means. Furthermore, the slope of the fitted line is in turn an estimate
of 1/θ, the reciprocal of the shape parameter. Another advantage of the Pareto quantile plot
is that nonrepresentative outliers, i.e., extreme observations in the upper tail that deviate
from the Pareto model, are clearly visible.

Figure 2 shows Pareto quantile plots for Austrian and Belgian EU-SILC income survey
data from 2005 and 2006. These data sets were provided by Eurostat and are used in the
application for the estimation of the Gini coefficient in Section 8. Note that the Austrian
data are clean despite some minor irregularities in the upper tail of the 2005 data, whereas
the Belgian data sets each contain one clear outlier from the Pareto tail model.
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5. Robust estimation of the shape parameter

In order to detect nonrepresentative outliers that deviate from the Pareto model for the
upper tail, the shape parameter of the Pareto distribution needs to be estimated in a robust
manner. This section therefore describes promising estimators for the shape parameter of a
Pareto distribution. Since the original proposals do not take sample weights into account,
the estimators are adjusted for the case of survey samples.

5.1. Integrated squared error (ISE) estimator
Terrell (1990) first proposed estimation based on an integrated squared error minimum
distance criterion as a more robust alternative to the maximum likelihood framework. In-
tuitively speaking, this estimation method reduces the influence of outliers by trying to find
largest proportion of the data that matches the assumed parametric model (Vandewalle
et al., 2007). A detailed discussion on this behavior can be found in Scott (2001).

For the integrated squared error (ISE) estimator in the case of the semiparametric Pareto
tail model (Vandewalle et al., 2007), the Pareto distribution is modeled in terms of the
relative excesses

yi :=
xn−k+i

xn−k

, i = 1, . . . , k. (9)

Then the density function of the Pareto distribution for the relative excesses is approximated
by

fθ(y) = θy−(1+θ). (10)

With this density, the integrated squared error criterion to find an estimate of the parameter
θ is given by

θ̂ = argmin
θ

[
∫

(fθ(y)− f(y))
2
dy

]

(11)

= argmin
θ

[
∫

f2
θ (y)dy − 2

∫

fθ(y)f(y)dy +

∫

f2(y)dy

]

, (12)

where f(y) denotes the unknown true density. Since the last term is constant with respect
to θ, it can be omitted. Furthermore, the middle term denotes the expected value of the
model density. Hence Equation (12) can be rewritten as

θ̂ = argmin
θ

[
∫

f2
θ (y)dy − 2E(fθ(Y ))

]

. (13)

If there are no sample weights in the data, the ISE estimator is obtained by using the mean
as an unbiased estimator of E(fθ(Y )):

θ̂ISE = argmin
θ

[

∫

f2
θ (y)dy −

2

k

k
∑

i=1

fθ(yi)

]

. (14)

For survey samples, the mean in Equation (14) is simply replaced by a weighted mean.
This leads to the weighted integrated squared error (wISE) estimator

θ̂wISE = argmin
θ

[

∫

f2
θ (y)dy −

2
∑k

i=1 wn−k+i

k
∑

i=1

wn−k+ifθ(yi)

]

. (15)



8

5.2. Partial density component (PDC) estimator
In an application of the integrated squared error criterion to outlier detection and regression,
Scott (2004) noticed that this criterion only requires the true density f to be a real density,
but not fθ. Vandewalle et al. (2007) use this result to define the partial density component
(PDC) estimator for the Pareto model. This estimator minimizes the integrated squared
error criterion based on an incomplete density mixture model ufθ. If the data do not contain
sample weights, the PDC estimator is thus given by

θ̂PDC = argmin
θ

[

u2

∫

f2
θ (y)dy −

2u

k

k
∑

i=1

fθ(yi)

]

. (16)

In order to obtain an estimate for the parameter u, the expression between brackets in
Equation (16) is differentiated with respect to θ and evaluated at θ̂PDC. Equating to zero
and solving the resulting equation then leads to the estimate

û =
1

k

k
∑

i=1

f
θ̂
(yi)

/

∫

f2
θ̂
(y)dy. (17)

A detailed discussion on the interpretation of û can be found in Vandewalle et al. (2007).
Taking survey sample weights into account, the weighted partial density component

(wPDC) estimator is obtained by replacing the mean as an estimator of E(fθ(Y )) by the
weighted mean. Thus Equations (16) and (17) are generalized to

θ̂wPDC =argmin
θ

[

u2

∫

f2
θ (y)dy −

2u
∑k

i=1 wn−k+i

k
∑

i=1

wn−k+ifθ(yi)

]

, (18)

û =
1

∑k

i=1 wn−k+i

k
∑

i=1

wn−k+ifθ̂(yi)

/

∫

f2
θ̂
(y)dy. (19)

6. Robust estimation of indicators based on Pareto tail mode ling

With all the pieces of the puzzle now in place, this section introduces two general approaches
for reducing the influence of outliers on economic indicators. The basic idea is to first
detect nonrepresentative outliers based on the semiparametric Pareto tail model. Then
we propose two strategies to reduce their influence on the indicators: downweighting the
outlying observations and recalibrating the remaining observations, or replacing the outlying
values with values drawn from the fitted distribution.

In mathematical terms, we first define the outlier indicator Oi, i = 1, . . . , n, based on
the Pareto distribution F

θ̂
fitted to the upper tail of the data as

Oi :=

{

1, if xi > F−1

θ̂
(1− α),

0, otherwise,
i = 1, . . . , n, (20)

where F−1

θ̂
(1 − α) denotes the (1 − α)-quantile of the fitted distribution. In principle,

any estimator θ̂ could be used, but we propose to use a weighted estimator to avoid bias
(cf. Section 7.1). Based on comprehensive experience from simulations, α = 0.005 or
α = 0.01 seem to be suitable choices for the tuning parameter; cf. the extensive collection of
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simulation results in a technical report (Hulliger et al., 2011). If α is chosen too low, some
nonrepresentative outliers may not be detected, whereas too high a value may lead to too
many observations being declared as outliers. For the Gini coefficient, for instance, too low
a value of α may thus lead to overestimation and too high a value to underestimation of the
true population value. It should be noted that α = 0.005 is used throughout this paper. In
an application to a specific data set, the Pareto quantile plot can be used as a diagnostic
tool to check whether a certain value for α is suitable. For this purpose, observations with
Oi = 1 can be highlighted in the plot with a different plot symbol or color. Because outliers
are clearly visible in the Pareto quantile plot (cf. Figure 2), it is possible to visually check
whether the choice for α yields reasonable outlier detection performance.

Once nonrepresentative outliers are detected, they can be treated with one of the fol-
lowing two strategies.

Calibration for nonrepresentative outliers (CN): Since nonrepresentative outliers are con-
sidered to be unique to the population data in some sense, the sample weights of the
corresponding observations are set to 1 and the weights of the remaining observations are
adjusted accordingly by calibration. Hence we first define weights w∗

i := 1 for all observa-
tions with Oi = 1. In addition, let Ij = (I1j , . . . , Inj)

′, j = 1, . . . , p, be a set of indicator
variables defining subgroups of the data such that Iij = 1 if observation i belongs to sub-
group j and Iij = 0 otherwise. With corresponding population totals Nj =

∑n

i=1 Iijwi,
calibration of the remaining observations with Oi = 0 then seeks weights w∗

i that are close
to the original wi while satisfying

∑

i:Oi=0

Iijw
∗

i = Nj −
∑

i:Oi=1

Iij , j = 1, . . . , p. (21)

If each observation i belongs to exactly one subgroup defined by the Ij , denoted by ji, the
calibrated sample weights can be written explicitly as

w∗

i =
Nj −

∑

l:Ol=1 Ilji
∑

l:Ol=0 Iljiwl

wi, i : Oi = 0. (22)

Nevertheless, in practice the Ij are often derived from more than one auxiliary variable (e.g.,
region and gender) such that each observation belongs to more than one subgroup. In that
case, (21) yields a more complex optimization problem. Details on calibration can be found
in, e.g., Deville et al. (1993). If the original sample weights wi have already been obtained
by calibration, it is a natural choice to use the same indicator variables for obtaining the
weights w∗

i . Otherwise for stratified sampling designs, using the indicator variables giving
the strata seems reasonable. In any case, an indicator is then computed using the standard
formula with the original values xi and the modified weights w∗

i , i = 1, . . . , n. For the Gini
coefficient, the formula from (1) is simply applied with w∗

i instead of wi.

Replacement of nonrepresentative outliers (RN): The nonrepresentative outliers are re-
placed by values drawn from the fitted Pareto distribution, thereby preserving the order
of the original values. Let k∗ :=

∑n

i=1 Oi denote the number of detected nonrepresenta-
tive outliers, and let i1, . . . , ik∗ denote their indices such that xi1 ≤ . . . ≤ xik∗

. Further-
more, let z1, . . . , zk∗ ∼ F

θ̂
be random values drawn from the fitted distribution such that
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z1 ≤ . . . ≤ zk∗ . The modified values x∗

i are then given by

x∗

i :=

{

zj if i = ij for any j ∈ {1, . . . , k∗},
xi otherwise,

i = 1, . . . , n. (23)

An indicator is then computed using the standard formula with the modified values x∗

i and
the original weights wi, i = 1, . . . , n. For the Gini coefficient, the formula from (1) is simply
applied with x∗

i instead of xi.
Note that the application in this paper is focused on finite population estimation and

inference. In such situations, the CN approach may be conceptually preferred since it
modifies the sample weights rather than drawing values from the model distribution. On
the other hand, if the theoretical income distribution is of interest as well, for instance for
model-based superpopulation inference, the RN strategy may be the more natural choice.

In addition, it would also be possible to derive semiparametric estimators based on
the fitted Pareto distribution. However, this would require new estimators to be derived
for different indicators. To give an example, Cowell and Flachaire (2007) use moments to
derive semiparametric estimators for a generalized entropy class of inequality indicators.
The advantage of the proposed approaches based on outlier detection is that they can
directly be applied to many indicators.

7. Simulation studies

The simulations presented in this section are performed in R (R Development Core Team,
2011) using the simulation framework from package simFrame (Alfons et al., 2010; Alfons,
2012). All considered methods are all available in package laeken (Alfons et al., 2012).

7.1. Estimation of the shape parameter
The first simulation experiment compares the weighted and unweighted estimators for the
shape parameter of the Pareto distribution presented in Section 5. Its aim is to demonstrate
the importance of considering the sample weights in the finite population sampling context.

First, 100 population data sets of size N = 10 000 are generated. Values in the variable
of interest x = (x1, . . . , xN )′ are drawn from a Pareto distribution with scale parameter
x0 = 1 and shape parameter θ = 4. The scale parameter x0 is thereby assumed to be known
throughout the simulation study. In addition, an auxiliary variable p = (p1, . . . , pN )′ giving
probability weights for sampling is created for each population. It takes s = 100 equally
spaced values between 1 and 10 and is constructed for each observation i = 1, . . . , N , as

pi :=







1, xi > F−1
θ ( s−1

s
)

10− 9
s−1j, F−1

θ

(

j
s

)

< xi ≤ F−1
θ

(

j+1
s

)

for any 1 ≤ j < s− 1,

10, xi ≤ F−1
θ ( 1

s
)

where Fθ is the cumulative distribution function of the Pareto distribution from (3). Second,
100 samples of size n = 200 observations are drawn from each of the populations, resulting
in a total number of 10 000 simulation runs. The samples are taken using Midzuno’s method
for unequal probability sampling (Midzuno, 1952) with inclusion probabilities determined by
the probability weights p. Hence observations with lower values in the variable of interest
have higher inclusion probabilities, which in turn results in lower sample weights. This
is motivated by EU-SILC, where the equivalized income is the main variable of interest.
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Fig. 3. Average simulation results (top) and RMSE (bottom) for the estimation of the shape parameter
θ with contamination level ε varying between 0 and 50%.

In EU-SILC, higher inclusion probabilities are often assigned to larger households, which
typically have lower equivalized income than smaller ones. Moreover, the above definition of
the probability weights yields realistically large variation among the sample weights. Then
a proportion ε of randomly selected observations in the samples are replaced by outliers.
The contamination level ε is varied from 0 to 0.5 in steps of 0.05, and the values of the
selected observations are drawn from a normal distribution N(µ, σ) with mean µ = 10 (the
99.99% quantile of the Pareto distribution of the true values) and standard deviation σ = 1.

Figure 3 displays the average simulation results (top) and the root mean squared error
(RMSE; bottom) for varying contamination level ε, where the true shape parameter θ = 4
is indicated by the grey horizontal line. Clearly, the unweighted methods overestimate the
shape parameter if there is no contamination. With increasing contamination level, the
large outliers have a decreasing effect on the shape parameter, resulting in underestimation
for higher contamination levels. The weighted estimators are very close to the true shape
parameter in the case of no contamination. As contamination increases, the wISE estimator
gradually moves away from the true value, but the robust wPDC remains accurate until
about 20% contamination. Furthermore, the results for the bias are strongly reflected
in the RMSE, although wISE exhibits a slightly lower RMSE than wPDC for very low
contamination levels. To summarize, the sample weights need to be taken into account in
the finite population sampling context, and the wPDC estimator is clearly favorable.

7.2. Estimation of the Gini coefficient
In this simulation study, robust estimation of the Gini coefficient based on the Pareto
tail model is investigated in a close-to-reality setting. The basis for the simulations are
synthetic population data generated from Austrian EU-SILC data from 2006, the latter
of which were provided by Statistics Austria. The population data are thereby simulated
with the methodology described in Alfons et al. (2011) and implemented in the R package
simPopulation (Alfons and Kraft, 2012). In total, the population consists of 8 182 222
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individuals from 3 505 145 households. For each individual, information on demographics
and income is available. It is important to note that the synthetic population data do not
contain outliers in the income data, as these are generated in the samples for full control
over the amount of contamination (cf. Alfons, 2011).

Concerning the sampling design, 1 000 samples of 6 000 households are drawn via strat-
ified cluster sampling. While the strata are given by the nine federal states of Austria, the
primary sampling units (PSUs) correspond to the households. Within each stratum, house-
holds are drawn with unequal probabilities using Midzuno’s method (Midzuno, 1952). The
numbers of households selected from the strata are thereby proportional to the numbers of
households in the population of the strata, and the probabilities of selection for households
within each stratum are determined by the household sizes.

Since the Gini coefficient in the case of EU-SILC is estimated from an equivalized house-
hold income (see Section 2), contamination is inserted on the household level. First, house-
holds are selected by simple random sampling, then the equivalized household income of
the selected households is drawn from a normal distribution N(µ, σ) with µ = 1000 000 and
σ = 20 000. All individuals within a contaminated household are assigned the same value.
Moreover, EU-SILC data typically contain only a small amount of outliers. For a realistic
scenario, the contamination level is set to ε = 0.0025, which in this case corresponds to 15
contaminated households. Additionally, the contamination level ε = 0.01 is investigated.
This corresponds to 60 contaminated households out of a total 6 000 households, which in
official statistics would be considered rather poor data quality.

In this simulation setting, the methods from Section 6 are evaluated for varying number
of households k used for Pareto tail modeling. Only the weighted estimators of the shape
parameter from Section 5 are thereby considered. Note that households are used as obser-
vations for fitting the Pareto distribution and detecting outliers. In the CN approach, the
sample weight of each individual in an outlying household is set to 1. Calibration on the
remaining individuals is then performed on the strata of the sampling procedure. In the
RN approach, all individuals within the same outlying household receive the same replace-
ment value. It is important to note that this simulation study is focused on exploring the
behavior of the proposed methods for different choices of the threshold for tail modeling.
The estimation of the threshold is not addressed in this paper. Furthermore, standard
estimation of the Gini coefficient (see Section 2) is investigated for comparison.

Figure 4 (left) presents the simulation results for the case without contamination. The
proposed methods are evaluated by the average over the simulation runs (top) and the
root mean squared error (RMSE; bottom) for varying number of households k used for tail
modeling. In addition, reference lines are drawn for the standard estimation (dash-dotted
grey lines), as well as for the true population value of the Gini coefficient (solid grey line
in the top plots). For almost the entire investigated range of k, the methods based on the
Pareto tail model are very close to the standard estimation and the true population value
(note the scale of the y-axes in the plots, differences occur only in the second digit after the
comma). Only at k ≈ 350, the estimates start to drift away from the true value and their
RMSEs increase.

The results for the scenario with contamination level ε = 0.0025 are displayed in Fig-
ure 4 (center). For low values of k, the behavior of the methods based on the Pareto tail
model is similar to the standard estimation until they reach enough observations to reduce
the influence of the outliers. Afterwards, there is a smooth transition towards the true
population value. The estimators thereby reach this changepoint very quickly at k ≈ 20.
In particular for the wPDC estimator, there is a large drop in bias and RMSE until k ≈ 30,
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Fig. 4. Simulation results for the estimation of the Gini coefficient without contamination (left), con-
tamination level ε = 0.0025 (center) and contamination level ε = 0.01 (right): average results (top)
and RMSE (bottom). Reference lines are drawn for the standard estimation (dash-dotted grey lines),
as well as for the true population value of the Gini coefficient (solid grey lines in the top plots).

after which point the curves continue with a slower rate of reduction. With the wISE es-
timator, the transition is smoother, hence not as steep in the beginning. Both methods
stabilize at k ≈ 130 and then remain very close to the true population value. Note that
the CN approach performs slightly better with respect to bias than the RN approach, but
differences with respect to RMSE are too small to state a clear preference.

In Figure 4 (right), the simulation results for the configuration with contamination level
ε = 0.01 are shown. Due to the increased number of outlying households, a larger number of
households in the tail is necessary before the wPDC and wISE estimators are able to reduce
the influence of the outliers (k ≈ 100 for wPDC, k ≈ 110 for wISE). The wPDC estimator in
this case also stabilizes much earlier than the wISE estimator (k ≈ 170 for wPDC, k ≈ 240
for wISE). Thus the methods based on the wPDC estimator clearly perform best in this
scenario. However, the CN approach leads to very accurate results, whereas there is some
remaining bias and a slightly larger RMSE for the RN method.

To summarize the simulation results for the Gini coefficient, robust estimation based on
the wPDC and wISE estimators produces excellent results for a wide range of the number
of households k used for tail modeling. In particular under heavier contamination in the
upper tail, the wPDC estimator is preferable. Furthermore, the CN approach is favorable
over RN since it leads to more accurate results and does not require drawing random values
from the fitted distribution.

8. Application to real data

In this section, the proposed methods for the estimation of the Gini coefficient are applied
to real Austrian and Belgian EU-SILC survey data from 2005 and 2006, which have already
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Table 1. Gini coefficient estimated from Austrian and Belgian EU-SILC survey
data from 2005 and 2006. Standard deviations estimated via stratified bootstrap
with calibration are given in parenthesis.

Austria Belgium

Method Type 2005 2006 2005 2006

standard 26.13 (0.26) 25.33 (0.22) 28.53 (1.59) 27.82 (1.02)
wPDC CN 26.13 (0.26) 25.33 (0.22) 26.91 (0.39) 26.78 (0.26)
wPDC RN 26.13 (0.26) 25.33 (0.22) 26.92 (0.38) 26.79 (0.26)
wISE CN 26.13 (0.26) 25.33 (0.22) 26.91 (0.40) 26.78 (0.26)
wISE RN 26.13 (0.26) 25.33 (0.22) 26.91 (0.39) 26.79 (0.26)

been used for the Pareto quantile plots in Figure 2. Furthermore, the threshold for Pareto
tail modeling is determined by Van Kerm’s formula (Van Kerm, 2007). It is given by

x̂0 := min(max(2.5x̄, Q(0.98)), Q(0.97)), (24)

where x̄ is the weighted mean and Q(.) denotes weighted quantiles. Note that this formula
was developed specifically for the equivalized disposable income in EU-SILC data and has
more of a rule-of-thumb nature. A drawback of the formula is that it is designed to handle
only very few outliers, but that is not a problem in this application. Robust estimation of
the Gini coefficient based on Pareto tail modeling is then done in the same manner as in the
simulation study from the previous section, except that the CN approach uses calibration
according to regional information on a more aggregated level, as information on the strata
used for sampling is not available in the data used here.

Table 1 shows the results for standard and robust estimation of the Gini coefficient for
the Austrian and Belgian EU-SILC data from 2005 and 2006. Standard deviations estimated
via stratified bootstrap with calibration are thereby given in parenthesis. Details on the
computation of this bootstrap estimator are out of scope for this paper and can be found
in Templ and Alfons (2011). For the methods based on Pareto tail modeling, all steps are
performed for each bootstrap sample to account for the additional uncertainty. Nevertheless,
stratification cannot be replicated exactly in the bootstrap samples as the data only contain
more aggregated information than the strata used for sampling in practice. Hence estimates
of the standard deviation may not be the most accurate, but they illustrate the importance
of robust estimation of the Gini coefficient.

Regarding the Austrian data, the estimates based on the Pareto model are identical to
the standard estimation of the Gini coefficient in Table 1. For neither the wPDC or the
wISE estimator, the outlier indicator from Equation (20) detects any outliers in the 2005
or 2006 data. This is in accordance with the Pareto quantile plots in Figure 2 (top), which
do not reveal any clear outliers either, only some irregularities in the upper tail for 2005.
Since the 2005 and 2006 data appear very similar otherwise, those irregularities may be
responsible for the differences in the corresponding Gini coefficient estimates.

The situation is different for the Belgian data. For both the wPDC and wISE estimator,
the outlier indicator from Equation (20) detects the largest observation as the only outlier in
2005, and the two largest observations in 2006. Hence the respective estimates based on the
Pareto model in Table 1 are all very similar and considerably lower than the corresponding
standard estimates. However, the estimated standard deviations are much larger for the
standard estimation of the Gini coefficient than for the robust methods. Considering that
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the sample size is 5 137 households for 2005 and 5 860 households for 2006, this suggests a
disproportionally high influence of only 1 or 2 households with extremely large equivalized
income. The robust estimates may therefore be considered more reliable. In addition, the
outlier detection can again be checked by looking at the Pareto quantile plots in Figure 2
(bottom). The plot of the 2005 data also reveals the largest observation as the only outlier,
otherwise the upper tail follows the Pareto model quite nicely. For 2006, the largest obser-
vation is also a clear outlier. While the second largest observation slightly deviates from
the Pareto model, it is debatable whether it constitutes an outlier. Except for the outliers,
the 2005 and 2006 data are very similar, which may explain the small differences between
the two years in the robust estimates.

Note that even though the Pareto quantile plot could be used to graphically find outliers
in the first place, such a procedure would be highly subjective. Detecting outliers based on
a robustly fitted Pareto distribution is objective and should thus be preferred. Nevertheless,
the Pareto quantile plot is an important diagnostic tool to determine whether the Pareto
model is appropriate and to visually check the detected outliers.

9. Conclusions

Motivated by the estimation of the Gini coefficient from EU-SILC data, this paper intro-
duces robust methods for the estimation of economic indicators from survey samples. More
specifically, two approaches based on identifying extreme outliers via Pareto tail modeling
are considered. For this purpose, commonly used estimators for the shape parameter of
the Pareto distribution are adapted to allow for sample weights. The importance of taking
sample weights into account is demonstrated by a small simulation experiment. Moreover,
a close-to-reality simulation study and an application to real EU-SILC data demonstrate
the excellent performance of the robust procedure in the case of the Gini coefficient. In par-
ticular the weighted partial density component (wPDC) estimator for the shape parameter
of the Pareto distribution is favorable, as it still leads to excellent results in the simulations
with an unrealistically high amount of contamination.

Even though the Gini coefficient is used as an example in this paper, the developed
approaches can be applied to other economic indicators as well. For instance, an extensive
collection of results for several European indicators on social exclusion and poverty from
a wide range of simulation settings can be found in a technical report (Hulliger et al.,
2011). Neither is the developed methodology restricted to EU-SILC data, as heavily tailed
distributions frequently occur in economic surveys. The proposed adaptation of the Pareto
quantile plot can thereby be used to check whether the Pareto tail model is appropriate for
the data at hand.

Last but not least, all methods presented in this paper are available in the statistical
environment R through the contributed package laeken.

Acknowledgments

This work was partly funded by the European Union (represented by the European Commis-
sion) within the 7th framework programme for research (Theme 8, Socio-Economic Sciences
and Humanities, Project AMELI, Grant Agreement No. 217322). For more information on
the project, visit http://ameli.surveystatistics.net. Furthermore, we thank the Joint



16

Editor, the Associate Editor and the referee for their constructive remarks that led to an
improvement of the paper.

References

Alfons, A. (2011). Simulation and Robust Statistics: Application to Laeken Indicators and
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